1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
import inspect |
5
|
|
|
from typing import List, Optional, Union, Tuple, Callable, Sequence |
6
|
|
|
from functools import partial |
7
|
|
|
from itertools import combinations |
8
|
|
|
from pathlib import Path |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
import numpy.typing as npt |
12
|
|
|
import pandas as pd |
13
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
14
|
|
|
from sklearn.neighbors import NearestNeighbors |
15
|
|
|
from joblib import Parallel, delayed |
16
|
|
|
import tqdm |
17
|
|
|
|
18
|
|
|
from .io import CifReader, CSDReader |
19
|
|
|
from .calculate import AMD, PDD |
20
|
|
|
from ._emd import network_simplex |
21
|
|
|
from .periodicset import PeriodicSet |
22
|
|
|
|
23
|
|
|
FloatArray = npt.NDArray[np.floating] |
24
|
|
|
IntArray = npt.NDArray[np.integer] |
25
|
|
|
|
26
|
|
|
__all__ = [ |
27
|
|
|
'compare', |
28
|
|
|
'EMD', |
29
|
|
|
'AMD_cdist', |
30
|
|
|
'AMD_pdist', |
31
|
|
|
'PDD_cdist', |
32
|
|
|
'PDD_pdist', |
33
|
|
|
'emd' |
34
|
|
|
] |
35
|
|
|
|
36
|
|
|
_SingleCompareInput = Union[PeriodicSet, str] |
37
|
|
|
CompareInput = Union[_SingleCompareInput, List[_SingleCompareInput]] |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def compare( |
41
|
|
|
crystals: CompareInput, |
42
|
|
|
crystals_: Optional[CompareInput] = None, |
43
|
|
|
by: str = 'AMD', |
44
|
|
|
k: int = 100, |
45
|
|
|
n_neighbors: Optional[int] = None, |
46
|
|
|
csd_refcodes: bool = False, |
47
|
|
|
verbose: bool = True, |
48
|
|
|
**kwargs |
49
|
|
|
) -> pd.DataFrame: |
50
|
|
|
r"""Given one or two sets of crystals, compare by AMD or PDD and |
51
|
|
|
return a pandas DataFrame of the distance matrix. |
52
|
|
|
|
53
|
|
|
Given one or two paths to CIFs, periodic sets, CSD refcodes or lists |
54
|
|
|
thereof, compare by AMD or PDD and return a pandas DataFrame of the |
55
|
|
|
distance matrix. Default is to comapre by AMD with k = 100. Accepts |
56
|
|
|
any keyword arguments accepted by |
57
|
|
|
:class:`CifReader <.io.CifReader>`, |
58
|
|
|
:class:`CSDReader <.io.CSDReader>` and functions from |
59
|
|
|
:mod:`.compare`. |
60
|
|
|
|
61
|
|
|
Parameters |
62
|
|
|
---------- |
63
|
|
|
crystals : list of str or :class:`PeriodicSet <.periodicset.PeriodicSet>` |
64
|
|
|
A path, :class:`PeriodicSet <.periodicset.PeriodicSet>`, tuple |
65
|
|
|
or a list of those. |
66
|
|
|
crystals\_ : list of str or :class:`PeriodicSet <.periodicset.PeriodicSet>`, optional |
67
|
|
|
A path, :class:`PeriodicSet <.periodicset.PeriodicSet>`, tuple |
68
|
|
|
or a list of those. |
69
|
|
|
by : str, default 'AMD' |
70
|
|
|
Use AMD or PDD to compare crystals. |
71
|
|
|
k : int, default 100 |
72
|
|
|
Parameter for AMD/PDD, the number of neighbor atoms to consider |
73
|
|
|
for each atom in a unit cell. |
74
|
|
|
n_neighbors : int, deafult None |
75
|
|
|
Find a number of nearest neighbors instead of a full distance |
76
|
|
|
matrix between crystals. |
77
|
|
|
csd_refcodes : bool, optional, csd-python-api only |
78
|
|
|
Interpret ``crystals`` and ``crystals_`` as CSD refcodes or |
79
|
|
|
lists thereof, rather than paths. |
80
|
|
|
verbose: bool, optional |
81
|
|
|
If True, prints a progress bar during reading, calculating and |
82
|
|
|
comparing items. |
83
|
|
|
**kwargs : |
84
|
|
|
Any keyword arguments accepted by the ``amd.CifReader``, |
85
|
|
|
``amd.CSDReader``, ``amd.PDD`` and functions used to compare: |
86
|
|
|
``reader``, ``remove_hydrogens``, ``disorder``, |
87
|
|
|
