1
|
|
|
"""An implementation of the Wasserstein metric (Earth Mover's distance) |
2
|
|
|
between two weighted distributions, used as the metric for comparing two |
3
|
|
|
pointwise distance distributions (PDDs), see |
4
|
|
|
:func:`amd.PDD <.calculate.PDD>` |
5
|
|
|
|
6
|
|
|
Copyright (C) 2020 Cameron Hargreaves. This code is adapted from the |
7
|
|
|
Element Movers Distance project https://github.com/lrcfmd/ElMD. |
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from typing import Tuple |
11
|
|
|
|
12
|
|
|
import numba |
13
|
|
|
import numpy as np |
14
|
|
|
import numpy.typing as npt |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
@numba.njit(cache=True) |
18
|
|
|
def network_simplex( |
19
|
|
|
source_demands: npt.NDArray, |
20
|
|
|
sink_demands: npt.NDArray, |
21
|
|
|
network_costs: npt.NDArray |
22
|
|
|
) -> Tuple[float, npt.NDArray[np.float64]]: |
23
|
|
|
"""Calculate the Earth mover's distance (Wasserstien metric) between |
24
|
|
|
two weighted distributions given by two sets of weights and a cost |
25
|
|
|
matrix. |
26
|
|
|
|
27
|
|
|
This is a port of the network simplex algorithm implented by Loïc |
28
|
|
|
Séguin-C for the networkx package to allow acceleration with numba. |
29
|
|
|
Copyright (C) 2010 Loïc Séguin-C. [email protected]. All rights |
30
|
|
|
reserved. BSD license. |
31
|
|
|
|
32
|
|
|
Parameters |
33
|
|
|
---------- |
34
|
|
|
source_demands : :class:`numpy.ndarray` |
35
|
|
|
Weights of the first distribution. |
36
|
|
|
sink_demands : :class:`numpy.ndarray` |
37
|
|
|
Weights of the second distribution. |
38
|
|
|
network_costs : :class:`numpy.ndarray` |
39
|
|
|
Cost matrix of distances between elements of the two |
40
|
|
|
distributions. Shape (len(source_demands), len(sink_demands)). |
41
|
|
|
|
42
|
|
|
Returns |
43
|
|
|
------- |
44
|
|
|
(emd, plan) : Tuple[float, :class:`numpy.ndarray`] |
45
|
|
|
A tuple of the Earth mover's distance and the optimal matching. |
46
|
|
|
|
47
|
|
|
References |
48
|
|
|
---------- |
49
|
|
|
[1] Z. Kiraly, P. Kovacs. |
50
|
|
|
Efficient implementation of minimum-cost flow algorithms. |
51
|
|
|
Acta Universitatis Sapientiae, Informatica 4(1), 67--118 |
52
|
|
|
(2012). |
53
|
|
|
[2] R. Barr, F. Glover, D. Klingman. |
54
|
|
|
Enhancement of spanning tree labeling procedures for network |
55
|
|
|
optimization. INFOR 17(1), 16--34 (1979). |
56
|
|
|
""" |
57
|
|
|
|
58
|
|
|
n_sources, n_sinks = source_demands.shape[0], sink_demands.shape[0] |
59
|
|
|
network_costs = network_costs.ravel() |
60
|
|
|
n = n_sources + n_sinks |
61
|
|
|
e = n_sources * n_sinks |
62
|
|
|
B = np.int64(np.ceil(np.sqrt(e))) |
63
|
|
|
fp_multiplier = np.int64(1e+6) |
64
|
|
|
|
65
|
|
|
# Add one additional node for a dummy source and sink |
66
|
|
|
source_d_int = (source_demands * fp_multiplier).astype(np.int64) |
67
|
|
|
sink_d_int = (sink_demands * fp_multiplier).astype(np.int64) |
68
|
|
|
