|
1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
|
2
|
|
|
""" |
|
3
|
|
|
|
|
4
|
|
|
import inspect |
|
5
|
|
|
from typing import List, Optional, Union, Tuple, Callable, Sequence |
|
6
|
|
|
from functools import partial |
|
7
|
|
|
from itertools import combinations |
|
8
|
|
|
from pathlib import Path |
|
9
|
|
|
|
|
10
|
|
|
import numpy as np |
|
11
|
|
|
import numpy.typing as npt |
|
12
|
|
|
import pandas as pd |
|
13
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
|
14
|
|
|
from sklearn.neighbors import NearestNeighbors |
|
15
|
|
|
from joblib import Parallel, delayed |
|
16
|
|
|
import tqdm |
|
17
|
|
|
|
|
18
|
|
|
from .io import CifReader, CSDReader |
|
19
|
|
|
from .calculate import AMD, PDD |
|
20
|
|
|
from ._emd import network_simplex |
|
21
|
|
|
from .periodicset import PeriodicSet |
|
22
|
|
|
|
|
23
|
|
|
FloatArray = npt.NDArray[np.floating] |
|
24
|
|
|
IntArray = npt.NDArray[np.integer] |
|
25
|
|
|
|
|
26
|
|
|
__all__ = [ |
|
27
|
|
|
'compare', |
|
28
|
|
|
'EMD', |
|
29
|
|
|
'AMD_cdist', |
|
30
|
|
|
'AMD_pdist', |
|
31
|
|
|
'PDD_cdist', |
|
32
|
|
|
'PDD_pdist', |
|
33
|
|
|
'emd' |
|
34
|
|
|
] |
|
35
|
|
|
|
|
36
|
|
|
_SingleCompareInput = Union[PeriodicSet, str] |
|
37
|
|
|
CompareInput = Union[_SingleCompareInput, List[_SingleCompareInput]] |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
def compare( |
|
41
|
|
|
crystals: CompareInput, |
|
42
|
|
|
crystals_: Optional[CompareInput] = None, |
|
43
|
|
|
by: str = 'AMD', |
|
44
|
|
|
k: int = 100, |
|
45
|
|
|
n_neighbors: Optional[int] = None, |
|
46
|
|
|
csd_refcodes: bool = False, |
|
47
|
|
|
verbose: bool = True, |
|
48
|
|
|
**kwargs |
|
49
|
|
|
) -> pd.DataFrame: |
|
50
|
|
|
r"""Given one or two sets of crystals, compare by AMD or PDD and |
|
51
|
|
|
return a pandas DataFrame of the distance matrix. |
|
52
|
|
|
|
|
53
|
|
|
Given one or two paths to CIFs, periodic sets, CSD refcodes or lists |
|
54
|
|
|
thereof, compare by AMD or PDD and return a pandas DataFrame of the |
|
55
|
|
|
distance matrix. Default is to comapre by AMD with k = 100. Accepts |
|
56
|
|
|
any keyword arguments accepted by |
|
57
|
|
|
:class:`CifReader <.io.CifReader>`, |
|
58
|
|
|
:class:`CSDReader <.io.CSDReader>` and functions from |
|
59
|
|
|
:mod:`.compare`. |
|
60
|
|
|
|
|
61
|
|
|
Parameters |
|
62
|
|
|
---------- |
|
63
|
|
|
crystals : list of str or :class:`PeriodicSet <.periodicset.PeriodicSet>` |
|
64
|
|
|
A path, :class:`PeriodicSet <.periodicset.PeriodicSet>`, tuple |
|
65
|
|
|
or a list of those. |
|
66
|
|
|
crystals\_ : list of str or :class:`PeriodicSet <.periodicset.PeriodicSet>`, optional |
|
67
|
|
|
A path, :class:`PeriodicSet <.periodicset.PeriodicSet>`, tuple |
|
68
|
|
|
or a list of those. |
|
69
|
|
|
by : str, default 'AMD' |
|
70
|
|
|
Use AMD or PDD to compare crystals. |
|
71
|
|
|
k : int, default 100 |
|
72
|
|
|
Parameter for AMD/PDD, the number of neighbor atoms to consider |
|
73
|
|
|
for each atom in a unit cell. |
|
74
|
|
|
n_neighbors : int, deafult None |
|
75
|
|
|
Find a number of nearest neighbors instead of a full distance |
|
76
|
|
|
matrix between crystals. |
|
77
|
|
|
csd_refcodes : bool, optional, csd-python-api only |
|
78
|
|
|
Interpret ``crystals`` and ``crystals_`` as CSD refcodes or |
|
79
|
|
|
lists thereof, rather than paths. |
|
80
|
|
|
verbose: bool, optional |
|
81
|
|
|
If True, prints a progress bar during reading, calculating and |
|
82
|
|
|
comparing items. |
|
83
|
|
|
**kwargs : |
|
84
|
|
|
Any keyword arguments accepted by the ``amd.CifReader``, |
|
85
|
|
|
``amd.CSDReader``, ``amd.PDD`` and functions used to compare: |
|
86
|
|
|
``reader``, ``remove_hydrogens``, ``disorder``, |
