1
|
|
|
"""Functions for calculating the average minimum distance (AMD) and |
|
|
|
|
2
|
|
|
point-wise distance distribution (PDD) isometric invariants of |
|
|
|
|
3
|
|
|
periodic crystals and finite sets. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
from typing import Union, Tuple |
7
|
|
|
import collections |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
from scipy.spatial.distance import pdist, squareform |
11
|
|
|
|
12
|
|
|
from . import utils |
13
|
|
|
from ._nearest_neighbours import nearest_neighbours, nearest_neighbours_minval |
14
|
|
|
from .periodicset import PeriodicSet |
15
|
|
|
|
16
|
|
|
PeriodicSet_or_Tuple = Union[PeriodicSet, Tuple[np.ndarray, np.ndarray]] |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def AMD( |
20
|
|
|
periodic_set: PeriodicSet_or_Tuple, |
|
|
|
|
21
|
|
|
k: int |
22
|
|
|
) -> np.ndarray: |
23
|
|
|
"""The AMD of a periodic set (crystal) up to k. |
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
---------- |
27
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` tuple of :class:`numpy.ndarray` s |
28
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
29
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell. |
30
|
|
|
k : int |
31
|
|
|
Length of the AMD returned; the number of neighbours considered for each atom |
|
|
|
|
32
|
|
|
in the unit cell to make the AMD. |
33
|
|
|
|
34
|
|
|
Returns |
35
|
|
|
------- |
36
|
|
|
numpy.ndarray |
37
|
|
|
A :class:`numpy.ndarray` shape (k, ), the AMD of ``periodic_set`` up to k. |
38
|
|
|
|
39
|
|
|
Examples |
40
|
|
|
-------- |
41
|
|
|
Make list of AMDs with k = 100 for crystals in mycif.cif:: |
42
|
|
|
|
43
|
|
|
amds = [] |
44
|
|
|
for periodic_set in amd.CifReader('mycif.cif'): |
45
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
46
|
|
|
|
|
|
|
|
47
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
48
|
|
|
|
49
|
|
|
amds = [] |
50
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
51
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
52
|
|
|
|
53
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
54
|
|
|
|
55
|
|
|
# simple cubic lattice |
56
|
|
|
motif = np.array([[0,0,0]]) |
57
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
58
|
|
|
cubic_amd = amd.AMD((motif, cell), 100) |
59
|
|
|
""" |
60
|
|
|
|
61
|
|
|
motif, cell, asymmetric_unit, multiplicities = _extract_motif_and_cell(periodic_set) |
62
|
|
|
pdd, _, _ = nearest_neighbours(motif, cell, k, asymmetric_unit=asymmetric_unit) |
63
|
|
|
return np.average(pdd, axis=0, weights=multiplicities) |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def PDD( |
|
|
|
|
67
|
|
|
periodic_set: PeriodicSet_or_Tuple, |
68
|
|
|
k: int, |
69
|
|
|
lexsort: bool = True, |
70
|
|
|
collapse: bool = True, |
71
|
|
|
collapse_tol: float = 1e-4, |
72
|
|
|
return_row_groups: bool = False, |
73
|
|
|
) -> np.ndarray: |
74
|
|
|
"""The PDD of a periodic set (crystal) up to k. |
75
|
|
|
|
76
|
|
|
Parameters |
77
|
|
|
---------- |
78
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` tuple of :class:`numpy.ndarray` s |
79
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
80
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell. |
81
|
|
|
k : int |
82
|
|
|
The returned PDD has k+1 columns, an additional first column for row weights. |
83
|
|
|
k is the number of neighbours considered for each atom in the unit cell |
|
|
|
|
84
|
|
|
to make the PDD. |
85
|
|
|