sink_source_sum_diff = np.sum(sink_d_int) - np.sum(source_d_int) |
69
|
|
|
|
70
|
|
|
if sink_source_sum_diff > 0: |
71
|
|
|
source_d_int[np.argmax(source_d_int)] += sink_source_sum_diff |
72
|
|
|
elif sink_source_sum_diff < 0: |
73
|
|
|
sink_d_int[np.argmax(sink_d_int)] -= sink_source_sum_diff |
74
|
|
|
|
75
|
|
|
demands = np.empty(n, dtype=np.int64) |
76
|
|
|
demands[:n_sources] = -source_d_int |
77
|
|
|
demands[n_sources:] = sink_d_int |
78
|
|
|
tails = np.empty(e + n, dtype=np.int64) |
79
|
|
|
heads = np.empty(e + n, dtype=np.int64) |
80
|
|
|
|
81
|
|
|
ind = 0 |
82
|
|
|
for i in range(n_sources): |
83
|
|
|
for j in range(n_sinks): |
84
|
|
|
tails[ind] = i |
85
|
|
|
heads[ind] = n_sources + j |
86
|
|
|
ind += 1 |
87
|
|
|
|
88
|
|
|
for i, demand in enumerate(demands): |
89
|
|
|
ind = e + i |
90
|
|
|
if demand > 0: |
91
|
|
|
tails[ind] = -1 |
92
|
|
|
heads[ind] = -1 |
93
|
|
|
else: |
94
|
|
|
tails[ind] = i |
95
|
|
|
heads[ind] = i |
96
|
|
|
|
97
|
|
|
# Create costs and capacities for the arcs between nodes |
98
|
|
|
network_costs = network_costs * fp_multiplier |
99
|
|
|
network_capac = np.empty(shape=(e, ), dtype=np.float64) |
100
|
|
|
ind = 0 |
101
|
|
|
for i in range(n_sources): |
102
|
|
|
for j in range(n_sinks): |
103
|
|
|
network_capac[ind] = min(source_demands[i], sink_demands[j]) |
104
|
|
|
ind += 1 |
105
|
|
|
network_capac *= fp_multiplier |
106
|
|
|
|
107
|
|
|
faux_inf = 3 * max( |
108
|
|
|
np.sum(network_capac), np.sum(np.abs(network_costs)), |
109
|
|
|
np.amax(source_d_int), np.amax(sink_d_int) |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
costs = np.empty(e + n, dtype=np.int64) |
113
|
|
|
costs[:e] = network_costs |
114
|
|
|
costs[e:] = faux_inf |
115
|
|
|
|
116
|
|
|
capac = np.empty(e + n, dtype=np.int64) |
117
|
|
|
capac[:e] = network_capac |
118
|
|
|
capac[e:] = fp_multiplier |
119
|
|
|
|
120
|
|
|
flows = np.empty(e + n, dtype=np.int64) |
121
|
|
|
flows[:e] = 0 |
122
|
|
|
flows[e:e+n_sources] = source_d_int |
123
|
|
|
flows[e+n_sources:] = sink_d_int |
124
|
|
|
|
125
|
|
|
potentials = np.empty(n, dtype=np.int64) |
126
|
|
|
demands_neg_mask = demands <= 0 |
127
|
|
|
potentials[demands_neg_mask] = faux_inf |
128
|
|
|
potentials[~demands_neg_mask] = -faux_inf |
129
|
|
|
|
130
|
|
|
parent = np.full(shape=(n + 1, ), fill_value=-1, dtype=np.int64) |
131
|
|
|
parent[-1] = -2 |
132
|
|
|
|
133
|
|
|
size = np.full(shape=(n + 1, ), fill_value=1, dtype=np.int64) |
134
|
|
|
size[-1] = n + 1 |
135
|
|
|
|
136
|
|
|
next_node = np.arange(1, n + 2, dtype=np.int64) |
137
|
|
|
next_node[-2] = -1 |
138
|
|
|
next_node[-1] = 0 |
139
|
|
|
|
140
|
|
|
last_node = np.arange(n + 1, dtype=np.int64) |
141
|
|
|
last_node[-1] = n - 1 |
142
|
|
|
|
143
|
|
|
prev_node = np.arange(-1, n, dtype=np.int64) |
144
|
|
|
edge = np.arange(e, e + n, dtype=np.int64) |
145
|
|
|
|
146
|
|
|
# Pivot loop |
147
|
|
|
|
148
|
|
|
f = 0 |
149
|
