|
1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
|
2
|
|
|
""" |
|
3
|
|
|
|
|
4
|
|
|
import warnings |
|
5
|
|
|
from typing import List, Optional, Union |
|
6
|
|
|
from functools import partial |
|
7
|
|
|
from itertools import combinations |
|
8
|
|
|
import os |
|
9
|
|
|
|
|
10
|
|
|
import numpy as np |
|
11
|
|
|
import pandas as pd |
|
12
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
|
13
|
|
|
from joblib import Parallel, delayed |
|
14
|
|
|
import tqdm |
|
15
|
|
|
|
|
16
|
|
|
from .amdio import CifReader, CSDReader |
|
17
|
|
|
from .calculate import AMD, PDD |
|
18
|
|
|
from ._emd import network_simplex |
|
19
|
|
|
from .periodicset import PeriodicSet |
|
20
|
|
|
from .utils import neighbours_from_distance_matrix |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def compare( |
|
24
|
|
|
crystals, |
|
25
|
|
|
crystals_=None, |
|
26
|
|
|
by='AMD', |
|
27
|
|
|
k=100, |
|
28
|
|
|
nearest=None, |
|
29
|
|
|
**kwargs |
|
30
|
|
|
) -> pd.DataFrame: |
|
31
|
|
|
r"""Given one or two sets of periodic set(s), paths to cif(s) or |
|
32
|
|
|
refcode(s), compare them and return a DataFrame of the distance |
|
33
|
|
|
matrix. Default is to comapre by AMD with k = 100. Accepts most |
|
34
|
|
|
keyword arguments accepted by :class:`CifReader <.amdio.CifReader>`, |
|
35
|
|
|
:class:`CSDReader <.amdio.CSDReader>` and functions from |
|
36
|
|
|
:mod:`.compare`, for a full list see the documentation Quick Start |
|
37
|
|
|
page. Note that using refcodes requires ``csd-python-api``. |
|
38
|
|
|
|
|
39
|
|
|
Parameters |
|
40
|
|
|
---------- |
|
41
|
|
|
crystals : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str |
|
42
|
|
|
One or a collection of paths, refcodes, file objects or |
|
43
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
|
44
|
|
|
crystals\_ : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str, optional |
|
45
|
|
|
One or a collection of paths, refcodes, file objects or |
|
46
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
|
47
|
|
|
by : str, default 'AMD' |
|
48
|
|
|
Use AMD or PDD to compare crystals. |
|
49
|
|
|
k : int, default 100 |
|
50
|
|
|
Number of neighbour atoms to use for AMD/PDD. |
|
51
|
|
|
nearest : int, deafult None |
|
52
|
|
|
Find a number of nearest neighbours instead of a full distance |
|
53
|
|
|
matrix between crystals. |
|
54
|
|
|
**kwargs : |
|
55
|
|
|
Optional arguments to be passed to io, calculate or compare |
|
56
|
|
|
functions. |
|
57
|
|
|
|
|
58
|
|
|
Returns |
|
59
|
|
|
------- |
|
60
|
|
|
df : :class:`pandas.DataFrame` |
|
61
|
|
|
DataFrame of the distance matrix for the given crystals compared |
|
62
|
|
|
by the chosen invariant. |
|
63
|
|
|
|
|
64
|
|
|
Raises |
|
65
|
|
|
------ |
|
66
|
|
|
ValueError |
|
67
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid |
|
68
|
|
|
crystals to compare, or if crystals or crystals\_ are an invalid |
|
69
|
|
|
type. |
|
70
|
|
|
|
|
71
|
|
|
Examples |
|
72
|
|
|
-------- |
|
73
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
|
74
|
|
|
|
|
75
|
|
|
df = amd.compare('data.cif') |
|
76
|
|
|
|
|
77
|
|
|
Compare everything in one cif with all crystals in all cifs in a |
|
78
|
|
|
directory (PDD, k=50):: |
|
79
|
|
|
|
|
80
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
|
81
|
|
|
|
|
82
|
|
|
**Examples (csd-python-api only)** |
|
83
|
|
|
|
|
84
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