|
87
|
|
|
``heaviest_component``, ``molecular_centres``, |
|
88
|
|
|
``show_warnings``, (from class:`CifReader <.io.CifReader>`), |
|
89
|
|
|
``refcode_families`` (from :class:`CSDReader <.io.CSDReader>`), |
|
90
|
|
|
``collapse_tol`` (from :func:`PDD <.calculate.PDD>`), |
|
91
|
|
|
``metric``, ``low_memory`` |
|
92
|
|
|
(from :func:`AMD_pdist <.compare.AMD_pdist>`), ``metric``, |
|
93
|
|
|
``backend``, ``n_jobs``, ``verbose``, |
|
94
|
|
|
(from :func:`PDD_pdist <.compare.PDD_pdist>`), ``algorithm``, |
|
95
|
|
|
``leaf_size``, ``metric``, ``p``, ``metric_params``, ``n_jobs`` |
|
96
|
|
|
(from :func:`_nearest_items <.compare._nearest_items>`). |
|
97
|
|
|
|
|
98
|
|
|
Returns |
|
99
|
|
|
------- |
|
100
|
|
|
df : :class:`pandas.DataFrame` |
|
101
|
|
|
DataFrame of the distance matrix for the given crystals compared |
|
102
|
|
|
by the chosen invariant. |
|
103
|
|
|
|
|
104
|
|
|
Raises |
|
105
|
|
|
------ |
|
106
|
|
|
ValueError |
|
107
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid |
|
108
|
|
|
crystals to compare, or if crystals or crystals\_ are an invalid |
|
109
|
|
|
type. |
|
110
|
|
|
|
|
111
|
|
|
Examples |
|
112
|
|
|
-------- |
|
113
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
|
114
|
|
|
|
|
115
|
|
|
df = amd.compare('data.cif') |
|
116
|
|
|
|
|
117
|
|
|
Compare everything in one cif with all crystals in all cifs in a |
|
118
|
|
|
directory (PDD, k=50):: |
|
119
|
|
|
|
|
120
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
|
121
|
|
|
|
|
122
|
|
|
**Examples (csd-python-api only)** |
|
123
|
|
|
|
|
124
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
|
125
|
|
|
|
|
126
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', csd_refcodes=True, by='PDD', k=50) |
|
127
|
|
|
|
|
128
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
|
129
|
|
|
|
|
130
|
|
|
df = amd.compare('DEBXIT', csd_refcodes=True, families=True) |
|
131
|
|
|
""" |
|
132
|
|
|
|
|
133
|
|
|
def _default_kwargs(func: Callable) -> dict: |
|
134
|
|
|
"""Get the default keyword arguments from ``func``, if any |
|
135
|
|
|
arguments are in ``kwargs`` then replace with the value in |
|
136
|
|
|
``kwargs`` instead of the default. |
|
137
|
|
|
""" |
|
138
|
|
|
return { |
|
139
|
|
|
k: v.default for k, v in inspect.signature(func).parameters.items() |
|
140
|
|
|
if v.default is not inspect.Parameter.empty |
|
141
|
|
|
} |
|
142
|
|
|
|
|
143
|
|
|
def _unwrap_refcode_list( |
|
144
|
|
|
refcodes: List[str], **reader_kwargs |
|
145
|
|
|
) -> List[PeriodicSet]: |
|
146
|
|
|
"""Given string or list of strings, interpret as CSD refcodes |
|
147
|
|
|
and return a list of ``PeriodicSet`` objects. |
|
148
|
|
|
""" |
|
149
|
|
|
if not all(isinstance(refcode, str) for refcode in refcodes): |
|
150
|
|
|
raise TypeError( |
|
151
|
|
|
f'amd.compare(csd_refcodes=True) expects a string or list of ' |
|
152
|
|
|
'strings.' |
|
153
|
|
|
) |
|
154
|
|
|
return list(CSDReader(refcodes, **reader_kwargs)) |
|
155
|
|
|
|
|
156
|
|
|
def _unwrap_pset_list( |
|
157
|
|
|
psets: List[Union[str, PeriodicSet]], **reader_kwargs |
|
158
|
|
|
) -> List[PeriodicSet]: |
|
159
|
|
|
"""Given a list of strings or ``PeriodicSet`` objects, interpret |
|
160
|
|
|
strings as paths and unwrap all items into one list of |
|
161
|
|
|
``PeriodicSet``s. |
|
162
|
|
|
""" |
|
163
|
|
|
ret = [] |
|
164
|
|
|
for item in psets: |
|
165
|
|
|
if isinstance(item, PeriodicSet): |
|
166
|
|
|
ret.append(item) |
|
167
|
|
|
else: |
|
168
|
|
|
try: |
|
169
|
|
|
path = Path(item) |
|
170
|
|
|
except TypeError: |
|
171
|
|
|
raise ValueError( |
|
172
|
|
|
'amd.compare() expects strings or amd.PeriodicSets, ' |
|
173
|
|
|