|
|
while True: |
150
|
|
|
i, p, q, f = _find_entering_edges( |
151
|
|
|
B, e, f, tails, heads, costs, potentials, flows |
152
|
|
|
) |
153
|
|
|
# If no entering edges then the optimal score is found |
154
|
|
|
if p == -1: |
155
|
|
|
break |
156
|
|
|
|
157
|
|
|
cycle_nodes, cycle_edges = _find_cycle(i, p, q, size, edge, parent) |
158
|
|
|
j, s, t = _find_leaving_edge( |
159
|
|
|
cycle_nodes, cycle_edges, capac, flows, tails, heads |
160
|
|
|
) |
161
|
|
|
res_cap = capac[j] - flows[j] if tails[j] == s else flows[j] |
162
|
|
|
|
163
|
|
|
# Augment flows |
164
|
|
|
for i_, p_ in zip(cycle_edges, cycle_nodes): |
165
|
|
|
if tails[i_] == p_: |
166
|
|
|
flows[i_] += res_cap |
167
|
|
|
else: |
168
|
|
|
flows[i_] -= res_cap |
169
|
|
|
|
170
|
|
|
# Do nothing more if the entering edge is the same as the |
171
|
|
|
# leaving edge. |
172
|
|
|
if i != j: |
173
|
|
|
if parent[t] != s: |
174
|
|
|
# Ensure that s is the parent of t. |
175
|
|
|
s, t = t, s |
176
|
|
|
|
177
|
|
|
# Ensure that q is in the subtree rooted at t. |
178
|
|
|
for val in cycle_edges: |
179
|
|
|
if val == j: |
180
|
|
|
p, q = q, p |
181
|
|
|
break |
182
|
|
|
if val == i: |
183
|
|
|
break |
184
|
|
|
|
185
|
|
|
_remove_edge( |
186
|
|
|
s, t, size, prev_node, last_node, next_node, parent, edge |
187
|
|
|
) |
188
|
|
|
_make_root( |
189
|
|
|
q, parent, size, last_node, prev_node, next_node, edge |
190
|
|
|
) |
191
|
|
|
_add_edge( |
192
|
|
|
i, p, q, next_node, prev_node, last_node, size, parent, edge |
193
|
|
|
) |
194
|
|
|
_update_potentials( |
195
|
|
|
i, p, q, heads, potentials, costs, last_node, next_node |
196
|
|
|
) |
197
|
|
|
|
198
|
|
|
final_flows = flows[:e] / fp_multiplier |
199
|
|
|
edge_costs = costs[:e] / fp_multiplier |
200
|
|
|
emd = final_flows.dot(edge_costs) |
201
|
|
|
|
202
|
|
|
return emd, final_flows.reshape((n_sources, n_sinks)) |
203
|
|
|
|
204
|
|
|
|
205
|
|
|
@numba.njit(cache=True) |
206
|
|
|
def _reduced_cost(i, costs, potentials, tails, heads, flows): |
207
|
|
|
"""Return the reduced cost of an edge i.""" |
208
|
|
|
c = costs[i] - potentials[tails[i]] + potentials[heads[i]] |
209
|
|
|
if flows[i] == 0: |
210
|
|
|
return c |
211
|
|
|
return -c |
212
|
|
|
|
213
|
|
|
|
214
|
|
|
@numba.njit(cache=True) |
215
|
|
|
def _find_entering_edges(B, e, f, tails, heads, costs, potentials, flows): |
216
|
|
|
"""Yield entering edges until none can be found. Entering edges are |
217
|
|
|
found by combining Dantzig's rule and Bland's rule. The edges are |
218
|
|
|
cyclically grouped into blocks of size B. Within each block, |
219
|
|
|
Dantzig's rule is applied to find an entering edge. The blocks to |
220
|
|
|
search is determined following Bland's rule. |
221
|
|
|
""" |
222
|
|
|
|
223
|
|
|
m = 0 |
224
|
|
|
|
225
|
|
|
while m < (e + B - 1) // B: |
226
|
|
|
# Determine the next block of edges. |
227
|
|
|
l = f + B |
228
|
|
|
if l <= e: |
229
|
|
