1
|
|
|
"""General utility functions.""" |
2
|
|
|
|
3
|
|
|
from typing import Tuple |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import numba |
7
|
|
|
from scipy.spatial.distance import squareform |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
def diameter(cell): |
11
|
|
|
"""Diameter of a unit cell (as a square matrix in Cartesian/Orthogonal form) |
12
|
|
|
in 3 or fewer dimensions.""" |
13
|
|
|
|
14
|
|
|
dims = cell.shape[0] |
15
|
|
|
if dims == 1: |
16
|
|
|
return cell[0][0] |
17
|
|
|
if dims == 2: |
18
|
|
|
d = np.amax(np.linalg.norm(np.array([cell[0] + cell[1], cell[0] - cell[1]]), axis=-1)) |
19
|
|
|
elif dims == 3: |
20
|
|
|
diams = np.array([ |
21
|
|
|
cell[0] + cell[1] + cell[2], |
|
|
|
|
22
|
|
|
cell[0] + cell[1] - cell[2], |
|
|
|
|
23
|
|
|
cell[0] - cell[1] + cell[2], |
|
|
|
|
24
|
|
|
- cell[0] + cell[1] + cell[2] |
25
|
|
|
]) |
26
|
|
|
d = np.amax(np.linalg.norm(diams, axis=-1)) |
|
|
|
|
27
|
|
|
else: |
28
|
|
|
raise ValueError(f'diameter only implimented for dimensions <= 3.') |
|
|
|
|
29
|
|
|
return d |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
@numba.njit() |
33
|
|
|
def cellpar_to_cell(a, b, c, alpha, beta, gamma): |
|
|
|
|
34
|
|
|
"""Simplified version of function from :mod:`ase.geometry` of the same name. |
35
|
|
|
3D unit cell parameters a,b,c,α,β,γ --> cell as 3x3 NumPy array. |
36
|
|
|
""" |
37
|
|
|
|
38
|
|
|
eps = 2 * np.spacing(90.0) # ~1.4e-14 |
39
|
|
|
|
40
|
|
|
cos_alpha = 0. if abs(abs(alpha) - 90.) < eps else np.cos(alpha * np.pi / 180.) |
41
|
|
|
cos_beta = 0. if abs(abs(beta) - 90.) < eps else np.cos(beta * np.pi / 180.) |
42
|
|
|
cos_gamma = 0. if abs(abs(gamma) - 90.) < eps else np.cos(gamma * np.pi / 180.) |
43
|
|
|
|
44
|
|
|
if abs(gamma - 90) < eps: |
45
|
|
|
sin_gamma = 1. |
46
|
|
|
elif abs(gamma + 90) < eps: |
47
|
|
|
sin_gamma = -1. |
48
|
|
|
else: |
49
|
|
|
sin_gamma = np.sin(gamma * np.pi / 180.) |
50
|
|
|
|
51
|
|
|
cy = (cos_alpha - cos_beta * cos_gamma) / sin_gamma |
52
|
|
|
cz_sqr = 1. - cos_beta ** 2 - cy ** 2 |
53
|
|
|
if cz_sqr < 0: |
54
|
|
|
raise RuntimeError('Could not create unit cell from given parameters.') |
55
|
|
|
|
56
|
|
|
cell = np.zeros((3, 3)) |
57
|
|
|
cell[0, 0] = a |
58
|
|
|
cell[1, 0] = b * cos_gamma |
59
|
|
|
cell[1, 1] = b * sin_gamma |
60
|
|
|
cell[2, 0] = c * cos_beta |
61
|
|
|
cell[2, 1] = c * cy |
62
|
|
|
cell[2, 2] = c * np.sqrt(cz_sqr) |
63
|
|
|
|
64
|
|
|
return cell |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
@numba.njit() |
68
|
|
|
def cellpar_to_cell_2D(a, b, alpha): |
69
|
|
|
"""2D unit cell parameters a,b,α --> cell as 2x2 ndarray.""" |
70
|
|
|
|
71
|
|
|
cell = np.zeros((2, 2)) |
72
|
|
|
cell[0, 0] = a |
73
|
|
|
cell[1, 0] = b * np.cos(alpha * np.pi / 180.) |
74
|
|
|
cell[1, 1] = b * np.sin(alpha * np.pi / 180.) |
75
|
|
|
|
76
|
|
|
return cell |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def cell_to_cellpar(cell): |
80
|
|
|
"""Unit cell as a 3x3 NumPy array -> list of 6 lengths + angles.""" |
81
|
|
|
lengths = np.linalg.norm(cell, axis=-1) |
82
|
|
|
angles = [] |
83
|
|
|
for i, j in [(1, 2), (0, 2), (0, 1)]: |
84
|
|
|
ang_rad = np.arccos(np.dot(cell[i], cell[j]) / (lengths[i] * lengths[j])) |
85
|
|
|
angles.append(np.rad2deg(ang_rad)) |
86
|
|
|
return np.concatenate((lengths, np.array(angles))) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def cell_to_cellpar_2D(cell): |
90
|
|
|
"""Unit cell as a 2x2 NumPy array -> list of 2 lengths and an angle.""" |
91
|
|
|
