1
|
|
|
"""Functions for calculating AMDs and PDDs (and SDDs) of periodic and finite sets. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
from typing import Union, Tuple |
5
|
|
|
import collections |
6
|
|
|
|
7
|
|
|
import numpy as np |
8
|
|
|
import scipy.spatial |
9
|
|
|
import scipy.special |
10
|
|
|
|
11
|
|
|
from ._nearest_neighbours import nearest_neighbours, nearest_neighbours_minval, generate_concentric_cloud |
|
|
|
|
12
|
|
|
from .periodicset import PeriodicSet |
13
|
|
|
from .utils import diameter |
14
|
|
|
|
15
|
|
|
PeriodicSet_or_Tuple = Union[PeriodicSet, Tuple[np.ndarray, np.ndarray]] |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def AMD(periodic_set: PeriodicSet_or_Tuple, k: int) -> np.ndarray: |
19
|
|
|
"""The AMD of a periodic set (crystal) up to `k`. |
20
|
|
|
|
21
|
|
|
Parameters |
22
|
|
|
---------- |
23
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` or tuple of ndarrays |
24
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
25
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form. |
26
|
|
|
k : int |
27
|
|
|
Length of AMD returned. |
28
|
|
|
|
29
|
|
|
Returns |
30
|
|
|
------- |
31
|
|
|
ndarray |
32
|
|
|
An ndarray of shape (k,), the AMD of ``periodic_set`` up to `k`. |
33
|
|
|
|
34
|
|
|
Examples |
35
|
|
|
-------- |
36
|
|
|
Make list of AMDs with ``k=100`` for crystals in mycif.cif:: |
37
|
|
|
|
38
|
|
|
amds = [] |
39
|
|
|
for periodic_set in amd.CifReader('mycif.cif'): |
40
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
41
|
|
|
|
|
|
|
|
42
|
|
|
Make list of AMDs with ``k=10`` for crystals in these CSD refcode families:: |
43
|
|
|
|
44
|
|
|
amds = [] |
45
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
46
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
47
|
|
|
|
48
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
49
|
|
|
|
50
|
|
|
# simple cubic lattice |
51
|
|
|
motif = np.array([[0,0,0]]) |
52
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
53
|
|
|
cubic_amd = amd.AMD((motif, cell), 100) |
54
|
|
|
""" |
55
|
|
|
|
56
|
|
|
motif, cell, asymmetric_unit, multiplicities = _extract_motif_and_cell(periodic_set) |
57
|
|
|
pdd, _, _ = nearest_neighbours(motif, cell, k, asymmetric_unit=asymmetric_unit) |
58
|
|
|
return np.average(pdd, axis=0, weights=multiplicities) |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
def PDD( |
62
|
|
|
periodic_set: PeriodicSet_or_Tuple, |
63
|
|
|
k: int, |
64
|
|
|
lexsort: bool = True, |
65
|
|
|
collapse: bool = True, |
66
|
|
|
collapse_tol: float = 1e-4 |
67
|
|
|
) -> np.ndarray: |
68
|
|
|
"""The PDD of a periodic set (crystal) up to `k`. |
69
|
|
|
|
70
|
|
|
Parameters |
71
|
|
|
---------- |
72
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` or tuple of ndarrays |
73
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
74
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form. |
75
|
|
|
k : int |
76
|
|
|
Number of columns in the PDD (the returned matrix has an additional first |
77
|
|
|
column containing weights). |
78
|
|
|
lexsort : bool, optional |
79
|
|
|
Whether or not to lexicographically order the rows. Default True. |
80
|
|
|
collapse: bool, optional |
81
|
|
|
Whether or not to collapse identical rows (within a tolerance). Default True. |
82
|
|
|
collapse_tol: float |
83