|
85
|
|
|
|
|
86
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50) |
|
87
|
|
|
|
|
88
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
|
89
|
|
|
|
|
90
|
|
|
df = amd.compare('DEBXIT', families=True) |
|
91
|
|
|
""" |
|
92
|
|
|
|
|
93
|
|
|
by = by.upper() |
|
94
|
|
|
if by not in ('AMD', 'PDD'): |
|
95
|
|
|
msg = f"parameter 'by' accepts 'AMD' or 'PDD', was passed {by}" |
|
96
|
|
|
raise ValueError(msg) |
|
97
|
|
|
|
|
98
|
|
|
# redo this way of doing things? |
|
99
|
|
|
reader_kwargs = { |
|
100
|
|
|
'reader': 'ase', |
|
101
|
|
|
'families': False, |
|
102
|
|
|
'remove_hydrogens': False, |
|
103
|
|
|
'disorder': 'skip', |
|
104
|
|
|
'heaviest_component': False, |
|
105
|
|
|
'molecular_centres': False, |
|
106
|
|
|
'show_warnings': True, |
|
107
|
|
|
} |
|
108
|
|
|
|
|
109
|
|
|
calc_kwargs = { |
|
110
|
|
|
'collapse': True, |
|
111
|
|
|
'collapse_tol': 1e-4, |
|
112
|
|
|
'lexsort': False, |
|
113
|
|
|
} |
|
114
|
|
|
|
|
115
|
|
|
compare_kwargs = { |
|
116
|
|
|
'metric': 'chebyshev', |
|
117
|
|
|
'n_jobs': None, |
|
118
|
|
|
'verbose': 0, |
|
119
|
|
|
'low_memory': False, |
|
120
|
|
|
} |
|
121
|
|
|
|
|
122
|
|
|
for default_kwargs in (reader_kwargs, calc_kwargs, compare_kwargs): |
|
123
|
|
|
for key in kwargs.keys() & default_kwargs.keys(): |
|
124
|
|
|
default_kwargs[key] = kwargs[key] |
|
125
|
|
|
|
|
126
|
|
|
crystals = _unwrap_periodicset_list(crystals, **reader_kwargs) |
|
127
|
|
|
if not crystals: |
|
128
|
|
|
raise ValueError('No valid crystals to compare in first set.') |
|
129
|
|
|
names = [s.name for s in crystals] |
|
130
|
|
|
|
|
131
|
|
|
if crystals_ is None: |
|
132
|
|
|
names_ = names |
|
133
|
|
|
else: |
|
134
|
|
|
crystals_ = _unwrap_periodicset_list(crystals_, **reader_kwargs) |
|
135
|
|
|
if not crystals_: |
|
136
|
|
|
raise ValueError('No valid crystals to compare in second set.') |
|
137
|
|
|
names_ = [s.name for s in crystals_] |
|
138
|
|
|
|
|
139
|
|
|
if reader_kwargs['molecular_centres']: |
|
140
|
|
|
crystals = [(c.molecular_centres, c.cell) for c in crystals] |
|
141
|
|
|
if crystals_: |
|
142
|
|
|
crystals_ = [(c.molecular_centres, c.cell) for c in crystals_] |
|
143
|
|
|
|
|
144
|
|
|
if by == 'AMD': |
|
145
|
|
|
|
|
146
|
|
|
invs = [AMD(s, k) for s in crystals] |
|
147
|
|
|
compare_kwargs.pop('n_jobs', None) |
|
148
|
|
|
compare_kwargs.pop('verbose', None) |
|
149
|
|
|
|
|
150
|
|
|
if crystals_ is None: |
|
151
|
|
|
dm = AMD_pdist(invs, **compare_kwargs) |
|
152
|
|
|
else: |
|
153
|
|
|
invs_ = [AMD(s, k) for s in crystals_] |
|
154
|
|
|
dm = AMD_cdist(invs, invs_, **compare_kwargs) |
|
155
|
|
|
|
|
156
|
|
|
elif by == 'PDD': |
|
157
|
|
|
|
|
158
|
|
|
invs = [PDD(s, k, **calc_kwargs) for s in crystals] |
|
159
|
|
|
compare_kwargs.pop('low_memory', None) |
|
160
|
|
|
|
|
161
|
|
|
if crystals_ is None: |
|
162
|
|
|
dm = PDD_pdist(invs, **compare_kwargs) |
|
163
|
|
|
else: |
|
164
|
|
|
invs_ = [PDD(s, k, **calc_kwargs) for s in crystals_] |
|
165
|
|
|
dm = PDD_cdist(invs, invs_, **compare_kwargs) |
|
166
|
|
|
|
|
167
|
|
|
if nearest: |
|
168
|
|
|
nn_dm, inds = neighbours_from_distance_matrix(nearest, dm) |
|
169
|
|
|
data = {} |
|
170
|
|
|
for i in range(nearest): |
|
171
|
|
|
data['ID ' + str(i+1)] = [names_[j] for j in inds[:, i]] |
|
172
|
|
|
data['DIST ' + str(i+1)] = nn_dm[:, i] |
|
173
|
|
|
df = pd.DataFrame(data, index=names) |