f'got {item.__class__.__name__}' |
|
174
|
|
|
) |
|
175
|
|
|
ret.extend(CifReader(path, **reader_kwargs)) |
|
176
|
|
|
return ret |
|
177
|
|
|
|
|
178
|
|
|
by = by.upper() |
|
179
|
|
|
if by not in ('AMD', 'PDD'): |
|
180
|
|
|
raise ValueError( |
|
181
|
|
|
"'by' parameter of amd.compare() must be 'AMD' or 'PDD' (passed " |
|
182
|
|
|
f"'{by}')" |
|
183
|
|
|
) |
|
184
|
|
|
|
|
185
|
|
|
# Sort out keyword arguments |
|
186
|
|
|
cifreader_kwargs = _default_kwargs(CifReader.__init__) |
|
187
|
|
|
csdreader_kwargs = _default_kwargs(CSDReader.__init__) |
|
188
|
|
|
csdreader_kwargs.pop('refcodes', None) |
|
189
|
|
|
pdd_kwargs = _default_kwargs(PDD) |
|
190
|
|
|
pdd_kwargs.pop('return_row_groups', None) |
|
191
|
|
|
compare_amds_kwargs = _default_kwargs(AMD_pdist) |
|
192
|
|
|
compare_pdds_kwargs = _default_kwargs(PDD_pdist) |
|
193
|
|
|
nearest_items_kwargs = _default_kwargs(_nearest_items) |
|
194
|
|
|
nearest_items_kwargs.pop('XB', None) |
|
195
|
|
|
cifreader_kwargs['verbose'] = verbose |
|
196
|
|
|
csdreader_kwargs['verbose'] = verbose |
|
197
|
|
|
compare_pdds_kwargs['verbose'] = verbose |
|
198
|
|
|
|
|
199
|
|
|
for default_kwargs in ( |
|
200
|
|
|
cifreader_kwargs, csdreader_kwargs, pdd_kwargs, compare_amds_kwargs, |
|
201
|
|
|
compare_pdds_kwargs, nearest_items_kwargs |
|
202
|
|
|
): |
|
203
|
|
|
for kw in default_kwargs: |
|
204
|
|
|
if kw in kwargs: |
|
205
|
|
|
default_kwargs[kw] = kwargs[kw] |
|
206
|
|
|
|
|
207
|
|
|
# Get list of periodic sets from first input |
|
208
|
|
|
if not isinstance(crystals, list): |
|
209
|
|
|
crystals = [crystals] |
|
210
|
|
|
if csd_refcodes: |
|
211
|
|
|
crystals = _unwrap_refcode_list(crystals, **csdreader_kwargs) |
|
212
|
|
|
else: |
|
213
|
|
|
crystals = _unwrap_pset_list(crystals, **cifreader_kwargs) |
|
214
|
|
|
if not crystals: |
|
215
|
|
|
raise ValueError( |
|
216
|
|
|
'First argument passed to amd.compare() contains no valid ' |
|
217
|
|
|
'crystals/periodic sets to compare.' |
|
218
|
|
|
) |
|
219
|
|
|
names = [s.name for s in crystals] |
|
220
|
|
|
if verbose: |
|
221
|
|
|
crystals = tqdm.tqdm(crystals, desc='Calculating', delay=1) |
|
222
|
|
|
|
|
223
|
|
|
# Get list of periodic sets from second input if given |
|
224
|
|
|
if crystals_ is None: |
|
225
|
|
|
names_ = names |
|
226
|
|
|
else: |
|
227
|
|
|
if not isinstance(crystals_, list): |
|
228
|
|
|
crystals_ = [crystals_] |
|
229
|
|
|
if csd_refcodes: |
|
230
|
|
|
crystals_ = _unwrap_refcode_list(crystals_, **csdreader_kwargs) |
|
231
|
|
|
else: |
|
232
|
|
|
crystals_ = _unwrap_pset_list(crystals_, **cifreader_kwargs) |
|
233
|
|
|
if not crystals_: |
|
234
|
|
|
raise ValueError( |
|
235
|
|
|
'Second argument passed to amd.compare() contains no ' |
|
236
|
|
|
'valid crystals/periodic sets to compare.' |
|
237
|
|
|
) |
|
238
|
|
|
names_ = [s.name for s in crystals_] |
|
239
|
|
|
if verbose: |
|
240
|
|
|
crystals_ = tqdm.tqdm(crystals_, desc='Calculating', delay=1) |
|
241
|
|
|
|
|
242
|
|
|
if by == 'AMD': |
|
243
|
|
|
|
|
244
|
|
|
amds = np.empty((len(names), k), dtype=np.float64) |
|
245
|
|
|
for i, s in enumerate(crystals): |
|
246
|
|
|
amds[i] = AMD(s, k) |
|
247
|
|
|
|
|
248
|
|
|
if crystals_ is None: |
|
249
|
|
|
if n_neighbors is None: |
|
250
|
|
|
dm = squareform(AMD_pdist(amds, **compare_amds_kwargs)) |
|
251
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
|
252
|
|
|
else: |
|
253
|
|
|
nn_dm, inds = _nearest_items( |
|
254
|
|
|
n_neighbors, amds, **nearest_items_kwargs |
|
255
|
|
|
) |
|
256
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
|
257
|
|
|
else: |
|
258
|
|
|
amds_ = np.empty((len(names_), k), dtype=np.float64) |
|
259
|
|
|
for i, s in enumerate(crystals_): |