``heaviest_component``, ``molecular_centres``, |
88
|
|
|
``show_warnings``, (from class:`CifReader <.io.CifReader>`), |
89
|
|
|
``refcode_families`` (from :class:`CSDReader <.io.CSDReader>`), |
90
|
|
|
``collapse_tol`` (from :func:`PDD <.calculate.PDD>`), |
91
|
|
|
``metric``, ``low_memory`` |
92
|
|
|
(from :func:`AMD_pdist <.compare.AMD_pdist>`), ``metric``, |
93
|
|
|
``backend``, ``n_jobs``, ``verbose``, |
94
|
|
|
(from :func:`PDD_pdist <.compare.PDD_pdist>`), ``algorithm``, |
95
|
|
|
``leaf_size``, ``metric``, ``p``, ``metric_params``, ``n_jobs`` |
96
|
|
|
(from :func:`_nearest_items <.compare._nearest_items>`). |
97
|
|
|
|
98
|
|
|
Returns |
99
|
|
|
------- |
100
|
|
|
df : :class:`pandas.DataFrame` |
101
|
|
|
DataFrame of the distance matrix for the given crystals compared |
102
|
|
|
by the chosen invariant. |
103
|
|
|
|
104
|
|
|
Raises |
105
|
|
|
------ |
106
|
|
|
ValueError |
107
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid |
108
|
|
|
crystals to compare, or if crystals or crystals\_ are an invalid |
109
|
|
|
type. |
110
|
|
|
|
111
|
|
|
Examples |
112
|
|
|
-------- |
113
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
114
|
|
|
|
115
|
|
|
df = amd.compare('data.cif') |
116
|
|
|
|
117
|
|
|
Compare everything in one cif with all crystals in all cifs in a |
118
|
|
|
directory (PDD, k=50):: |
119
|
|
|
|
120
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
121
|
|
|
|
122
|
|
|
**Examples (csd-python-api only)** |
123
|
|
|
|
124
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
125
|
|
|
|
126
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', csd_refcodes=True, by='PDD', k=50) |
127
|
|
|
|
128
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
129
|
|
|
|
130
|
|
|
df = amd.compare('DEBXIT', csd_refcodes=True, families=True) |
131
|
|
|
""" |
132
|
|
|
|
133
|
|
|
def _default_kwargs(func: Callable) -> dict: |
134
|
|
|
"""Get the default keyword arguments from ``func``, if any |
135
|
|
|
arguments are in ``kwargs`` then replace with the value in |
136
|
|
|
``kwargs`` instead of the default. |
137
|
|
|
""" |
138
|
|
|
return { |
139
|
|
|
k: v.default for k, v in inspect.signature(func).parameters.items() |
140
|
|
|
if v.default is not inspect.Parameter.empty |
141
|
|
|
} |
142
|
|
|
|
143
|
|
|
def _unwrap_refcode_list( |
144
|
|
|
refcodes: List[str], **reader_kwargs |
145
|
|
|
) -> List[PeriodicSet]: |
146
|
|
|
"""Given string or list of strings, interpret as CSD refcodes |
147
|
|
|
and return a list of ``PeriodicSet`` objects. |
148
|
|
|
""" |
149
|
|
|
if not all(isinstance(refcode, str) for refcode in refcodes): |
150
|
|
|
raise TypeError( |
151
|
|
|
f'amd.compare(csd_refcodes=True) expects a string or list of ' |
152
|
|
|
'strings.' |
153
|
|
|
) |
154
|
|
|
return list(CSDReader(refcodes, **reader_kwargs)) |
155
|
|
|
|
156
|
|
|
def _unwrap_pset_list( |
157
|
|
|
psets: List[Union[str, PeriodicSet]], **reader_kwargs |
158
|
|
|
) -> List[PeriodicSet]: |
159
|
|
|
"""Given a list of strings or ``PeriodicSet`` objects, interpret |
160
|
|
|
strings as paths and unwrap all items into one list of |
161
|
|
|
``PeriodicSet``s. |
162
|
|
|
""" |
163
|
|
|
ret = [] |
164
|
|
|
for item in psets: |
165
|
|
|
if isinstance(item, PeriodicSet): |
166
|
|
|
ret.append(item) |
167
|
|
|
else: |
168
|
|
|
try: |
169
|
|
|
path = Path(item) |
170
|
|
|
except TypeError: |
171
|
|
|
raise ValueError( |
172
|
|
|
'amd.compare() expects strings or amd.PeriodicSets, ' |
173
|
|
|
f'got {item.__class__.__name__}' |