|
174
|
|
|
|
|
175
|
|
|
else: |
|
176
|
|
|
if dm.ndim == 1: |
|
177
|
|
|
dm = squareform(dm) |
|
178
|
|
|
df = pd.DataFrame(dm, index=names, columns=names_) |
|
179
|
|
|
|
|
180
|
|
|
return df |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
def EMD( |
|
184
|
|
|
pdd: np.ndarray, |
|
185
|
|
|
pdd_: np.ndarray, |
|
186
|
|
|
metric: Optional[str] = 'chebyshev', |
|
187
|
|
|
return_transport: Optional[bool] = False, |
|
188
|
|
|
**kwargs): |
|
189
|
|
|
r"""Earth mover's distance (EMD) between two PDDs, aka the |
|
190
|
|
|
Wasserstein metric. |
|
191
|
|
|
|
|
192
|
|
|
Parameters |
|
193
|
|
|
---------- |
|
194
|
|
|
pdd : :class:`numpy.ndarray` |
|
195
|
|
|
PDD of a crystal. |
|
196
|
|
|
pdd\_ : :class:`numpy.ndarray` |
|
197
|
|
|
PDD of a crystal. |
|
198
|
|
|
metric : str or callable, default 'chebyshev' |
|
199
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
|
200
|
|
|
By default, Chebyshev (L-infinity) distance is chosen like with |
|
201
|
|
|
AMDs. Accepts any metric accepted by |
|
202
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
203
|
|
|
return_transport: bool, default False |
|
204
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
|
205
|
|
|
transport_plan describes the optimal flow. |
|
206
|
|
|
|
|
207
|
|
|
Returns |
|
208
|
|
|
------- |
|
209
|
|
|
emd : float |
|
210
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
|
211
|
|
|
is True, return a tuple (emd, transport_plan). |
|
212
|
|
|
|
|
213
|
|
|
Raises |
|
214
|
|
|
------ |
|
215
|
|
|
ValueError |
|
216
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
|
217
|
|
|
columns. |
|
218
|
|
|
""" |
|
219
|
|
|
|
|
220
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
|
221
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
|
222
|
|
|
|
|
223
|
|
|
if return_transport: |
|
224
|
|
|
return emd_dist, transport_plan |
|
225
|
|
|
|
|
226
|
|
|
return emd_dist |
|
227
|
|
|
|
|
228
|
|
|
|
|
229
|
|
|
def AMD_cdist( |
|
230
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
|
231
|
|
|
amds_: Union[np.ndarray, List[np.ndarray]], |
|
232
|
|
|
metric: str = 'chebyshev', |
|
233
|
|
|
low_memory: bool = False, |
|
234
|
|
|
**kwargs |
|
235
|
|
|
) -> np.ndarray: |
|
236
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
|
237
|
|
|
matrix. This function is essentially |
|
238
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
|
239
|
|
|
``chebyshev`` and a low memory option. |
|
240
|
|
|
|
|
241
|
|
|
Parameters |
|
242
|
|
|
---------- |
|
243
|
|
|
amds : array_like |
|
244
|
|
|
A list/array of AMDs. |
|
245
|
|
|
amds\_ : array_like |
|
246
|
|
|
A list/array of AMDs. |
|
247
|
|
|
metric : str or callable, default 'chebyshev' |
|
248
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) distance. |
|
249
|
|
|
Accepts any metric accepted by :func:`scipy.spatial.distance.cdist`. |
|
250
|
|
|
low_memory : bool, default False |
|
251
|
|
|
Use a slower but more memory efficient method for large collections of |
|
252
|
|
|
AMDs (metric 'chebyshev' only). |
|
253
|
|
|
|
|
254
|
|
|
Returns |
|
255
|
|
|
------- |
|
256
|
|
|
dm : :class:`numpy.ndarray` |
|
257
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` is the |
|
258
|
|
|
distance (given by ``metric``) between ``amds[i]`` and ``amds[j]``. |
|
259
|
|
|
""" |
|
260
|
|
|
|
|
261
|
|
|
amds, amds_ = np.asarray(amds), np.asarray(amds_) |
|
262
|
|
|
|
|
263
|
|
|