lexsort : bool, optional |
86
|
|
|
Lexicographically order the rows. Default True. |
87
|
|
|
collapse: bool, optional |
88
|
|
|
Collapse repeated rows (within the tolerance ``collapse_tol``). Default True. |
89
|
|
|
collapse_tol: float, optional |
90
|
|
|
If two rows have all elements closer than ``collapse_tol``, they are merged and |
91
|
|
|
weights are given to rows in proportion to the number of times they appeared. |
92
|
|
|
Default is 0.0001. |
93
|
|
|
return_row_groups: bool, optional |
94
|
|
|
Return data about which PDD rows correspond to which points. |
95
|
|
|
If True, a tuple is returned ``(pdd, groups)`` where ``groups[i]`` |
|
|
|
|
96
|
|
|
contains the indices of the point(s) corresponding to ``pdd[i]``. |
|
|
|
|
97
|
|
|
Note that these indices are for the asymmetric unit of the set, whose |
98
|
|
|
indices in ``periodic_set.motif`` are accessible through |
|
|
|
|
99
|
|
|
``periodic_set.asymmetric_unit``. |
100
|
|
|
|
101
|
|
|
Returns |
102
|
|
|
------- |
103
|
|
|
numpy.ndarray |
104
|
|
|
A :class:`numpy.ndarray` with k+1 columns, the PDD of ``periodic_set`` up to k. |
105
|
|
|
The first column contains the weights of rows. If ``return_row_groups`` is True, |
|
|
|
|
106
|
|
|
returns a tuple (:class:`numpy.ndarray`, list). |
107
|
|
|
|
108
|
|
|
Examples |
109
|
|
|
-------- |
110
|
|
|
Make list of PDDs with ``k=100`` for crystals in mycif.cif:: |
111
|
|
|
|
112
|
|
|
pdds = [] |
113
|
|
|
for periodic_set in amd.CifReader('mycif.cif'): |
114
|
|
|
# do not lexicographically order rows |
115
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
116
|
|
|
|
117
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode families:: |
118
|
|
|
|
119
|
|
|
pdds = [] |
120
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
121
|
|
|
# do not collapse rows |
122
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
123
|
|
|
|
124
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
125
|
|
|
|
126
|
|
|
# simple cubic lattice |
127
|
|
|
motif = np.array([[0,0,0]]) |
128
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
129
|
|
|
cubic_amd = amd.PDD((motif, cell), 100) |
130
|
|
|
""" |
131
|
|
|
|
132
|
|
|
motif, cell, asymmetric_unit, multiplicities = _extract_motif_and_cell(periodic_set) |
133
|
|
|
dists, _, _ = nearest_neighbours(motif, cell, k, asymmetric_unit=asymmetric_unit) |
134
|
|
|
groups = [[i] for i in range(len(dists))] |
135
|
|
|
|
136
|
|
|
if multiplicities is None: |
137
|
|
|
weights = np.full((motif.shape[0], ), 1 / motif.shape[0]) |
138
|
|
|
else: |
139
|
|
|
weights = multiplicities / np.sum(multiplicities) |
140
|
|
|
|
141
|
|
|
if collapse: |
142
|
|
|
overlapping = pdist(dists, metric='chebyshev') |
143
|
|
|
overlapping = overlapping < collapse_tol |
144
|
|
|
if overlapping.any(): |
145
|
|
|
groups = _collapse_into_groups(overlapping) |
146
|
|
|
weights = np.array([sum(weights[group]) for group in groups]) |
147
|
|
|
ordering = [group[0] for group in groups] |
148
|
|
|
dists = dists[ordering] |
149
|
|
|
|
150
|
|
|
pdd = np.hstack((weights[:, None], dists)) |
151
|
|
|
|
152
|
|
|
if lexsort: |
153
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
154
|
|
|
groups = [groups[i] for i in lex_ordering] |
155
|
|
|
pdd = pdd[lex_ordering] |
156
|
|
|
|
157
|
|
|
if return_row_groups: |
|
|
|
|
158
|
|
|
return pdd, groups |
159
|
|
|
else: |
160
|
|
|
return pdd |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