174
|
|
|
) |
175
|
|
|
ret.extend(CifReader(path, **reader_kwargs)) |
176
|
|
|
return ret |
177
|
|
|
|
178
|
|
|
by = by.upper() |
179
|
|
|
if by not in ('AMD', 'PDD'): |
180
|
|
|
raise ValueError( |
181
|
|
|
"'by' parameter of amd.compare() must be 'AMD' or 'PDD' (passed " |
182
|
|
|
f"'{by}')" |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
# Sort out keyword arguments |
186
|
|
|
cifreader_kwargs = _default_kwargs(CifReader.__init__) |
187
|
|
|
csdreader_kwargs = _default_kwargs(CSDReader.__init__) |
188
|
|
|
csdreader_kwargs.pop('refcodes', None) |
189
|
|
|
pdd_kwargs = _default_kwargs(PDD) |
190
|
|
|
pdd_kwargs.pop('return_row_groups', None) |
191
|
|
|
compare_amds_kwargs = _default_kwargs(AMD_pdist) |
192
|
|
|
compare_pdds_kwargs = _default_kwargs(PDD_pdist) |
193
|
|
|
nearest_items_kwargs = _default_kwargs(_nearest_items) |
194
|
|
|
nearest_items_kwargs.pop('XB', None) |
195
|
|
|
cifreader_kwargs['verbose'] = verbose |
196
|
|
|
csdreader_kwargs['verbose'] = verbose |
197
|
|
|
compare_pdds_kwargs['verbose'] = verbose |
198
|
|
|
|
199
|
|
|
for default_kwargs in ( |
200
|
|
|
cifreader_kwargs, csdreader_kwargs, pdd_kwargs, compare_amds_kwargs, |
201
|
|
|
compare_pdds_kwargs, nearest_items_kwargs |
202
|
|
|
): |
203
|
|
|
for kw in default_kwargs: |
204
|
|
|
if kw in kwargs: |
205
|
|
|
default_kwargs[kw] = kwargs[kw] |
206
|
|
|
|
207
|
|
|
# Get list of periodic sets from first input |
208
|
|
|
if not isinstance(crystals, list): |
209
|
|
|
crystals = [crystals] |
210
|
|
|
if csd_refcodes: |
211
|
|
|
crystals = _unwrap_refcode_list(crystals, **csdreader_kwargs) |
212
|
|
|
else: |
213
|
|
|
crystals = _unwrap_pset_list(crystals, **cifreader_kwargs) |
214
|
|
|
if not crystals: |
215
|
|
|
raise ValueError( |
216
|
|
|
'First argument passed to amd.compare() contains no valid ' |
217
|
|
|
'crystals/periodic sets to compare.' |
218
|
|
|
) |
219
|
|
|
names = [s.name for s in crystals] |
220
|
|
|
if verbose: |
221
|
|
|
crystals = tqdm.tqdm(crystals, desc='Calculating', delay=1) |
222
|
|
|
|
223
|
|
|
# Get list of periodic sets from second input if given |
224
|
|
|
if crystals_ is None: |
225
|
|
|
names_ = names |
226
|
|
|
else: |
227
|
|
|
if not isinstance(crystals_, list): |
228
|
|
|
crystals_ = [crystals_] |
229
|
|
|
if csd_refcodes: |
230
|
|
|
crystals_ = _unwrap_refcode_list(crystals_, **csdreader_kwargs) |
231
|
|
|
else: |
232
|
|
|
crystals_ = _unwrap_pset_list(crystals_, **cifreader_kwargs) |
233
|
|
|
if not crystals_: |
234
|
|
|
raise ValueError( |
235
|
|
|
'Second argument passed to amd.compare() contains no ' |
236
|
|
|
'valid crystals/periodic sets to compare.' |
237
|
|
|
) |
238
|
|
|
names_ = [s.name for s in crystals_] |
239
|
|
|
if verbose: |
240
|
|
|
crystals_ = tqdm.tqdm(crystals_, desc='Calculating', delay=1) |
241
|
|
|
|
242
|
|
|
if by == 'AMD': |
243
|
|
|
|
244
|
|
|
amds = np.empty((len(names), k), dtype=np.float64) |
245
|
|
|
for i, s in enumerate(crystals): |
246
|
|
|
amds[i] = AMD(s, k) |
247
|
|
|
|
248
|
|
|
if crystals_ is None: |
249
|
|
|
if n_neighbors is None: |
250
|
|
|
dm = squareform(AMD_pdist(amds, **compare_amds_kwargs)) |
251
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
252
|
|
|
else: |
253
|
|
|
nn_dm, inds = _nearest_items( |
254
|
|
|
n_neighbors, amds, **nearest_items_kwargs |
255
|
|
|
) |
256
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
257
|
|
|
else: |
258
|
|
|
amds_ = np.empty((len(names_), k), dtype=np.float64) |
259
|
|
|
for i, s in enumerate(crystals_): |