if len(amds.shape) == 1: |
|
264
|
|
|
amds = np.array([amds]) |
|
265
|
|
|
if len(amds_.shape) == 1: |
|
266
|
|
|
amds_ = np.array([amds_]) |
|
267
|
|
|
|
|
268
|
|
|
if low_memory: |
|
269
|
|
|
if metric != 'chebyshev': |
|
270
|
|
|
msg = "Using only allowed metric 'chebyshev' for low_memory" |
|
271
|
|
|
warnings.warn(msg, UserWarning) |
|
272
|
|
|
|
|
273
|
|
|
dm = np.empty((len(amds), len(amds_))) |
|
274
|
|
|
for i, amd_vec in enumerate(amds): |
|
275
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
|
276
|
|
|
else: |
|
277
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
|
278
|
|
|
|
|
279
|
|
|
return dm |
|
280
|
|
|
|
|
281
|
|
|
|
|
282
|
|
|
def AMD_pdist( |
|
283
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
|
284
|
|
|
metric: str = 'chebyshev', |
|
285
|
|
|
low_memory: bool = False, |
|
286
|
|
|
**kwargs |
|
287
|
|
|
) -> np.ndarray: |
|
288
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
|
289
|
|
|
matrix. This function is essentially |
|
290
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
|
291
|
|
|
``chebyshev`` and a low memory parameter. |
|
292
|
|
|
|
|
293
|
|
|
Parameters |
|
294
|
|
|
---------- |
|
295
|
|
|
amds : array_like |
|
296
|
|
|
An list/array of AMDs. |
|
297
|
|
|
metric : str or callable, default 'chebyshev' |
|
298
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
|
299
|
|
|
distance. Accepts any metric accepted by |
|
300
|
|
|
:func:`scipy.spatial.distance.pdist`. |
|
301
|
|
|
low_memory : bool, default False |
|
302
|
|
|
Use a slower but more memory efficient method for large |
|
303
|
|
|
collections of AMDs (metric 'chebyshev' only). |
|
304
|
|
|
|
|
305
|
|
|
Returns |
|
306
|
|
|
------- |
|
307
|
|
|
cdm : :class:`numpy.ndarray` |
|
308
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
309
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
310
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
311
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
312
|
|
|
""" |
|
313
|
|
|
|
|
314
|
|
|
amds = np.asarray(amds) |
|
315
|
|
|
|
|
316
|
|
|
if len(amds.shape) == 1: |
|
317
|
|
|
amds = np.array([amds]) |
|
318
|
|
|
|
|
319
|
|
|
if low_memory: |
|
320
|
|
|
m = len(amds) |
|
321
|
|
|
if metric != 'chebyshev': |
|
322
|
|
|
msg = "Using only allowed metric 'chebyshev' for low_memory" |
|
323
|
|
|
warnings.warn(msg, UserWarning) |
|
324
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.double) |
|
325
|
|
|
ind = 0 |
|
326
|
|
|
for i in range(m): |
|
327
|
|
|
ind_ = ind + m - i - 1 |
|
328
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
|
329
|
|
|
ind = ind_ |
|
330
|
|
|
else: |
|
331
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
|
332
|
|
|
|
|
333
|
|
|
return cdm |
|
334
|
|
|
|
|
335
|
|
|
|
|
336
|
|
|
def PDD_cdist( |
|
337
|
|
|
pdds: List[np.ndarray], |
|
338
|
|
|
pdds_: List[np.ndarray], |
|
339
|
|
|
metric: str = 'chebyshev', |
|
340
|
|
|
backend='multiprocessing', |
|
341
|
|
|
n_jobs=None, |
|
342
|
|
|
verbose=0, |
|
343
|
|
|
**kwargs |
|
344
|
|
|
) -> np.ndarray: |
|
345
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
|
346
|
|
|
matrix. Supports parallel processing via joblib. If using |
|
347
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
|
348
|
|
|
guard around this function. |
|
349
|
|
|
|
|
350
|
|
|
Parameters |
|
351
|
|
|
---------- |
|
352
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