|
|
|
If two rows have all entries closer than collapse_tol, they get collapsed. |
84
|
|
|
Default is 1e-4. |
85
|
|
|
|
86
|
|
|
Returns |
87
|
|
|
------- |
88
|
|
|
ndarray |
89
|
|
|
An ndarray with k+1 columns, the PDD of ``periodic_set`` up to `k`. |
90
|
|
|
|
91
|
|
|
Examples |
92
|
|
|
-------- |
93
|
|
|
Make list of PDDs with ``k=100`` for crystals in mycif.cif:: |
94
|
|
|
|
95
|
|
|
pdds = [] |
96
|
|
|
for periodic_set in amd.CifReader('mycif.cif'): |
97
|
|
|
# do not lexicographically order rows |
98
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
99
|
|
|
|
100
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode families:: |
101
|
|
|
|
102
|
|
|
pdds = [] |
103
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
104
|
|
|
# do not collapse rows |
105
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
106
|
|
|
|
107
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
108
|
|
|
|
109
|
|
|
# simple cubic lattice |
110
|
|
|
motif = np.array([[0,0,0]]) |
111
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
112
|
|
|
cubic_amd = amd.PDD((motif, cell), 100) |
113
|
|
|
""" |
114
|
|
|
|
115
|
|
|
motif, cell, asymmetric_unit, multiplicities = _extract_motif_and_cell(periodic_set) |
116
|
|
|
dists, _, _ = nearest_neighbours(motif, cell, k, asymmetric_unit=asymmetric_unit) |
117
|
|
|
|
118
|
|
|
if multiplicities is None: |
119
|
|
|
weights = np.full((motif.shape[0], ), 1 / motif.shape[0]) |
120
|
|
|
else: |
121
|
|
|
weights = multiplicities / np.sum(multiplicities) |
122
|
|
|
|
123
|
|
|
if collapse: |
124
|
|
|
weights, dists = _collapse_rows(weights, dists, collapse_tol) |
125
|
|
|
|
126
|
|
|
pdd = np.hstack((weights[:, None], dists)) |
127
|
|
|
|
128
|
|
|
if lexsort: |
129
|
|
|
pdd = pdd[np.lexsort(np.rot90(dists))] |
130
|
|
|
|
131
|
|
|
return pdd |
132
|
|
|
|
133
|
|
|
|
134
|
|
|
def PDD_to_AMD(pdd: np.ndarray) -> np.ndarray: |
135
|
|
|
"""Calculates AMD from a PDD. Faster than computing both from scratch. |
136
|
|
|
|
137
|
|
|
Parameters |
138
|
|
|
---------- |
139
|
|
|
pdd : np.ndarray |
140
|
|
|
The PDD of a periodic set. |
141
|
|
|
|
142
|
|
|
Returns |
143
|
|
|
------- |
144
|
|
|
ndarray |
145
|
|
|
The AMD of the periodic set. |
146
|
|
|
""" |
147
|
|
|
|
148
|
|
|
return np.average(pdd[:, 1:], weights=pdd[:, 0], axis=0) |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
def AMD_finite(motif: np.ndarray) -> np.ndarray: |
152
|
|
|
"""The AMD of a finite point set (up to k = `len(motif) - 1`). |
153
|
|
|
|
154
|
|
|
Parameters |
155
|
|
|
---------- |
156
|
|
|
motif : ndarray |
157
|
|
|
Cartesian coordinates of points in a set. Shape (n_points, dimensions) |
158
|
|
|
|
159
|
|
|
Returns |
160
|
|
|
------- |
161
|
|
|
ndarray |
162
|
|
|
An vector length len(motif) - 1, the AMD of ``motif``. |
163
|
|
|
|
164
|
|
|
Examples |
165
|
|
|
-------- |
166
|
|
|
Find AMD distance between finite trapezium and kite point sets:: |
167
|
|
|
|
168
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
169
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
170
|
|
|
|
171
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
172
|
|
|
kite_amd = amd.AMD_finite(kite) |
173
|
|
|
|
174
|
|
|
dist = amd.AMD_pdist(trap_amd, kite_amd) |
175
|
|
|
""" |
176
|
|
|
|
177
|
|
|