def PDD_to_AMD(pdd: np.ndarray) -> np.ndarray: |
164
|
|
|
"""Calculates an AMD from a PDD. Faster than computing both from scratch. |
165
|
|
|
|
166
|
|
|
Parameters |
167
|
|
|
---------- |
168
|
|
|
pdd : numpy.ndarray |
169
|
|
|
The PDD of a periodic set. |
170
|
|
|
|
171
|
|
|
Returns |
172
|
|
|
------- |
173
|
|
|
numpy.ndarray |
174
|
|
|
The AMD of the periodic set. |
175
|
|
|
""" |
176
|
|
|
|
177
|
|
|
return np.average(pdd[:, 1:], weights=pdd[:, 0], axis=0) |
178
|
|
|
|
179
|
|
|
|
180
|
|
|
def AMD_finite(motif: np.ndarray) -> np.ndarray: |
181
|
|
|
"""The AMD of a finite m-point set up to k = m-1. |
182
|
|
|
|
183
|
|
|
Parameters |
184
|
|
|
---------- |
185
|
|
|
motif : numpy.ndarray |
186
|
|
|
Coordinates of a set of points. |
187
|
|
|
|
188
|
|
|
Returns |
189
|
|
|
------- |
190
|
|
|
numpy.ndarray |
191
|
|
|
A vector length m-1 (where m is the number of points), the AMD of ``motif``. |
192
|
|
|
|
193
|
|
|
Examples |
194
|
|
|
-------- |
195
|
|
|
The AMD distance (L-infinity) between finite trapezium and kite point sets:: |
196
|
|
|
|
197
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
198
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
199
|
|
|
|
200
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
201
|
|
|
kite_amd = amd.AMD_finite(kite) |
202
|
|
|
|
203
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
204
|
|
|
""" |
205
|
|
|
|
206
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
207
|
|
|
return np.average(dm, axis=0) |
208
|
|
|
|
209
|
|
|
|
210
|
|
|
def PDD_finite( |
211
|
|
|
motif: np.ndarray, |
212
|
|
|
lexsort: bool = True, |
213
|
|
|
collapse: bool = True, |
214
|
|
|
collapse_tol: float = 1e-4, |
215
|
|
|
return_row_groups: bool = False, |
216
|
|
|
) -> np.ndarray: |
217
|
|
|
"""The PDD of a finite m-point set up to k = m-1. |
218
|
|
|
|
219
|
|
|
Parameters |
220
|
|
|
---------- |
221
|
|
|
motif : numpy.ndarray |
222
|
|
|
Coordinates of a set of points. |
223
|
|
|
lexsort : bool, optional |
224
|
|
|
Whether or not to lexicographically order the rows. Default True. |
225
|
|
|
collapse: bool, optional |
226
|
|
|
Whether or not to collapse repeated rows (within the tolerance ``collapse_tol``). |
|
|
|
|
227
|
|
|
Default True. |
228
|
|
|
collapse_tol: float |
229
|
|
|
If two rows have all elements closer than ``collapse_tol``, they are merged and |
230
|
|
|
weights are given to rows in proportion to the number of times they appeared. |
231
|
|
|
Default is 0.0001. |
232
|
|
|
return_row_groups: bool, optional |
233
|
|
|
Whether to return data about which PDD rows correspond to which points. |
234
|
|
|
If True, a tuple is returned ``(pdd, groups)`` where ``groups[i]`` |
|
|
|
|
235
|
|
|
contains the indices of the point(s) corresponding to ``pdd[i]``. |
236
|
|
|
|
237
|
|
|
Returns |
238
|
|
|
------- |
239
|
|
|
numpy.ndarray |
240
|
|
|
A :class:`numpy.ndarray` with m columns (where m is the number of points), |
|
|
|
|
241
|
|
|
the PDD of ``motif``. The first column contains the weights of rows. |
242
|
|
|
|
243
|
|
|
Examples |
244
|
|
|
-------- |
245
|
|
|
Find PDD distance between finite trapezium and kite point sets:: |
246
|
|
|
|
247
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
248
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
249
|
|
|
|
250
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
251
|
|
|
kite_pdd = amd.PDD_finite(kite) |
252
|
|
|
|
253