353
|
|
|
A list of PDDs. |
|
354
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
|
355
|
|
|
A list of PDDs. |
|
356
|
|
|
metric : str or callable, default 'chebyshev' |
|
357
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
358
|
|
|
distance. Accepts any metric accepted by |
|
359
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
360
|
|
|
n_jobs : int, default None |
|
361
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
362
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
363
|
|
|
processing may be slower for small inputs. |
|
364
|
|
|
verbose : int, default 0 |
|
365
|
|
|
Verbosity level. If using parallel processing (n_jobs > 1), |
|
366
|
|
|
verbose is passed to :class:`joblib.Parallel` and larger values |
|
367
|
|
|
= more verbose. |
|
368
|
|
|
backend : str, default 'multiprocessing' |
|
369
|
|
|
The parallelization backend implementation. For a list of |
|
370
|
|
|
supported backends, see the backend argument of |
|
371
|
|
|
:class:`joblib.Parallel`. |
|
372
|
|
|
|
|
373
|
|
|
Returns |
|
374
|
|
|
------- |
|
375
|
|
|
dm : :class:`numpy.ndarray` |
|
376
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
|
377
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
|
378
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
|
379
|
|
|
""" |
|
380
|
|
|
|
|
381
|
|
|
if isinstance(pdds, np.ndarray): |
|
382
|
|
|
if len(pdds.shape) == 2: |
|
383
|
|
|
pdds = [pdds] |
|
384
|
|
|
|
|
385
|
|
|
if isinstance(pdds_, np.ndarray): |
|
386
|
|
|
if len(pdds_.shape) == 2: |
|
387
|
|
|
pdds_ = [pdds_] |
|
388
|
|
|
|
|
389
|
|
|
kwargs.pop('return_transport', None) |
|
390
|
|
|
|
|
391
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
|
392
|
|
|
# TODO: put results into preallocated empty array in place |
|
393
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
|
394
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
|
395
|
|
|
for i in range(len(pdds)) for j in range(len(pdds_)) |
|
396
|
|
|
) |
|
397
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
|
398
|
|
|
|
|
399
|
|
|
else: |
|
400
|
|
|
n, m = len(pdds), len(pdds_) |
|
401
|
|
|
dm = np.empty((n, m)) |
|
402
|
|
|
if verbose: |
|
403
|
|
|
pbar = tqdm.tqdm(total=n*m) |
|
404
|
|
|
for i in range(n): |
|
405
|
|
|
for j in range(m): |
|
406
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
|
407
|
|
|
if verbose: |
|
408
|
|
|
pbar.update(1) |
|
409
|
|
|
if verbose: |
|
410
|
|
|
pbar.close() |
|
411
|
|
|
|
|
412
|
|
|
return dm |
|
413
|
|
|
|
|
414
|
|
|
|
|
415
|
|
|
def PDD_pdist( |
|
416
|
|
|
pdds: List[np.ndarray], |
|
417
|
|
|
metric: str = 'chebyshev', |
|
418
|
|
|
n_jobs=None, |
|
419
|
|
|
verbose=0, |
|
420
|
|
|
backend='multiprocessing', |
|
421
|
|
|
**kwargs |
|
422
|
|
|
) -> np.ndarray: |
|
423
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
|
424
|
|
|
matrix. Supports parallelisation via joblib. If using |
|
425
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
|
426
|
|
|
guard around this function. |
|
427
|
|
|
|
|
428
|
|
|
Parameters |
|
429
|
|
|
---------- |
|
430
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
431
|
|
|
A list of PDDs. |
|
432
|
|
|
metric : str or callable, default 'chebyshev' |
|
433
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
434
|
|
|
distance. Accepts any metric accepted by |
|
435
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
436
|
|
|
n_jobs : int, default None |