dm = np.sort(scipy.spatial.distance.squareform(scipy.spatial.distance.pdist(motif)), axis=-1)[:, 1:] |
|
|
|
|
178
|
|
|
return np.average(dm, axis=0) |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
def PDD_finite( |
182
|
|
|
motif: np.ndarray, |
183
|
|
|
lexsort: bool = True, |
184
|
|
|
collapse: bool = True, |
185
|
|
|
collapse_tol: float = 1e-4 |
186
|
|
|
) -> np.ndarray: |
187
|
|
|
"""The PDD of a finite point set (up to k = `len(motif) - 1`). |
188
|
|
|
|
189
|
|
|
Parameters |
190
|
|
|
---------- |
191
|
|
|
motif : ndarray |
192
|
|
|
Cartesian coordinates of points in a set. Shape (n_points, dimensions) |
193
|
|
|
lexsort : bool, optional |
194
|
|
|
Whether or not to lexicographically order the rows. Default True. |
195
|
|
|
collapse: bool, optional |
196
|
|
|
Whether or not to collapse identical rows (within a tolerance). Default True. |
197
|
|
|
collapse_tol: float |
198
|
|
|
If two rows have all entries closer than collapse_tol, they get collapsed. |
199
|
|
|
Default is 1e-4. |
200
|
|
|
|
201
|
|
|
Returns |
202
|
|
|
------- |
203
|
|
|
ndarray |
204
|
|
|
An ndarray with len(motif) columns, the PDD of ``motif``. |
205
|
|
|
|
206
|
|
|
Examples |
207
|
|
|
-------- |
208
|
|
|
Find PDD distance between finite trapezium and kite point sets:: |
209
|
|
|
|
210
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
211
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
212
|
|
|
|
213
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
214
|
|
|
kite_pdd = amd.PDD_finite(kite) |
215
|
|
|
|
216
|
|
|
dist = amd.emd(trap_pdd, kite_pdd) |
217
|
|
|
""" |
218
|
|
|
|
219
|
|
|
dm = scipy.spatial.distance.squareform(scipy.spatial.distance.pdist(motif)) |
220
|
|
|
m = motif.shape[0] |
221
|
|
|
dists = np.sort(dm, axis=-1)[:, 1:] |
222
|
|
|
weights = np.full((m, ), 1 / m) |
223
|
|
|
|
224
|
|
|
if collapse: |
225
|
|
|
weights, dists = _collapse_rows(weights, dists, collapse_tol) |
226
|
|
|
|
227
|
|
|
pdd = np.hstack((weights[:, None], dists)) |
228
|
|
|
|
229
|
|
|
if lexsort: |
230
|
|
|
pdd = pdd[np.lexsort(np.rot90(dists))] |
231
|
|
|
|
232
|
|
|
return pdd |
233
|
|
|
|
234
|
|
|
|
235
|
|
|
def PDD_reconstructable( |
236
|
|
|
periodic_set: PeriodicSet_or_Tuple, |
237
|
|
|
lexsort: bool = True |
238
|
|
|
) -> np.ndarray: |
239
|
|
|
"""The PDD of a periodic set with `k` (no of columns) large enough such that |
240
|
|
|
the periodic set can be reconstructed from the PDD. |
241
|
|
|
|
242
|
|
|
Parameters |
243
|
|
|
---------- |
244
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` or tuple of ndarrays |
245
|
|
|
A periodic set represented by a :class:`.periodicset.PeriodicSet` or |
246
|
|
|
by a tuple (motif, cell) with coordinates in Cartesian form. |
247
|
|
|
k : int |
248
|
|
|
Number of columns in the PDD, plus one for the first column of weights. |
249
|
|
|
order : int |
250
|
|
|
Order of the PDD, default 1. See papers for a description of higher-order PDDs. |
251
|
|
|
lexsort : bool, optional |
252
|
|
|
Whether or not to lexicographically order the rows. Default True. |
253
|
|
|
collapse: bool, optional |
254
|
|
|
Whether or not to collapse identical rows (within a tolerance). Default True. |
255
|
|
|
collapse_tol: float |
256
|
|
|
If two rows have all entries closer than collapse_tol, they get collapsed. |
257
|