260
|
|
|
amds_[i] = AMD(s, k) |
261
|
|
|
|
262
|
|
|
if n_neighbors is None: |
263
|
|
|
dm = AMD_cdist(amds, amds_, **compare_amds_kwargs) |
264
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
265
|
|
|
else: |
266
|
|
|
nn_dm, inds = _nearest_items( |
267
|
|
|
n_neighbors, amds, amds_, **nearest_items_kwargs |
268
|
|
|
) |
269
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
270
|
|
|
|
271
|
|
|
elif by == 'PDD': |
272
|
|
|
|
273
|
|
|
pdds = [PDD(s, k, **pdd_kwargs) for s in crystals] |
274
|
|
|
|
275
|
|
|
if crystals_ is None: |
276
|
|
|
dm = PDD_pdist(pdds, **compare_pdds_kwargs) |
277
|
|
|
if n_neighbors is None: |
278
|
|
|
dm = squareform(dm) |
279
|
|
|
else: |
280
|
|
|
pdds_ = [PDD(s, k, **pdd_kwargs) for s in crystals_] |
281
|
|
|
dm = PDD_cdist(pdds, pdds_, **compare_pdds_kwargs) |
282
|
|
|
|
283
|
|
|
if n_neighbors is None: |
284
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
285
|
|
|
else: |
286
|
|
|
nn_dm, inds = _neighbors_from_distance_matrix(n_neighbors, dm) |
287
|
|
|
return _nearest_neighbors_dataframe(nn_dm, inds, names, names_) |
288
|
|
|
|
289
|
|
|
|
290
|
|
|
def EMD( |
291
|
|
|
pdd: FloatArray, |
292
|
|
|
pdd_: FloatArray, |
293
|
|
|
metric: Optional[str] = 'chebyshev', |
294
|
|
|
return_transport: Optional[bool] = False, |
295
|
|
|
**kwargs |
296
|
|
|
) -> Union[float, Tuple[float, FloatArray]]: |
297
|
|
|
r"""Calculate the Earth mover's distance (EMD) between two PDDs, aka |
298
|
|
|
the Wasserstein metric. |
299
|
|
|
|
300
|
|
|
Parameters |
301
|
|
|
---------- |
302
|
|
|
pdd : :class:`numpy.ndarray` |
303
|
|
|
PDD of a crystal. |
304
|
|
|
pdd\_ : :class:`numpy.ndarray` |
305
|
|
|
PDD of a crystal. |
306
|
|
|
metric : str or callable, default 'chebyshev' |
307
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
308
|
|
|
By default, Chebyshev (L-infinity) distance is chosen like with |
309
|
|
|
AMDs. Accepts any metric accepted by |
310
|
|
|
:func:`scipy.spatial.distance.cdist`. |
311
|
|
|
return_transport: bool, default False |
312
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
313
|
|
|
transport_plan describes the optimal flow. |
314
|
|
|
|
315
|
|
|
Returns |
316
|
|
|
------- |
317
|
|
|
emd : float |
318
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
319
|
|
|
is True, return a tuple (emd, transport_plan). |
320
|
|
|
|
321
|
|
|
Raises |
322
|
|
|
------ |
323
|
|
|
ValueError |
324
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
325
|
|
|
columns. |
326
|
|
|
""" |
327
|
|
|
|
328
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
329
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
330
|
|
|
|
331
|
|
|
if return_transport: |
332
|
|
|
return emd_dist, transport_plan |
333
|
|
|
return emd_dist |
334
|
|
|
|
335
|
|
|
|
336
|
|
|
def AMD_cdist( |
337
|
|
|
amds, |
338
|
|
|
amds_, |
339
|
|
|
metric: str = 'chebyshev', |
340
|
|
|
low_memory: bool = False, |
341
|
|
|
**kwargs |
342
|
|
|
) -> FloatArray: |
343
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
344
|
|
|
matrix. This function is essentially |
345
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
346
|
|
|
``chebyshev`` and a low memory option. |
347
|
|
|
|
348
|
|
|
Parameters |
349
|
|
|
---------- |
350
|
|
|
amds : ArrayLike |
351
|
|
|
A list/array of AMDs. |
352
|
|
|
amds\_ : ArrayLike |
353
|
|
|
A list/array of AMDs. |
354
|
|
|
metric : str or callable, default 'chebyshev' |
355
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) |
356
|
|
|