|
edge_inds = np.arange(f, l) |
230
|
|
|
else: |
231
|
|
|
l -= e |
232
|
|
|
edge_inds = np.empty(e - f + l, dtype=np.int64) |
233
|
|
|
for i, v in enumerate(range(f, e)): |
234
|
|
|
edge_inds[i] = v |
235
|
|
|
for i in range(l): |
236
|
|
|
edge_inds[e-f+i] = i |
237
|
|
|
|
238
|
|
|
# Find the first edge with the lowest reduced cost. |
239
|
|
|
f = l |
240
|
|
|
i = edge_inds[0] |
241
|
|
|
c = _reduced_cost(i, costs, potentials, tails, heads, flows) |
242
|
|
|
|
243
|
|
|
for j in edge_inds[1:]: |
244
|
|
|
cost = _reduced_cost(j, costs, potentials, tails, heads, flows) |
245
|
|
|
if cost < c: |
246
|
|
|
c = cost |
247
|
|
|
i = j |
248
|
|
|
|
249
|
|
|
p = q = -1 |
250
|
|
|
if c >= 0: |
251
|
|
|
m += 1 |
252
|
|
|
|
253
|
|
|
# Entering edge found |
254
|
|
|
else: |
255
|
|
|
if flows[i] == 0: |
256
|
|
|
p = tails[i] |
257
|
|
|
q = heads[i] |
258
|
|
|
else: |
259
|
|
|
p = heads[i] |
260
|
|
|
q = tails[i] |
261
|
|
|
|
262
|
|
|
return i, p, q, f |
263
|
|
|
|
264
|
|
|
# All edges have nonnegative reduced costs, the flow is optimal |
265
|
|
|
return -1, -1, -1, -1 |
266
|
|
|
|
267
|
|
|
|
268
|
|
|
@numba.njit(cache=True) |
269
|
|
|
def _find_apex(p, q, size, parent): |
270
|
|
|
"""Find the lowest common ancestor of nodes p and q in the spanning |
271
|
|
|
tree. |
272
|
|
|
""" |
273
|
|
|
|
274
|
|
|
size_p = size[p] |
275
|
|
|
size_q = size[q] |
276
|
|
|
|
277
|
|
|
while True: |
278
|
|
|
while size_p < size_q: |
279
|
|
|
p = parent[p] |
280
|
|
|
size_p = size[p] |
281
|
|
|
while size_p > size_q: |
282
|
|
|
q = parent[q] |
283
|
|
|
size_q = size[q] |
284
|
|
|
if size_p == size_q: |
285
|
|
|
if p != q: |
286
|
|
|
p = parent[p] |
287
|
|
|
size_p = size[p] |
288
|
|
|
q = parent[q] |
289
|
|
|
size_q = size[q] |
290
|
|
|
else: |
291
|
|
|
return p |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
@numba.njit(cache=True) |
295
|
|
|
def _trace_path(p, w, edge, parent): |
296
|
|
|
"""Return the nodes and edges on the path from node p to its |
297
|
|
|
ancestor w. |
298
|
|
|
""" |
299
|
|
|
|
300
|
|
|
cycle_nodes = [p] |
301
|
|
|
cycle_edges = [] |
302
|
|
|
|
303
|
|
|
while p != w: |
304
|
|
|
cycle_edges.append(edge[p]) |
305
|
|
|
p = parent[p] |
306
|
|
|
cycle_nodes.append(p) |
307
|
|
|
|
308
|
|
|
return cycle_nodes, cycle_edges |
309
|
|
|
|
310
|
|
|
|
311
|
|
|
@numba.njit(cache=True) |
312
|
|
|
def _find_cycle(i, p, q, size, edge, parent): |
313
|
|
|
"""Return the nodes and edges on the cycle containing edge |
314
|
|
|
i == (p, q) when the latter is added to the spanning tree. The cycle |
315
|
|
|
is oriented in the direction from p to q. |
316
|
|
|
""" |
317
|
|
|
|
318
|
|
|
w = _find_apex(p, q, size, parent) |
319
|
|
|
cycle_nodes, cycle_edges = _trace_path(p, w, edge, parent) |
320
|
|
|
cycle_nodes_rev, cycle_edges_rev = _trace_path(q, w, edge, parent) |
321
|
|
|
len_cycle_nodes = len(cycle_nodes) |
322
|
|
|