|
|
Default is 1e-4. |
258
|
|
|
|
259
|
|
|
Returns |
260
|
|
|
------- |
261
|
|
|
ndarray |
262
|
|
|
An ndarray with k+1 columns, the PDD of ``periodic_set`` up to `k`. |
263
|
|
|
|
264
|
|
|
Examples |
265
|
|
|
-------- |
266
|
|
|
Make list of PDDs with ``k=100`` for crystals in mycif.cif:: |
267
|
|
|
|
268
|
|
|
pdds = [] |
269
|
|
|
for periodic_set in amd.CifReader('mycif.cif'): |
270
|
|
|
# do not lexicographically order rows |
271
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
272
|
|
|
|
273
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode families:: |
274
|
|
|
|
275
|
|
|
pdds = [] |
276
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
277
|
|
|
# do not collapse rows |
278
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
279
|
|
|
|
280
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
281
|
|
|
|
282
|
|
|
# simple cubic lattice |
283
|
|
|
motif = np.array([[0,0,0]]) |
284
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
285
|
|
|
cubic_amd = amd.PDD((motif, cell), 100) |
286
|
|
|
""" |
287
|
|
|
|
288
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
289
|
|
|
dims = cell.shape[0] |
290
|
|
|
|
291
|
|
|
if dims not in (2, 3): |
292
|
|
|
raise ValueError('Reconstructing from PDD only implemented for 2 and 3 dimensions') |
293
|
|
|
|
294
|
|
|
min_val = diameter(cell) * 2 |
295
|
|
|
pdd = nearest_neighbours_minval(motif, cell, min_val) |
296
|
|
|
|
297
|
|
|
if lexsort: |
298
|
|
|
pdd = pdd[np.lexsort(np.rot90(pdd))] |
299
|
|
|
|
300
|
|
|
return pdd |
301
|
|
|
|
302
|
|
|
|
303
|
|
|
def PPC(periodic_set: PeriodicSet_or_Tuple) -> float: |
304
|
|
|
r"""The point packing coefficient (PPC) of ``periodic_set``. |
305
|
|
|
|
306
|
|
|
The PPC is a constant of any periodic set determining the |
307
|
|
|
asymptotic behaviour of its AMD or PDD as :math:`k \rightarrow \infty`. |
308
|
|
|
|
309
|
|
|
As :math:`k \rightarrow \infty`, the ratio :math:`\text{AMD}_k / \sqrt[n]{k}` |
310
|
|
|
approaches the PPC (as does any row of its PDD). |
311
|
|
|
|
312
|
|
|
For a unit cell :math:`U` and :math:`m` motif points in :math:`n` dimensions, |
313
|
|
|
|
314
|
|
|
.. math:: |
315
|
|
|
|
316
|
|
|
\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
317
|
|
|
|
318
|
|
|
where :math:`V_n` is the volume of a unit sphere in :math:`n` dimensions. |
319
|
|
|
|
320
|
|
|
Parameters |
321
|
|
|
---------- |
322
|
|
|
periodic_set : :class:`.periodicset.PeriodicSet` or tuple of |
323
|
|
|
ndarrays (motif, cell) representing the periodic set in Cartesian form. |
324
|
|
|
|
325
|
|
|
Returns |
326
|
|
|
------- |
327
|
|
|
float |
328
|
|
|
The PPC of ``periodic_set``. |
329
|
|
|
""" |
330
|
|
|
|
331
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
332
|
|
|
m, n = motif.shape |
333
|
|
|
det = np.linalg.det(cell) |
334
|
|
|
t = (n - n % 2) / 2 |
335
|
|
|
if n % 2 == 0: |
336
|
|
|
V = (np.pi ** t) / np.math.factorial(t) |
337
|
|
|
else: |
338
|
|
|
V = (2 * np.math.factorial(t) * (4 * np.pi) ** t) / np.math.factorial(n) |
339
|
|
|
|
340
|
|
|
return (det / (m * V)) ** (1./n) |
341
|
|
|
|
342
|
|
|
|
343
|
|
|
def AMD_estimate(periodic_set: PeriodicSet_or_Tuple, k: int) -> np.ndarray: |
344
|
|
|
r"""Calculates an estimate of AMD based on the PPC, using the fact that |
345
|
|
|
|
346
|
|
|
.. math:: |