distance. Accepts any metric accepted by |
357
|
|
|
:func:`scipy.spatial.distance.cdist`. |
358
|
|
|
low_memory : bool, default False |
359
|
|
|
Use a slower but more memory efficient method for large |
360
|
|
|
collections of AMDs (metric 'chebyshev' only). |
361
|
|
|
**kwargs : |
362
|
|
|
Extra arguments for ``metric``, passed to |
363
|
|
|
:func:`scipy.spatial.distance.cdist`. |
364
|
|
|
|
365
|
|
|
Returns |
366
|
|
|
------- |
367
|
|
|
dm : :class:`numpy.ndarray` |
368
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` |
369
|
|
|
is the distance (given by ``metric``) between ``amds[i]`` and |
370
|
|
|
``amds[j]``. |
371
|
|
|
""" |
372
|
|
|
if low_memory: |
373
|
|
|
if metric != 'chebyshev': |
374
|
|
|
raise ValueError( |
375
|
|
|
"'low_memory' parameter of amd.AMD_cdist() only implemented " |
376
|
|
|
"with metric='chebyshev'." |
377
|
|
|
) |
378
|
|
|
dm = np.empty((len(amds), len(amds_))) |
379
|
|
|
for i, amd_vec in enumerate(amds): |
380
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
381
|
|
|
else: |
382
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
383
|
|
|
return dm |
384
|
|
|
|
385
|
|
|
|
386
|
|
|
def AMD_pdist( |
387
|
|
|
amds, |
388
|
|
|
metric: str = 'chebyshev', |
389
|
|
|
low_memory: bool = False, |
390
|
|
|
**kwargs |
391
|
|
|
) -> FloatArray: |
392
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
393
|
|
|
matrix. This function is essentially |
394
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
395
|
|
|
``chebyshev`` and a low memory parameter. |
396
|
|
|
|
397
|
|
|
Parameters |
398
|
|
|
---------- |
399
|
|
|
amds : ArrayLike |
400
|
|
|
An list/array of AMDs. |
401
|
|
|
metric : str or callable, default 'chebyshev' |
402
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
403
|
|
|
distance. Accepts any metric accepted by |
404
|
|
|
:func:`scipy.spatial.distance.pdist`. |
405
|
|
|
low_memory : bool, default False |
406
|
|
|
Use a slower but more memory efficient method for large |
407
|
|
|
collections of AMDs (metric 'chebyshev' only). |
408
|
|
|
**kwargs : |
409
|
|
|
Extra arguments for ``metric``, passed to |
410
|
|
|
:func:`scipy.spatial.distance.pdist`. |
411
|
|
|
|
412
|
|
|
Returns |
413
|
|
|
------- |
414
|
|
|
cdm : :class:`numpy.ndarray` |
415
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
416
|
|
|
matrix into a vector, just keeping the upper half. See the |
417
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
418
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
419
|
|
|
""" |
420
|
|
|
if low_memory: |
421
|
|
|
m = len(amds) |
422
|
|
|
if metric != 'chebyshev': |
423
|
|
|
raise ValueError( |
424
|
|
|
"'low_memory' parameter of amd.AMD_pdist() only implemented " |
425
|
|
|
"with metric='chebyshev'." |
426
|
|
|
) |
427
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.float64) |
428
|
|
|
ind = 0 |
429
|
|
|
for i in range(m): |
430
|
|
|
ind_ = ind + m - i - 1 |
431
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
432
|
|
|
ind = ind_ |
433
|
|
|
else: |
434
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
435
|
|
|
return cdm |
436
|
|
|
|
437
|
|
|
|
438
|
|
|
def PDD_cdist( |
439
|
|
|
pdds: List[FloatArray], |
440
|
|
|
pdds_: List[FloatArray], |
441
|
|
|
metric: str = 'chebyshev', |
442
|
|
|
backend: str = 'multiprocessing', |
443
|
|
|
n_jobs: Optional[int] = None, |
444
|
|
|
verbose: bool = False, |
445
|
|
|
**kwargs |
446
|
|
|
) -> FloatArray: |
447
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
448
|
|
|