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
254
|
|
|
""" |
255
|
|
|
|
256
|
|
|
dm = squareform(pdist(motif)) |
257
|
|
|
m = motif.shape[0] |
258
|
|
|
dists = np.sort(dm, axis=-1)[:, 1:] |
259
|
|
|
weights = np.full((m, ), 1 / m) |
260
|
|
|
groups = [[i] for i in range(len(dists))] |
261
|
|
|
|
262
|
|
|
if collapse: |
263
|
|
|
overlapping = pdist(dists, metric='chebyshev') |
264
|
|
|
overlapping = overlapping < collapse_tol |
265
|
|
|
if overlapping.any(): |
266
|
|
|
groups = _collapse_into_groups(overlapping) |
267
|
|
|
weights = np.array([sum(weights[group]) for group in groups]) |
268
|
|
|
ordering = [group[0] for group in groups] |
269
|
|
|
dists = dists[ordering] |
270
|
|
|
|
271
|
|
|
pdd = np.hstack((weights[:, None], dists)) |
272
|
|
|
|
273
|
|
|
if lexsort: |
274
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
275
|
|
|
groups = [groups[i] for i in lex_ordering] |
276
|
|
|
pdd = pdd[lex_ordering] |
277
|
|
|
|
278
|
|
|
if return_row_groups: |
|
|
|
|
279
|
|
|
return pdd, groups |
280
|
|
|
else: |
281
|
|
|
return pdd |
282
|
|
|
|
283
|
|
|
|
284
|
|
|
def PDD_reconstructable( |
285
|
|
|
periodic_set: PeriodicSet_or_Tuple, |
286
|
|
|
lexsort: bool = True |
287
|
|
|
) -> np.ndarray: |
288
|
|
|
"""The PDD of a periodic set with `k` (no of columns) large enough such that |
289
|
|
|
the periodic set can be reconstructed from the PDD. |
290
|
|
|
|
291
|
|
|
Parameters |
292
|
|
|
---------- |
293
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` tuple of :class:`numpy.ndarray` s |
294
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
295
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell. |
296
|
|
|
lexsort : bool, optional |
297
|
|
|
Whether or not to lexicographically order the rows. Default True. |
298
|
|
|
|
299
|
|
|
Returns |
300
|
|
|
------- |
301
|
|
|
numpy.ndarray |
302
|
|
|
An ndarray, the PDD of ``periodic_set`` with enough columns to be reconstructable. |
303
|
|
|
""" |
304
|
|
|
|
305
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
306
|
|
|
dims = cell.shape[0] |
307
|
|
|
|
308
|
|
|
if dims not in (2, 3): |
309
|
|
|
raise ValueError('Reconstructing from PDD only implemented for 2 and 3 dimensions') |
310
|
|
|
|
311
|
|
|
min_val = utils.diameter(cell) * 2 |
312
|
|
|
pdd = nearest_neighbours_minval(motif, cell, min_val) |
313
|
|
|
|
314
|
|
|
if lexsort: |
315
|
|
|
pdd = pdd[np.lexsort(np.rot90(pdd))] |
316
|
|
|
|
317
|
|
|
return pdd |
318
|
|
|
|
319
|
|
|
|
320
|
|
|
def PPC(periodic_set: PeriodicSet_or_Tuple) -> float: |
321
|
|
|
r"""The point packing coefficient (PPC) of ``periodic_set``. |
322
|
|
|
|
323
|
|
|
The PPC is a constant of any periodic set determining the |
324
|
|
|
asymptotic behaviour of its AMD and PDD as :math:`k \rightarrow \infty`. |
325
|
|
|
|
326
|
|
|
As :math:`k \rightarrow \infty`, the ratio :math:`\text{AMD}_k / \sqrt[n]{k}` |
327
|
|
|
approaches the PPC (as does any row of its PDD). |
328
|
|
|
|
329
|
|
|
For a unit cell :math:`U` and :math:`m` motif points in :math:`n` dimensions, |
330
|
|
|
|
331
|
|
|
.. math:: |
332
|
|
|
|
333
|
|
|
\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
334
|
|
|
|
335
|
|
|
where :math:`V_n` is the volume of a unit sphere in :math:`n` dimensions. |
336
|
|
|
|
337
|
|
|
Parameters |
338
|
|
|
---------- |
339
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` or tuple of |
340
|
|
|
ndarrays (motif, cell) representing the periodic set in Cartesian form. |