|
260
|
|
|
amds_[i] = AMD(s, k) |
|
261
|
|
|
|
|
262
|
|
|
if n_neighbors is None: |
|
263
|
|
|
dm = AMD_cdist(amds, amds_, **compare_amds_kwargs) |
|
264
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
|
265
|
|
|
else: |
|
266
|
|
|
nn_dm, inds = _nearest_items( |
|
267
|
|
|
n_neighbors, amds, amds_, **nearest_items_kwargs |
|
268
|
|
|
) |
|
269
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
|
270
|
|
|
|
|
271
|
|
|
elif by == 'PDD': |
|
272
|
|
|
|
|
273
|
|
|
pdds = [PDD(s, k, **pdd_kwargs) for s in crystals] |
|
274
|
|
|
|
|
275
|
|
|
if crystals_ is None: |
|
276
|
|
|
dm = PDD_pdist(pdds, **compare_pdds_kwargs) |
|
277
|
|
|
if n_neighbors is None: |
|
278
|
|
|
dm = squareform(dm) |
|
279
|
|
|
else: |
|
280
|
|
|
pdds_ = [PDD(s, k, **pdd_kwargs) for s in crystals_] |
|
281
|
|
|
dm = PDD_cdist(pdds, pdds_, **compare_pdds_kwargs) |
|
282
|
|
|
|
|
283
|
|
|
if n_neighbors is None: |
|
284
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
|
285
|
|
|
else: |
|
286
|
|
|
nn_dm, inds = _neighbors_from_distance_matrix(n_neighbors, dm) |
|
287
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
|
288
|
|
|
|
|
289
|
|
|
|
|
290
|
|
|
def EMD( |
|
291
|
|
|
pdd: FloatArray, |
|
292
|
|
|
pdd_: FloatArray, |
|
293
|
|
|
metric: Optional[str] = 'chebyshev', |
|
294
|
|
|
return_transport: Optional[bool] = False, |
|
295
|
|
|
**kwargs |
|
296
|
|
|
) -> Union[float, Tuple[float, FloatArray]]: |
|
297
|
|
|
r"""Calculate the Earth mover's distance (EMD) between two PDDs, aka |
|
298
|
|
|
the Wasserstein metric. |
|
299
|
|
|
|
|
300
|
|
|
Parameters |
|
301
|
|
|
---------- |
|
302
|
|
|
pdd : :class:`numpy.ndarray` |
|
303
|
|
|
PDD of a crystal. |
|
304
|
|
|
pdd\_ : :class:`numpy.ndarray` |
|
305
|
|
|
PDD of a crystal. |
|
306
|
|
|
metric : str or callable, default 'chebyshev' |
|
307
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
|
308
|
|
|
By default, Chebyshev (L-infinity) distance is chosen like with |
|
309
|
|
|
AMDs. Accepts any metric accepted by |
|
310
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
311
|
|
|
return_transport: bool, default False |
|
312
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
|
313
|
|
|
transport_plan describes the optimal flow. |
|
314
|
|
|
|
|
315
|
|
|
Returns |
|
316
|
|
|
------- |
|
317
|
|
|
emd : float |
|
318
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
|
319
|
|
|
is True, return a tuple (emd, transport_plan). |
|
320
|
|
|
|
|
321
|
|
|
Raises |
|
322
|
|
|
------ |
|
323
|
|
|
ValueError |
|
324
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
|
325
|
|
|
columns. |
|
326
|
|
|
""" |
|
327
|
|
|
|
|
328
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
|
329
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
|
330
|
|
|
|
|
331
|
|
|
if return_transport: |
|
332
|
|
|
return emd_dist, transport_plan |
|
333
|
|
|
return emd_dist |
|
334
|
|
|
|
|
335
|
|
|
|
|
336
|
|
|
def AMD_cdist( |
|
337
|
|
|
amds, |
|
338
|
|
|
amds_, |
|
339
|
|
|
metric: str = 'chebyshev', |
|
340
|
|
|
low_memory: bool = False, |
|
341
|
|
|
**kwargs |
|
342
|
|
|
) -> FloatArray: |
|
343
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
|
344
|
|
|
matrix. This function is essentially |
|
345
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
|
346
|
|
|
``chebyshev`` and a low memory option. |
|
347
|
|
|
|
|
348
|
|
|
Parameters |
|
349
|
|
|
---------- |
|
350
|
|
|
amds : ArrayLike |
|
351
|
|
|
A list/array of AMDs. |
|
352
|
|
|
amds\_ : ArrayLike |
|
353
|
|
|
A list/array of AMDs. |
|
354
|
|
|
metric : str or callable, default 'chebyshev' |
|
355
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) |
|
356
|
|
|