matrix. Supports parallel processing via joblib. If using |
449
|
|
|
parallelisation, make sure to include an if __name__ == '__main__' |
450
|
|
|
guard around this function. |
451
|
|
|
|
452
|
|
|
Parameters |
453
|
|
|
---------- |
454
|
|
|
pdds : List[:class:`numpy.ndarray`] |
455
|
|
|
A list of PDDs. |
456
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
457
|
|
|
A list of PDDs. |
458
|
|
|
metric : str or callable, default 'chebyshev' |
459
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
460
|
|
|
distance. Accepts any metric accepted by |
461
|
|
|
:func:`scipy.spatial.distance.cdist`. |
462
|
|
|
backend : str, default 'multiprocessing' |
463
|
|
|
The parallelization backend implementation. For a list of |
464
|
|
|
supported backends, see the backend argument of |
465
|
|
|
:class:`joblib.Parallel`. |
466
|
|
|
n_jobs : int, default None |
467
|
|
|
Maximum number of concurrent jobs for parallel processing with |
468
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
469
|
|
|
processing may be slower for small inputs. |
470
|
|
|
verbose : bool, default False |
471
|
|
|
Prints a progress bar. If using parallel processing |
472
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
473
|
|
|
is used, otherwise uses tqdm. |
474
|
|
|
**kwargs : |
475
|
|
|
Extra arguments for ``metric``, passed to |
476
|
|
|
:func:`scipy.spatial.distance.cdist`. |
477
|
|
|
|
478
|
|
|
Returns |
479
|
|
|
------- |
480
|
|
|
dm : :class:`numpy.ndarray` |
481
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
482
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
483
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
484
|
|
|
""" |
485
|
|
|
|
486
|
|
|
kwargs.pop('return_transport', None) |
487
|
|
|
k = pdds[0].shape[-1] - 1 |
488
|
|
|
_verbose = 3 if verbose else 0 |
489
|
|
|
|
490
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
491
|
|
|
# TODO: put results into preallocated empty array in place |
492
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
493
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
494
|
|
|
for i in range(len(pdds)) for j in range(len(pdds_)) |
495
|
|
|
) |
496
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
497
|
|
|
|
498
|
|
|
else: |
499
|
|
|
n, m = len(pdds), len(pdds_) |
500
|
|
|
dm = np.empty((n, m)) |
501
|
|
|
if verbose: |
502
|
|
|
desc = f'Comparing {len(pdds)}x{len(pdds_)} PDDs (k={k})' |
503
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=n*m) |
504
|
|
|
for i in range(n): |
505
|
|
|
for j in range(m): |
506
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
507
|
|
|
progress_bar.update(1) |
508
|
|
|
progress_bar.close() |
509
|
|
|
else: |
510
|
|
|
for i in range(n): |
511
|
|
|
for j in range(m): |
512
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
513
|
|
|
|
514
|
|
|
return dm |
515
|
|
|
|
516
|
|
|
|
517
|
|
|
def PDD_pdist( |
518
|
|
|
pdds: List[FloatArray], |
519
|
|
|
metric: str = 'chebyshev', |
520
|
|
|
backend: str = 'multiprocessing', |
521
|
|
|
n_jobs: Optional[int] = None, |
522
|
|
|
verbose: bool = False, |
523
|
|
|
**kwargs |
524
|
|
|
) -> FloatArray: |
525
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
526
|
|
|
matrix. Supports parallelisation via joblib. If using |
527
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
528
|
|
|
guard around this function. |
529
|
|
|
|
530
|
|
|
Parameters |
531
|
|
|
---------- |
532
|
|
|
pdds : List[:class:`numpy.ndarray`] |
533
|
|
|
A list of PDDs. |
534
|
|
|
metric : str or callable, default 'chebyshev' |
535