add_to_c_nodes = max(len(cycle_nodes_rev) - 1, 0) |
323
|
|
|
cycle_nodes_ = np.empty(len_cycle_nodes + add_to_c_nodes, dtype=np.int64) |
324
|
|
|
|
325
|
|
|
for j in range(len_cycle_nodes): |
326
|
|
|
cycle_nodes_[j] = cycle_nodes[-(j+1)] |
327
|
|
|
for j in range(add_to_c_nodes): |
328
|
|
|
cycle_nodes_[len_cycle_nodes+j] = cycle_nodes_rev[j] |
329
|
|
|
|
330
|
|
|
len_cycle_edges = len(cycle_edges) |
331
|
|
|
len_cycle_edges_ = len_cycle_edges + len(cycle_edges_rev) |
332
|
|
|
if len_cycle_edges < 1 or cycle_edges[-1] != i: |
333
|
|
|
cycle_edges_ = np.empty(len_cycle_edges_ + 1, dtype=np.int64) |
334
|
|
|
cycle_edges_[len_cycle_edges] = i |
335
|
|
|
else: |
336
|
|
|
cycle_edges_ = np.empty(len_cycle_edges_, dtype=np.int64) |
337
|
|
|
|
338
|
|
|
for j in range(len_cycle_edges): |
339
|
|
|
cycle_edges_[j] = cycle_edges[-(j+1)] |
340
|
|
|
for j in range(1, len(cycle_edges_rev) + 1): |
341
|
|
|
cycle_edges_[-j] = cycle_edges_rev[-j] |
342
|
|
|
|
343
|
|
|
return cycle_nodes_, cycle_edges_ |
344
|
|
|
|
345
|
|
|
|
346
|
|
|
@numba.njit(cache=True) |
347
|
|
|
def _find_leaving_edge(cycle_nodes, cycle_edges, capac, flows, tails, heads): |
348
|
|
|
"""Return the leaving edge in a cycle represented by cycle_nodes and |
349
|
|
|
cycle_edges. |
350
|
|
|
""" |
351
|
|
|
|
352
|
|
|
j, s = cycle_edges[0], cycle_nodes[0] |
353
|
|
|
res_caps_min = capac[j] - flows[j] if tails[j] == s else flows[j] |
354
|
|
|
|
355
|
|
|
for ind in range(1, cycle_edges.shape[0]): |
356
|
|
|
j_, s_ = cycle_edges[ind], cycle_nodes[ind] |
357
|
|
|
res_cap = capac[j_] - flows[j_] if tails[j_] == s_ else flows[j_] |
358
|
|
|
if res_cap < res_caps_min: |
359
|
|
|
res_caps_min = res_cap |
360
|
|
|
j, s = j_, s_ |
361
|
|
|
|
362
|
|
|
t = heads[j] if tails[j] == s else tails[j] |
363
|
|
|
return j, s, t |
364
|
|
|
|
365
|
|
|
|
366
|
|
|
@numba.njit(cache=True) |
367
|
|
|
def _remove_edge(s, t, size, prev, last, next_node, parent, edge): |
368
|
|
|
"""Remove an edge (s, t) where parent[t] == s from the spanning |
369
|
|
|
tree. |
370
|
|
|
""" |
371
|
|
|
|
372
|
|
|
size_t = size[t] |
373
|
|
|
prev_t = prev[t] |
374
|
|
|
last_t = last[t] |
375
|
|
|
next_last_t = next_node[last_t] |
376
|
|
|
# Remove (s, t) |
377
|
|
|
parent[t] = -2 |
378
|
|
|
edge[t] = -2 |
379
|
|
|
# Remove the subtree rooted at t from the depth-first thread |
380
|
|
|
next_node[prev_t] = next_last_t |
381
|
|
|
prev[next_last_t] = prev_t |
382
|
|
|
next_node[last_t] = t |
383
|
|
|
prev[t] = last_t |
384
|
|
|
|
385
|
|
|
# Update the subtree sizes & last descendants of the (old) ancestors of t |
386
|
|
|
while s != -2: |
387
|
|
|
size[s] -= size_t |
388
|
|
|
if last[s] == last_t: |
389
|
|
|
last[s] = prev_t |
390
|
|
|
s = parent[s] |
391
|
|
|
|
392
|
|
|
|
393
|
|
|
@numba.njit(cache=True) |
394
|
|
|
def _make_root(q, parent, size, last, prev, next_node, edge): |
395
|
|
|
"""Make a node q the root of its containing subtree.""" |