distance. Accepts any metric accepted by |
|
357
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
358
|
|
|
low_memory : bool, default False |
|
359
|
|
|
Use a slower but more memory efficient method for large |
|
360
|
|
|
collections of AMDs (metric 'chebyshev' only). |
|
361
|
|
|
**kwargs : |
|
362
|
|
|
Extra arguments for ``metric``, passed to |
|
363
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
364
|
|
|
|
|
365
|
|
|
Returns |
|
366
|
|
|
------- |
|
367
|
|
|
dm : :class:`numpy.ndarray` |
|
368
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` |
|
369
|
|
|
is the distance (given by ``metric``) between ``amds[i]`` and |
|
370
|
|
|
``amds[j]``. |
|
371
|
|
|
""" |
|
372
|
|
|
if low_memory: |
|
373
|
|
|
if metric != 'chebyshev': |
|
374
|
|
|
raise ValueError( |
|
375
|
|
|
"'low_memory' parameter of amd.AMD_cdist() only implemented " |
|
376
|
|
|
"with metric='chebyshev'." |
|
377
|
|
|
) |
|
378
|
|
|
dm = np.empty((len(amds), len(amds_))) |
|
379
|
|
|
for i, amd_vec in enumerate(amds): |
|
380
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
|
381
|
|
|
else: |
|
382
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
|
383
|
|
|
return dm |
|
384
|
|
|
|
|
385
|
|
|
|
|
386
|
|
|
def AMD_pdist( |
|
387
|
|
|
amds, |
|
388
|
|
|
metric: str = 'chebyshev', |
|
389
|
|
|
low_memory: bool = False, |
|
390
|
|
|
**kwargs |
|
391
|
|
|
) -> FloatArray: |
|
392
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
|
393
|
|
|
matrix. This function is essentially |
|
394
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
|
395
|
|
|
``chebyshev`` and a low memory parameter. |
|
396
|
|
|
|
|
397
|
|
|
Parameters |
|
398
|
|
|
---------- |
|
399
|
|
|
amds : ArrayLike |
|
400
|
|
|
An list/array of AMDs. |
|
401
|
|
|
metric : str or callable, default 'chebyshev' |
|
402
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
|
403
|
|
|
distance. Accepts any metric accepted by |
|
404
|
|
|
:func:`scipy.spatial.distance.pdist`. |
|
405
|
|
|
low_memory : bool, default False |
|
406
|
|
|
Use a slower but more memory efficient method for large |
|
407
|
|
|
collections of AMDs (metric 'chebyshev' only). |
|
408
|
|
|
**kwargs : |
|
409
|
|
|
Extra arguments for ``metric``, passed to |
|
410
|
|
|
:func:`scipy.spatial.distance.pdist`. |
|
411
|
|
|
|
|
412
|
|
|
Returns |
|
413
|
|
|
------- |
|
414
|
|
|
cdm : :class:`numpy.ndarray` |
|
415
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
416
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
417
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
418
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
419
|
|
|
""" |
|
420
|
|
|
if low_memory: |
|
421
|
|
|
m = len(amds) |
|
422
|
|
|
if metric != 'chebyshev': |
|
423
|
|
|
raise ValueError( |
|
424
|
|
|
"'low_memory' parameter of amd.AMD_pdist() only implemented " |
|
425
|
|
|
"with metric='chebyshev'." |
|
426
|
|
|
) |
|
427
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.float64) |
|
428
|
|
|
ind = 0 |
|
429
|
|
|
for i in range(m): |
|
430
|
|
|
ind_ = ind + m - i - 1 |
|
431
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
|
432
|
|
|
ind = ind_ |
|
433
|
|
|
else: |
|
434
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
|
435
|
|
|
return cdm |
|
436
|
|
|
|
|
437
|
|
|
|
|
438
|
|
|
def PDD_cdist( |
|
439
|
|
|
pdds: List[FloatArray], |
|
440
|
|
|
pdds_: List[FloatArray], |
|
441
|
|
|
metric: str = 'chebyshev', |
|
442
|
|
|
backend: str = 'multiprocessing', |
|
443
|
|
|
n_jobs: Optional[int] = None, |
|
444
|
|
|
verbose: bool = False, |
|
445
|
|
|
**kwargs |
|
446
|
|
|
) -> FloatArray: |
|
447
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
|
448
|
|
|