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
536
|
|
|
distance. Accepts any metric accepted by |
537
|
|
|
:func:`scipy.spatial.distance.cdist`. |
538
|
|
|
backend : str, default 'multiprocessing' |
539
|
|
|
The parallelization backend implementation. For a list of |
540
|
|
|
supported backends, see the backend argument of |
541
|
|
|
:class:`joblib.Parallel`. |
542
|
|
|
n_jobs : int, default None |
543
|
|
|
Maximum number of concurrent jobs for parallel processing with |
544
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
545
|
|
|
processing may be slower for small inputs. |
546
|
|
|
verbose : bool, default False |
547
|
|
|
Prints a progress bar. If using parallel processing |
548
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
549
|
|
|
is used, otherwise uses tqdm. |
550
|
|
|
**kwargs : |
551
|
|
|
Extra arguments for ``metric``, passed to |
552
|
|
|
:func:`scipy.spatial.distance.cdist`. |
553
|
|
|
|
554
|
|
|
Returns |
555
|
|
|
------- |
556
|
|
|
cdm : :class:`numpy.ndarray` |
557
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
558
|
|
|
matrix into a vector, just keeping the upper half. See the |
559
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
560
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
561
|
|
|
""" |
562
|
|
|
|
563
|
|
|
kwargs.pop('return_transport', None) |
564
|
|
|
k = pdds[0].shape[-1] - 1 |
565
|
|
|
_verbose = 3 if verbose else 0 |
566
|
|
|
|
567
|
|
|
if n_jobs is not None and n_jobs > 1: |
568
|
|
|
# TODO: put results into preallocated empty array in place |
569
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
570
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
571
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
572
|
|
|
) |
573
|
|
|
cdm = np.array(cdm) |
574
|
|
|
|
575
|
|
|
else: |
576
|
|
|
m = len(pdds) |
577
|
|
|
cdm_len = (m * (m - 1)) // 2 |
578
|
|
|
cdm = np.empty(cdm_len, dtype=np.float64) |
579
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
580
|
|
|
if verbose: |
581
|
|
|
desc = f'Comparing {len(pdds)} PDDs pairwise (k={k})' |
582
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=cdm_len) |
583
|
|
|
for r, (i, j) in enumerate(inds): |
584
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
585
|
|
|
progress_bar.update(1) |
586
|
|
|
progress_bar.close() |
587
|
|
|
else: |
588
|
|
|
for r, (i, j) in enumerate(inds): |
589
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
590
|
|
|
|
591
|
|
|
return cdm |
592
|
|
|
|
593
|
|
|
|
594
|
|
|
def emd( |
595
|
|
|
pdd: FloatArray, pdd_: FloatArray, **kwargs |
596
|
|
|
) -> Union[float, Tuple[float, FloatArray]]: |
597
|
|
|
"""Alias for :func:`EMD() <.compare.EMD>`.""" |
598
|
|
|
return EMD(pdd, pdd_, **kwargs) |
599
|
|
|
|
600
|
|
|
|
601
|
|
|
def _neighbors_from_distance_matrix( |
602
|
|
|
n: int, dm: FloatArray |
603
|
|
|
) -> Tuple[FloatArray, IntArray]: |
604
|
|
|
"""Given a distance matrix, find the n nearest neighbors of each |
605
|
|
|
item. |
606
|
|
|
|
607
|
|
|
Parameters |
608
|
|
|
---------- |
609
|
|
|
n : int |
610
|
|
|
Number of nearest neighbors to find for each item. |
611
|
|
|
dm : :class:`numpy.ndarray` |
612
|
|
|
2D distance matrix or 1D condensed distance matrix. |
613
|
|
|
|
614
|
|
|
Returns |
615
|
|
|
------- |
616
|
|
|
(nn_dm, inds) : tuple of :class:`numpy.ndarray` s |
617
|
|
|
``nn_dm[i][j]`` is the distance from item :math:`i` to its |
618
|
|
|
:math:`j+1` st nearest neighbor, and ``inds[i][j]`` is the |
619
|
|
|
index of this neighbor (:math:`j+1` since index 0 is the first |