347
|
|
|
|
348
|
|
|
\lim_{k\rightarrow\infty}\frac{\text{AMD}_k}{\sqrt[n]{k}} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
|
|
|
|
349
|
|
|
|
350
|
|
|
where :math:`U` is the unit cell, :math:`m` is the number of motif points and |
351
|
|
|
:math:`V_n` is the volume of a unit sphere in :math:`n`-dimensional space. |
352
|
|
|
""" |
353
|
|
|
|
354
|
|
|
motif, cell, _, _ = _extract_motif_and_cell(periodic_set) |
355
|
|
|
n = motif.shape[1] |
356
|
|
|
c = PPC((motif, cell)) |
357
|
|
|
return np.array([(x ** (1. / n)) * c for x in range(1, k + 1)]) |
358
|
|
|
|
359
|
|
|
|
360
|
|
|
def _extract_motif_and_cell(periodic_set: PeriodicSet_or_Tuple): |
361
|
|
|
"""`periodic_set` is either a :class:`.periodicset.PeriodicSet`, or |
362
|
|
|
a tuple of ndarrays (motif, cell). If possible, extracts the asymmetric unit |
363
|
|
|
and wyckoff multiplicities and returns them, otherwise returns None. |
364
|
|
|
""" |
365
|
|
|
|
366
|
|
|
asymmetric_unit, multiplicities = None, None |
367
|
|
|
|
368
|
|
|
if isinstance(periodic_set, PeriodicSet): |
369
|
|
|
motif, cell = periodic_set.motif, periodic_set.cell |
370
|
|
|
|
371
|
|
|
if 'asymmetric_unit' in periodic_set.tags and 'wyckoff_multiplicities' in periodic_set.tags: |
372
|
|
|
asymmetric_unit = periodic_set.asymmetric_unit |
373
|
|
|
multiplicities = periodic_set.wyckoff_multiplicities |
374
|
|
|
|
375
|
|
|
elif isinstance(periodic_set, np.ndarray): |
376
|
|
|
motif, cell = periodic_set, None |
377
|
|
|
else: |
378
|
|
|
motif, cell = periodic_set[0], periodic_set[1] |
379
|
|
|
|
380
|
|
|
return motif, cell, asymmetric_unit, multiplicities |
381
|
|
|
|
382
|
|
|
|
383
|
|
|
def _collapse_rows(weights, dists, collapse_tol): |
384
|
|
|
"""Given a vector `weights`, matrix `dists` and tolerance `collapse_tol`, collapse |
385
|
|
|
the identical rows of dists (if all entries in a row are within `collapse_tol`) |
386
|
|
|
and collapse the same entires of `weights` (adding entries that merge). |
387
|
|
|
""" |
388
|
|
|
|
389
|
|
|
diffs = np.abs(dists[:, None] - dists) |
390
|
|
|
overlapping = np.all(diffs <= collapse_tol, axis=-1) |
391
|
|
|
|
392
|
|
|
res = _group_overlapping_and_sum_weights(weights, overlapping) |
393
|
|
|
if res is not None: |
394
|
|
|
weights = res[0] |
395
|
|
|
dists = dists[res[1]] |
396
|
|
|
|
397
|
|
|
return weights, dists |
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def _group_overlapping_and_sum_weights(weights, overlapping): |
|
|
|
|
401
|
|
|
if np.triu(overlapping, 1).any(): |
402
|
|
|
groups = {} |
403
|
|
|
group = 0 |
404
|
|
|
for i, row in enumerate(overlapping): |
405
|
|
|
if i not in groups: |
406
|
|
|
groups[i] = group |
407
|
|
|
group += 1 |
408
|
|
|
|
409
|
|
|
for j in np.argwhere(row).T[0]: |
410
|
|
|
groups[j] = groups[i] |
411
|
|
|
|
412
|
|
|
groupings = collections.defaultdict(list) |
413
|
|
|
for key, val in sorted(groups.items()): |
414
|
|
|
groupings[val].append(key) |
415
|
|
|
|
416
|
|
|
weights_ = [] |
417
|
|
|
keep_inds = [] |
418
|
|
|
for inds in groupings.values(): |
419
|
|
|
keep_inds.append(inds[0]) |
420
|
|
|
weights_.append(np.sum(weights[inds])) |
421
|
|
|
weights = np.array(weights_) |
422
|
|
|
|
423
|
|
|
return weights, keep_inds |
424
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.