matrix. Supports parallel processing via joblib. If using |
|
449
|
|
|
parallelisation, make sure to include an if __name__ == '__main__' |
|
450
|
|
|
guard around this function. |
|
451
|
|
|
|
|
452
|
|
|
Parameters |
|
453
|
|
|
---------- |
|
454
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
455
|
|
|
A list of PDDs. |
|
456
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
|
457
|
|
|
A list of PDDs. |
|
458
|
|
|
metric : str or callable, default 'chebyshev' |
|
459
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
460
|
|
|
distance. Accepts any metric accepted by |
|
461
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
462
|
|
|
backend : str, default 'multiprocessing' |
|
463
|
|
|
The parallelization backend implementation. For a list of |
|
464
|
|
|
supported backends, see the backend argument of |
|
465
|
|
|
:class:`joblib.Parallel`. |
|
466
|
|
|
n_jobs : int, default None |
|
467
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
468
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
469
|
|
|
processing may be slower for small inputs. |
|
470
|
|
|
verbose : bool, default False |
|
471
|
|
|
Prints a progress bar. If using parallel processing |
|
472
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
|
473
|
|
|
is used, otherwise uses tqdm. |
|
474
|
|
|
**kwargs : |
|
475
|
|
|
Extra arguments for ``metric``, passed to |
|
476
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
477
|
|
|
|
|
478
|
|
|
Returns |
|
479
|
|
|
------- |
|
480
|
|
|
dm : :class:`numpy.ndarray` |
|
481
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
|
482
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
|
483
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
|
484
|
|
|
""" |
|
485
|
|
|
|
|
486
|
|
|
kwargs.pop('return_transport', None) |
|
487
|
|
|
k = pdds[0].shape[-1] - 1 |
|
488
|
|
|
_verbose = 3 if verbose else 0 |
|
489
|
|
|
|
|
490
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
|
491
|
|
|
# TODO: put results into preallocated empty array in place |
|
492
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
|
493
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
|
494
|
|
|
for i in range(len(pdds)) for j in range(len(pdds_)) |
|
495
|
|
|
) |
|
496
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
|
497
|
|
|
|
|
498
|
|
|
else: |
|
499
|
|
|
n, m = len(pdds), len(pdds_) |
|
500
|
|
|
dm = np.empty((n, m)) |
|
501
|
|
|
if verbose: |
|
502
|
|
|
desc = f'Comparing {len(pdds)}x{len(pdds_)} PDDs (k={k})' |
|
503
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=n*m) |
|
504
|
|
|
for i in range(n): |
|
505
|
|
|
for j in range(m): |
|
506
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
|
507
|
|
|
progress_bar.update(1) |
|
508
|
|
|
progress_bar.close() |
|
509
|
|
|
else: |
|
510
|
|
|
for i in range(n): |
|
511
|
|
|
for j in range(m): |
|
512
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
|
513
|
|
|
|
|
514
|
|
|
return dm |
|
515
|
|
|
|
|
516
|
|
|
|
|
517
|
|
|
def PDD_pdist( |
|
518
|
|
|
pdds: List[FloatArray], |
|
519
|
|
|
metric: str = 'chebyshev', |
|
520
|
|
|
backend: str = 'multiprocessing', |
|
521
|
|
|
n_jobs: Optional[int] = None, |
|
522
|
|
|
verbose: bool = False, |
|
523
|
|
|
**kwargs |
|
524
|
|
|
) -> FloatArray: |
|
525
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
|
526
|
|
|
matrix. Supports parallelisation via joblib. If using |
|
527
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
|
528
|
|
|
guard around this function. |
|
529
|
|
|
|
|
530
|
|
|
Parameters |
|
531
|
|
|
---------- |
|
532
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
533
|
|
|
A list of PDDs. |
|
534
|
|
|
metric : str or callable, default 'chebyshev' |