|
437
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
438
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
439
|
|
|
processing may be slower for small inputs. |
|
440
|
|
|
verbose : int, default 0 |
|
441
|
|
|
Verbosity level. If using parallel processing (n_jobs > 1), |
|
442
|
|
|
verbose is passed to :class:`joblib.Parallel` and larger values |
|
443
|
|
|
= more verbose. |
|
444
|
|
|
backend : str, default 'multiprocessing' |
|
445
|
|
|
The parallelization backend implementation. For a list of |
|
446
|
|
|
supported backends, see the backend argument of |
|
447
|
|
|
:class:`joblib.Parallel`. |
|
448
|
|
|
|
|
449
|
|
|
Returns |
|
450
|
|
|
------- |
|
451
|
|
|
cdm : :class:`numpy.ndarray` |
|
452
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
453
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
454
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
455
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
456
|
|
|
""" |
|
457
|
|
|
|
|
458
|
|
|
kwargs.pop('return_transport', None) |
|
459
|
|
|
|
|
460
|
|
|
if n_jobs is not None and n_jobs > 1: |
|
461
|
|
|
# TODO: put results into preallocated empty array in place |
|
462
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
|
463
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
|
464
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
|
465
|
|
|
) |
|
466
|
|
|
cdm = np.array(cdm) |
|
467
|
|
|
|
|
468
|
|
|
else: |
|
469
|
|
|
m = len(pdds) |
|
470
|
|
|
cdm_len = (m * (m - 1)) // 2 |
|
471
|
|
|
cdm = np.empty(cdm_len, dtype=np.double) |
|
472
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
|
473
|
|
|
if verbose: |
|
474
|
|
|
eta = tqdm.tqdm(cdm_len) |
|
475
|
|
|
for r, (i, j) in enumerate(inds): |
|
476
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
|
477
|
|
|
if verbose: |
|
478
|
|
|
eta.update(1) |
|
479
|
|
|
if verbose: |
|
480
|
|
|
eta.close() |
|
481
|
|
|
return cdm |
|
482
|
|
|
|
|
483
|
|
|
|
|
484
|
|
|
def emd(pdd: np.ndarray, pdd_: np.ndarray, **kwargs): |
|
485
|
|
|
"""Alias for :func:`EMD() <.compare.EMD>`.""" |
|
486
|
|
|
return EMD(pdd, pdd_, **kwargs) |
|
487
|
|
|
|
|
488
|
|
|
|
|
489
|
|
|
def _unwrap_periodicset_list(psets_or_str, **reader_kwargs): |
|
490
|
|
|
"""Valid input for compare (``PeriodicSet``, path, refcode, lists of |
|
491
|
|
|
such) --> list of PeriodicSets. |
|
492
|
|
|
""" |
|
493
|
|
|
|
|
494
|
|
|
if isinstance(psets_or_str, PeriodicSet): |
|
495
|
|
|
return [psets_or_str] |
|
496
|
|
|
if isinstance(psets_or_str, list): |
|
497
|
|
|
return [s for item in psets_or_str |
|
498
|
|
|
for s in _extract_periodicsets(item, **reader_kwargs)] |
|
499
|
|
|
return _extract_periodicsets(psets_or_str, **reader_kwargs) |
|
500
|
|
|
|
|
501
|
|
|
|
|
502
|
|
|
def _extract_periodicsets(item, **reader_kwargs): |
|
503
|
|
|
"""str (path/refocde), file or ``PeriodicSet`` --> list of |
|
504
|
|
|
``PeriodicSets``. |
|
505
|
|
|
""" |
|
506
|
|
|
|
|
507
|
|
|
if isinstance(item, PeriodicSet): |
|
508
|
|
|
return [item] |
|
509
|
|
|
if isinstance(item, str) and not os.path.isfile(item) and not os.path.isdir(item): |
|
510
|
|
|
reader_kwargs.pop('reader', None) |
|
511
|
|
|
return list(CSDReader(item, **reader_kwargs)) |
|
512
|
|
|
reader_kwargs.pop('families', None) |
|
513
|
|
|
reader_kwargs.pop('refcodes', None) |
|
514
|
|
|
return list(CifReader(item, **reader_kwargs)) |
|
515
|
|
|
|