cellpar = np.zeros((3, )) |
92
|
|
|
lengths = np.linalg.norm(cell, axis=-1) |
93
|
|
|
ang_rad = np.arccos(np.dot(cell[0], cell[1]) / (lengths[0] * lengths[1])) |
94
|
|
|
cellpar[0] = lengths[0] |
95
|
|
|
cellpar[1] = lengths[1] |
96
|
|
|
cellpar[2] = np.rad2deg(ang_rad) |
97
|
|
|
return cellpar |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
def neighbours_from_distance_matrix( |
101
|
|
|
n: int, |
102
|
|
|
dm: np.ndarray |
103
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
104
|
|
|
"""Given a distance matrix, find the n nearest neighbours of each item. |
105
|
|
|
|
106
|
|
|
Parameters |
107
|
|
|
---------- |
108
|
|
|
n : int |
109
|
|
|
Number of nearest neighbours to find for each item. |
110
|
|
|
dm : numpy.ndarray |
111
|
|
|
2D distance matrix or 1D condensed distance matrix. |
112
|
|
|
|
113
|
|
|
Returns |
114
|
|
|
------- |
115
|
|
|
nn_dm, inds : Tuple[numpy.ndarray, numpy.ndarray] |
|
|
|
|
116
|
|
|
``nn_dm[i][j]`` is the distance from item ``i`` to its ``j+1`` st |
117
|
|
|
nearest neighbour, and ``inds[i][j]`` is the index of this neighbour |
|
|
|
|
118
|
|
|
(``j+1`` since index 0 is the first nearest neighbour). |
119
|
|
|
""" |
120
|
|
|
|
121
|
|
|
inds = None |
122
|
|
|
|
123
|
|
|
# 2D distance matrix |
124
|
|
|
if len(dm.shape) == 2: |
125
|
|
|
inds = np.array([np.argpartition(row, n)[:n] for row in dm]) |
126
|
|
|
|
127
|
|
|
# 1D condensed distance vector |
128
|
|
|
elif len(dm.shape) == 1: |
129
|
|
|
dm = squareform(dm) |
130
|
|
|
inds = [] |
131
|
|
|
for i, row in enumerate(dm): |
132
|
|
|
inds_row = np.argpartition(row, n+1)[:n+1] |
133
|
|
|
inds_row = inds_row[inds_row != i][:n] |
134
|
|
|
inds.append(inds_row) |
135
|
|
|
inds = np.array(inds) |
136
|
|
|
|
137
|
|
|
else: |
138
|
|
|
ValueError( |
139
|
|
|
'Input must be an ndarray, either a 2D distance matrix ' |
140
|
|
|
'or a condensed distance matrix (returned by pdist).') |
141
|
|
|
|
142
|
|
|
# inds are the indexes of nns: inds[i,j] is the j-th nn to point i |
143
|
|
|
nn_dm = np.take_along_axis(dm, inds, axis=-1) |
144
|
|
|
sorted_inds = np.argsort(nn_dm, axis=-1) |
145
|
|
|
inds = np.take_along_axis(inds, sorted_inds, axis=-1) |
146
|
|
|
nn_dm = np.take_along_axis(nn_dm, sorted_inds, axis=-1) |
147
|
|
|
return nn_dm, inds |
148
|
|
|
|
149
|
|
|
|
150
|
|
|
def random_cell(length_bounds=(1, 2), angle_bounds=(60, 120), dims=3): |
151
|
|
|
"""Dimensions 2 and 3 only. Random unit cell with uniformally chosen length and |
|
|
|
|
152
|
|
|
angle parameters between bounds.""" |
153
|
|
|
|
154
|
|
|
if dims == 3: |
155
|
|
|
while True: |
156
|
|
|
lengths = [np.random.uniform(low=length_bounds[0], |
157
|
|
|
high=length_bounds[1]) |
158
|
|
|
for _ in range(dims)] |
159
|
|
|
angles = [np.random.uniform(low=angle_bounds[0], |
160
|
|
|
high=length_bounds[1]) |
161
|
|
|
for _ in range(dims)] |
162
|
|
|
|
163
|
|
|
try: |
164
|
|
|
cell = cellpar_to_cell(*lengths, *angles) |
165
|
|
|
break |
166
|
|
|
except RuntimeError: |
167
|
|
|
continue |
168
|
|
|
|
169
|
|
|
elif dims == 2: |
170
|
|
|
lengths = [np.random.uniform(low=length_bounds[0], |
171
|
|
|
high=length_bounds[1]) |
172
|
|
|
for _ in range(dims)] |
|
|
|
|
173
|
|
|
alpha = np.random.uniform(low=angle_bounds[0], |
174
|
|
|
high=length_bounds[1]) |
175
|
|
|
cell = cellpar_to_cell_2D(*lengths, alpha) |
176
|
|
|
|
177
|
|
|
else: |
178
|
|
|
raise ValueError(f'random_cell only implimented for dimensions 2 and 3 (passed {dims})') |
179
|
|
|
|
180
|
|
|
return cell |
181
|
|
|
|