341
|
|
|
|
342
|
|
|
Returns |
343
|
|
|
------- |
344
|
|
|
float |
345
|
|
|
The PPC of ``periodic_set``. |
346
|
|
|
""" |
347
|
|
|
|
348
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
349
|
|
|
m, n = motif.shape |
350
|
|
|
det = np.linalg.det(cell) |
351
|
|
|
t = (n - n % 2) / 2 |
352
|
|
|
if n % 2 == 0: |
353
|
|
|
V = (np.pi ** t) / np.math.factorial(t) |
354
|
|
|
else: |
355
|
|
|
V = (2 * np.math.factorial(t) * (4 * np.pi) ** t) / np.math.factorial(n) |
356
|
|
|
|
357
|
|
|
return (det / (m * V)) ** (1./n) |
358
|
|
|
|
359
|
|
|
|
360
|
|
|
def AMD_estimate(periodic_set: PeriodicSet_or_Tuple, k: int) -> np.ndarray: |
361
|
|
|
r"""Calculates an estimate of AMD based on the PPC, using the fact that |
362
|
|
|
|
363
|
|
|
.. math:: |
364
|
|
|
|
365
|
|
|
\lim_{k\rightarrow\infty}\frac{\text{AMD}_k}{\sqrt[n]{k}} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
366
|
|
|
|
367
|
|
|
where :math:`U` is the unit cell, :math:`m` is the number of motif points and |
368
|
|
|
:math:`V_n` is the volume of a unit sphere in :math:`n`-dimensional space. |
369
|
|
|
""" |
370
|
|
|
|
371
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
372
|
|
|
n = motif.shape[1] |
373
|
|
|
c = PPC((motif, cell)) |
374
|
|
|
return np.array([(x ** (1. / n)) * c for x in range(1, k + 1)]) |
375
|
|
|
|
376
|
|
|
|
377
|
|
|
def _extract_motif_and_cell(periodic_set: PeriodicSet_or_Tuple): |
378
|
|
|
"""`periodic_set` is either a :class:`.periodicset.PeriodicSet`, or |
379
|
|
|
a tuple of ndarrays (motif, cell). If possible, extracts the asymmetric unit |
380
|
|
|
and wyckoff multiplicities and returns them, otherwise returns None. |
381
|
|
|
""" |
382
|
|
|
|
383
|
|
|
asymmetric_unit, multiplicities = None, None |
384
|
|
|
|
385
|
|
|
if isinstance(periodic_set, PeriodicSet): |
386
|
|
|
motif, cell = periodic_set.motif, periodic_set.cell |
387
|
|
|
|
388
|
|
|
if 'asymmetric_unit' in periodic_set.tags and 'wyckoff_multiplicities' in periodic_set.tags: |
389
|
|
|
asymmetric_unit = periodic_set.asymmetric_unit |
390
|
|
|
multiplicities = periodic_set.wyckoff_multiplicities |
391
|
|
|
|
392
|
|
|
elif isinstance(periodic_set, np.ndarray): |
393
|
|
|
motif, cell = periodic_set, None |
394
|
|
|
else: |
395
|
|
|
motif, cell = periodic_set[0], periodic_set[1] |
396
|
|
|
|
397
|
|
|
return motif, cell, asymmetric_unit, multiplicities |
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def _collapse_into_groups(overlapping): |
401
|
|
|
"""The vector `overlapping` indicates for each pair of items in a set whether |
|
|
|
|
402
|
|
|
or not the items overlap, in the shape of a condensed distance matrix. Returns |
403
|
|
|
a list of groups of indices where all items in the same group overlap.""" |
404
|
|
|
|
405
|
|
|
overlapping = squareform(overlapping) |
406
|
|
|
group_nums = {} # row_ind: group number |
407
|
|
|
group = 0 |
408
|
|
|
for i, row in enumerate(overlapping): |
409
|
|
|
if i not in group_nums: |
410
|
|
|
group_nums[i] = group |
411
|
|
|
group += 1 |
412
|
|
|
|
413
|
|
|
for j in np.argwhere(row).T[0]: |
414
|
|
|
if j not in group_nums: |
415
|
|
|
group_nums[j] = group_nums[i] |
416
|
|
|
|
417
|
|
|
groups = collections.defaultdict(list) |
418
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
419
|
|
|
groups[group_num].append(row_ind) |
420
|
|
|
groups = list(groups.values()) |
421
|
|
|
|
422
|
|
|
return groups |
423
|
|
|
|