|
535
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
536
|
|
|
distance. Accepts any metric accepted by |
|
537
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
538
|
|
|
backend : str, default 'multiprocessing' |
|
539
|
|
|
The parallelization backend implementation. For a list of |
|
540
|
|
|
supported backends, see the backend argument of |
|
541
|
|
|
:class:`joblib.Parallel`. |
|
542
|
|
|
n_jobs : int, default None |
|
543
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
544
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
545
|
|
|
processing may be slower for small inputs. |
|
546
|
|
|
verbose : bool, default False |
|
547
|
|
|
Prints a progress bar. If using parallel processing |
|
548
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
|
549
|
|
|
is used, otherwise uses tqdm. |
|
550
|
|
|
**kwargs : |
|
551
|
|
|
Extra arguments for ``metric``, passed to |
|
552
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
553
|
|
|
|
|
554
|
|
|
Returns |
|
555
|
|
|
------- |
|
556
|
|
|
cdm : :class:`numpy.ndarray` |
|
557
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
558
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
559
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
560
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
561
|
|
|
""" |
|
562
|
|
|
|
|
563
|
|
|
kwargs.pop('return_transport', None) |
|
564
|
|
|
k = pdds[0].shape[-1] - 1 |
|
565
|
|
|
_verbose = 3 if verbose else 0 |
|
566
|
|
|
|
|
567
|
|
|
if n_jobs is not None and n_jobs > 1: |
|
568
|
|
|
# TODO: put results into preallocated empty array in place |
|
569
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
|
570
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
|
571
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
|
572
|
|
|
) |
|
573
|
|
|
cdm = np.array(cdm) |
|
574
|
|
|
|
|
575
|
|
|
else: |
|
576
|
|
|
m = len(pdds) |
|
577
|
|
|
cdm_len = (m * (m - 1)) // 2 |
|
578
|
|
|
cdm = np.empty(cdm_len, dtype=np.float64) |
|
579
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
|
580
|
|
|
if verbose: |
|
581
|
|
|
desc = f'Comparing {len(pdds)} PDDs pairwise (k={k})' |
|
582
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=cdm_len) |
|
583
|
|
|
for r, (i, j) in enumerate(inds): |
|
584
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
|
585
|
|
|
progress_bar.update(1) |
|
586
|
|
|
progress_bar.close() |
|
587
|
|
|
else: |
|
588
|
|
|
for r, (i, j) in enumerate(inds): |
|
589
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
|
590
|
|
|
|
|
591
|
|
|
return cdm |
|
592
|
|
|
|
|
593
|
|
|
|
|
594
|
|
|
def emd( |
|
595
|
|
|
pdd: FloatArray, pdd_: FloatArray, **kwargs |
|
596
|
|
|
) -> Union[float, Tuple[float, FloatArray]]: |
|
597
|
|
|
"""Alias for :func:`EMD() <.compare.EMD>`.""" |
|
598
|
|
|
return EMD(pdd, pdd_, **kwargs) |
|
599
|
|
|
|
|
600
|
|
|
|
|
601
|
|
|
def _neighbors_from_distance_matrix( |
|
602
|
|
|
n: int, dm: FloatArray |
|
603
|
|
|
) -> Tuple[FloatArray, IntArray]: |
|
604
|
|
|
"""Given a distance matrix, find the n nearest neighbors of each |
|
605
|
|
|
item. |
|
606
|
|
|
|
|
607
|
|
|
Parameters |
|
608
|
|
|
---------- |
|
609
|
|
|
n : int |
|
610
|
|
|
Number of nearest neighbors to find for each item. |
|
611
|
|
|
dm : :class:`numpy.ndarray` |
|
612
|
|
|
2D distance matrix or 1D condensed distance matrix. |
|
613
|
|
|
|
|
614
|
|
|
Returns |
|
615
|
|
|
------- |
|
616
|
|
|
(nn_dm, inds) : tuple of :class:`numpy.ndarray` s |
|
617
|
|
|
``nn_dm[i][j]`` is the distance from item :math:`i` to its |
|
618
|
|
|
:math:`j+1` st nearest neighbor, and ``inds[i][j]`` is the |
|
619
|
|
|
index of this neighbor (:math:`j+1` since index 0 is the first |