620
|
|
|
nearest neighbor). |
621
|
|
|
""" |
622
|
|
|
|
623
|
|
|
inds = None |
624
|
|
|
if len(dm.shape) == 2: |
625
|
|
|
inds = np.array( |
626
|
|
|
[np.argpartition(row, n)[:n] for row in dm], dtype=np.int64 |
627
|
|
|
) |
628
|
|
|
elif len(dm.shape) == 1: |
629
|
|
|
dm = squareform(dm) |
630
|
|
|
inds = [] |
631
|
|
|
for i, row in enumerate(dm): |
632
|
|
|
inds_row = np.argpartition(row, n+1)[:n+1] |
633
|
|
|
inds_row = inds_row[inds_row != i][:n] |
634
|
|
|
inds.append(inds_row) |
635
|
|
|
inds = np.array(inds, dtype=np.int64) |
636
|
|
|
else: |
637
|
|
|
ValueError( |
638
|
|
|
'amd.neighbors_from_distance_matrix() accepts a distance matrix, ' |
639
|
|
|
'either a 2D distance matrix or a condensed distance matrix as ' |
640
|
|
|
'returned by scipy.spatial.distance.pdist().' |
641
|
|
|
) |
642
|
|
|
|
643
|
|
|
nn_dm = np.take_along_axis(dm, inds, axis=-1) |
644
|
|
|
sorted_inds = np.argsort(nn_dm, axis=-1) |
645
|
|
|
inds = np.take_along_axis(inds, sorted_inds, axis=-1) |
646
|
|
|
nn_dm = np.take_along_axis(nn_dm, sorted_inds, axis=-1) |
647
|
|
|
return nn_dm, inds |
648
|
|
|
|
649
|
|
|
|
650
|
|
|
def _nearest_items( |
651
|
|
|
n_neighbors: int, |
652
|
|
|
XA: FloatArray, |
653
|
|
|
XB: Optional[FloatArray] = None, |
654
|
|
|
algorithm: str = 'kd_tree', |
655
|
|
|
leaf_size: int = 5, |
656
|
|
|
metric: str = 'chebyshev', |
657
|
|
|
n_jobs=None, |
658
|
|
|
**kwargs |
659
|
|
|
) -> Tuple[FloatArray, IntArray]: |
660
|
|
|
"""Find nearest neighbor distances and indices between all |
661
|
|
|
items/observations/rows in ``XA`` and ``XB``. If ``XB`` is None, |
662
|
|
|
find neighbors in ``XA`` for all items in ``XA``. |
663
|
|
|
""" |
664
|
|
|
|
665
|
|
|
if XB is None: |
666
|
|
|
XB_ = XA |
667
|
|
|
_n_neighbors = n_neighbors + 1 |
668
|
|
|
else: |
669
|
|
|
XB_ = XB |
670
|
|
|
_n_neighbors = n_neighbors |
671
|
|
|
|
672
|
|
|
dists, inds = NearestNeighbors( |
673
|
|
|
n_neighbors=_n_neighbors, |
674
|
|
|
algorithm=algorithm, |
675
|
|
|
leaf_size=leaf_size, |
676
|
|
|
metric=metric, |
677
|
|
|
n_jobs=n_jobs, |
678
|
|
|
**kwargs |
679
|
|
|
).fit(XB_).kneighbors(XA) |
680
|
|
|
|
681
|
|
|
if XB is not None: |
682
|
|
|
return dists, inds |
683
|
|
|
|
684
|
|
|
final_shape = (dists.shape[0], n_neighbors) |
685
|
|
|
dists_ = np.empty(final_shape, dtype=np.float64) |
686
|
|
|
inds_ = np.empty(final_shape, dtype=np.int64) |
687
|
|
|
|
688
|
|
|
for i, (d_row, ind_row) in enumerate(zip(dists, inds)): |
689
|
|
|
i_ = 0 |
690
|
|
|
for d, j in zip(d_row, ind_row): |
691
|
|
|
if i == j: |
692
|
|
|
continue |
693
|
|
|
dists_[i, i_] = d |
694
|
|
|
inds_[i, i_] = j |
695
|
|
|
i_ += 1 |
696
|
|
|
if i_ == n_neighbors: |
697
|
|
|
break |
698
|
|
|
return dists_, inds_ |
699
|
|
|
|
700
|
|
|
|
701
|
|
|
def _nearest_neighbors_dataframe(nn_dm, inds, names, names_=None): |
702
|
|
|
"""Make ``pandas.DataFrame`` from distances to and indices of |
703
|
|
|
nearest neighbors from one set to another (as returned by |
704
|
|
|
neighbors_from_distance_matrix() or _nearest_items()). |
705
|
|
|
DataFrame has columns ID 1, DIST1, ID 2, DIST 2..., and names as |
706
|
|
|
indices. |
707
|
|
|
""" |
708
|
|
|
|
709
|
|
|
if names_ is None: |
710
|
|
|
names_ = names |
711
|
|
|
data = {} |
712
|
|
|
for i in range(nn_dm.shape[-1]): |
713
|
|
|
data['ID ' + str(i+1)] = [names_[j] for j in inds[:, i]] |
714
|
|
|
data['DIST ' + str(i+1)] = nn_dm[:, i] |
715
|
|
|
return pd.DataFrame(data, index=names) |
716
|
|
|
|