396
|
|
|
|
397
|
|
|
ancestors = [] |
398
|
|
|
# -2 means node is checked |
399
|
|
|
while q != -2: |
400
|
|
|
ancestors.insert(0, q) |
401
|
|
|
q = parent[q] |
402
|
|
|
|
403
|
|
|
for i in range(len(ancestors) - 1): |
404
|
|
|
p = ancestors[i] |
405
|
|
|
q = ancestors[i+1] |
406
|
|
|
size_p = size[p] |
407
|
|
|
last_p = last[p] |
408
|
|
|
prev_q = prev[q] |
409
|
|
|
last_q = last[q] |
410
|
|
|
next_last_q = next_node[last_q] |
411
|
|
|
|
412
|
|
|
# Make p a child of q |
413
|
|
|
parent[p] = q |
414
|
|
|
parent[q] = -2 |
415
|
|
|
edge[p] = edge[q] |
416
|
|
|
edge[q] = -2 |
417
|
|
|
size[p] = size_p - size[q] |
418
|
|
|
size[q] = size_p |
419
|
|
|
|
420
|
|
|
# Remove the subtree rooted at q from the depth-first thread |
421
|
|
|
next_node[prev_q] = next_last_q |
422
|
|
|
prev[next_last_q] = prev_q |
423
|
|
|
next_node[last_q] = q |
424
|
|
|
prev[q] = last_q |
425
|
|
|
|
426
|
|
|
if last_p == last_q: |
427
|
|
|
last[p] = prev_q |
428
|
|
|
last_p = prev_q |
429
|
|
|
|
430
|
|
|
# Add the remaining parts of the subtree rooted at p as a subtree of q |
431
|
|
|
# in the depth-first thread |
432
|
|
|
prev[p] = last_q |
433
|
|
|
next_node[last_q] = p |
434
|
|
|
next_node[last_p] = q |
435
|
|
|
prev[q] = last_p |
436
|
|
|
last[q] = last_p |
437
|
|
|
|
438
|
|
|
|
439
|
|
|
@numba.njit(cache=True) |
440
|
|
|
def _add_edge(i, p, q, next_node, prev, last, size, parent, edge): |
441
|
|
|
"""Add an edge (p, q) to the spanning tree where q is the root of a |
442
|
|
|
subtree. |
443
|
|
|
""" |
444
|
|
|
|
445
|
|
|
last_p = last[p] |
446
|
|
|
next_last_p = next_node[last_p] |
447
|
|
|
size_q = size[q] |
448
|
|
|
last_q = last[q] |
449
|
|
|
# Make q a child of p |
450
|
|
|
parent[q] = p |
451
|
|
|
edge[q] = i |
452
|
|
|
# Insert the subtree rooted at q into the depth-first thread |
453
|
|
|
next_node[last_p] = q |
454
|
|
|
prev[q] = last_p |
455
|
|
|
prev[next_last_p] = last_q |
456
|
|
|
next_node[last_q] = next_last_p |
457
|
|
|
|
458
|
|
|
# Update the subtree sizes and last descendants of the (new) ancestors of q |
459
|
|
|
while p != -2: |
460
|
|
|
size[p] += size_q |
461
|
|
|
if last[p] == last_p: |
462
|
|
|
last[p] = last_q |
463
|
|
|
p = parent[p] |
464
|
|
|
|
465
|
|
|
|
466
|
|
|
@numba.njit(cache=True) |
467
|
|
|
def _update_potentials( |
468
|
|
|
i, p, q, heads, potentials, costs, last_node, next_node |
469
|
|
|
): |
470
|
|
|
"""Update the potentials of the nodes in the subtree rooted at a |
471
|
|
|
node q connected to its parent p by an edge i. |
472
|
|
|
""" |
473
|
|
|
|
474
|
|
|
if q == heads[i]: |
475
|
|
|
d = potentials[p] - costs[i] - potentials[q] |
476
|
|
|
else: |
477
|
|
|
d = potentials[p] + costs[i] - potentials[q] |
478
|
|
|
|
479
|
|
|
potentials[q] += d |
480
|
|
|
l = last_node[q] |
481
|
|
|
while q != l: |
482
|
|
|
q = next_node[q] |
483
|
|
|
potentials[q] += d |
484
|
|
|
|