|
620
|
|
|
nearest neighbor). |
|
621
|
|
|
""" |
|
622
|
|
|
|
|
623
|
|
|
inds = None |
|
624
|
|
|
if len(dm.shape) == 2: |
|
625
|
|
|
inds = np.array( |
|
626
|
|
|
[np.argpartition(row, n)[:n] for row in dm], dtype=np.int64 |
|
627
|
|
|
) |
|
628
|
|
|
elif len(dm.shape) == 1: |
|
629
|
|
|
dm = squareform(dm) |
|
630
|
|
|
inds = [] |
|
631
|
|
|
for i, row in enumerate(dm): |
|
632
|
|
|
inds_row = np.argpartition(row, n+1)[:n+1] |
|
633
|
|
|
inds_row = inds_row[inds_row != i][:n] |
|
634
|
|
|
inds.append(inds_row) |
|
635
|
|
|
inds = np.array(inds, dtype=np.int64) |
|
636
|
|
|
else: |
|
637
|
|
|
ValueError( |
|
638
|
|
|
'amd.neighbors_from_distance_matrix() accepts a distance matrix, ' |
|
639
|
|
|
'either a 2D distance matrix or a condensed distance matrix as ' |
|
640
|
|
|
'returned by scipy.spatial.distance.pdist().' |
|
641
|
|
|
) |
|
642
|
|
|
|
|
643
|
|
|
nn_dm = np.take_along_axis(dm, inds, axis=-1) |
|
644
|
|
|
sorted_inds = np.argsort(nn_dm, axis=-1) |
|
645
|
|
|
inds = np.take_along_axis(inds, sorted_inds, axis=-1) |
|
646
|
|
|
nn_dm = np.take_along_axis(nn_dm, sorted_inds, axis=-1) |
|
647
|
|
|
return nn_dm, inds |
|
648
|
|
|
|
|
649
|
|
|
|
|
650
|
|
|
def _nearest_items( |
|
651
|
|
|
n_neighbors: int, |
|
652
|
|
|
XA: FloatArray, |
|
653
|
|
|
XB: Optional[FloatArray] = None, |
|
654
|
|
|
algorithm: str = 'kd_tree', |
|
655
|
|
|
leaf_size: int = 5, |
|
656
|
|
|
metric: str = 'chebyshev', |
|
657
|
|
|
n_jobs=None, |
|
658
|
|
|
**kwargs |
|
659
|
|
|
) -> Tuple[FloatArray, IntArray]: |
|
660
|
|
|
"""Find nearest neighbor distances and indices between all |
|
661
|
|
|
items/observations/rows in ``XA`` and ``XB``. If ``XB`` is None, |
|
662
|
|
|
find neighbors in ``XA`` for all items in ``XA``. |
|
663
|
|
|
""" |
|
664
|
|
|
|
|
665
|
|
|
if XB is None: |
|
666
|
|
|
XB_ = XA |
|
667
|
|
|
_n_neighbors = n_neighbors + 1 |
|
668
|
|
|
else: |
|
669
|
|
|
XB_ = XB |
|
670
|
|
|
_n_neighbors = n_neighbors |
|
671
|
|
|
|
|
672
|
|
|
dists, inds = NearestNeighbors( |
|
673
|
|
|
n_neighbors=_n_neighbors, |
|
674
|
|
|
algorithm=algorithm, |
|
675
|
|
|
leaf_size=leaf_size, |
|
676
|
|
|
metric=metric, |
|
677
|
|
|
n_jobs=n_jobs, |
|
678
|
|
|
**kwargs |
|
679
|
|
|
).fit(XB_).kneighbors(XA) |
|
680
|
|
|
|
|
681
|
|
|
if XB is not None: |
|
682
|
|
|
return dists, inds |
|
683
|
|
|
|
|
684
|
|
|
final_shape = (dists.shape[0], n_neighbors) |
|
685
|
|
|
dists_ = np.empty(final_shape, dtype=np.float64) |
|
686
|
|
|
inds_ = np.empty(final_shape, dtype=np.int64) |
|
687
|
|
|
|
|
688
|
|
|
for i, (d_row, ind_row) in enumerate(zip(dists, inds)): |
|
689
|
|
|
i_ = 0 |
|
690
|
|
|
for d, j in zip(d_row, ind_row): |
|
691
|
|
|
if i == j: |
|
692
|
|
|
continue |
|
693
|
|
|
dists_[i, i_] = d |
|
694
|
|
|
inds_[i, i_] = j |
|
695
|
|
|
i_ += 1 |
|
696
|
|
|
if i_ == n_neighbors: |
|
697
|
|
|
break |
|
698
|
|
|
return dists_, inds_ |
|
699
|
|
|
|
|
700
|
|
|
|
|
701
|
|
|
def _nearest_neighbors_dataframe(nn_dm, inds, names, names_=None): |
|
702
|
|
|
"""Make ``pandas.DataFrame`` from distances to and indices of |
|
703
|
|
|
nearest neighbors from one set to another (as returned by |
|
704
|
|
|
neighbors_from_distance_matrix() or _nearest_items()). |
|
705
|
|
|
DataFrame has columns ID 1, DIST1, ID 2, DIST 2..., and names as |
|
706
|
|
|
indices. |
|
707
|
|
|
""" |
|
708
|
|
|
|
|
709
|
|
|
if names_ is None: |
|
710
|
|
|
names_ = names |
|
711
|
|
|
data = {} |
|
712
|
|
|
for i in range(nn_dm.shape[-1]): |
|
713
|
|
|
data['ID ' + str(i+1)] = [names_[j] for j in inds[:, i]] |
|
714
|
|
|
data['DIST ' + str(i+1)] = nn_dm[:, i] |
|
715
|
|
|
return pd.DataFrame(data, index=names) |
|
716
|
|
|
|