1
|
|
|
"""Implements core function nearest_neighbours used for AMD and PDD calculations.""" |
2
|
|
|
|
3
|
|
|
from typing import Iterable, Optional |
4
|
|
|
import itertools |
5
|
|
|
import collections |
6
|
|
|
|
7
|
|
|
import numba |
8
|
|
|
import numpy as np |
9
|
|
|
import scipy.spatial |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
@numba.njit() |
13
|
|
|
def _dist(xy, z): |
14
|
|
|
s = z ** 2 |
15
|
|
|
for val in xy: |
16
|
|
|
s += val ** 2 |
17
|
|
|
return s |
18
|
|
|
|
19
|
|
|
@numba.njit() |
20
|
|
|
def _distkey(pt): |
21
|
|
|
s = 0 |
22
|
|
|
for val in pt: |
23
|
|
|
s += val ** 2 |
24
|
|
|
return s |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: |
28
|
|
|
"""Generates batches of integer lattice points. |
29
|
|
|
|
30
|
|
|
Each yield gives all points (that have not already been yielded) |
31
|
|
|
inside a sphere centered at the origin with radius d. d starts at 0 |
32
|
|
|
and increments by 1 on each loop. |
33
|
|
|
|
34
|
|
|
Parameters |
35
|
|
|
---------- |
36
|
|
|
dims : int |
37
|
|
|
The dimension of Euclidean space the lattice is in. |
38
|
|
|
|
39
|
|
|
Yields |
40
|
|
|
------- |
41
|
|
|
ndarray |
42
|
|
|
Yields arrays of integer points in dims dimensional Euclidean space. |
43
|
|
|
""" |
44
|
|
|
|
45
|
|
|
ymax = collections.defaultdict(int) |
46
|
|
|
d = 0 |
47
|
|
|
|
48
|
|
|
if dims == 1: |
49
|
|
|
yield np.array([[0]]) |
50
|
|
|
while True: |
51
|
|
|
d += 1 |
52
|
|
|
yield np.array([[-d], [d]]) |
53
|
|
|
|
54
|
|
|
while True: |
|
|
|
|
55
|
|
|
# get integer lattice points in +ve directions |
56
|
|
|
positive_int_lattice = [] |
57
|
|
|
while True: |
58
|
|
|
batch = [] |
59
|
|
|
for xy in itertools.product(range(d+1), repeat=dims-1): |
60
|
|
|
if _dist(xy, ymax[xy]) <= d**2: |
61
|
|
|
batch.append((*xy, ymax[xy])) |
62
|
|
|
ymax[xy] += 1 |
63
|
|
|
if not batch: |
64
|
|
|
break |
65
|
|
|
positive_int_lattice += batch |
66
|
|
|
positive_int_lattice.sort(key=_distkey) |
67
|
|
|
|
68
|
|
|
# expand +ve integer lattice to full lattice with reflections |
69
|
|
|
int_lattice = [] |
70
|
|
|
for p in positive_int_lattice: |
71
|
|
|
int_lattice.append(p) |
72
|
|
|
for n_reflections in range(1, dims+1): |
73
|
|
|
for indexes in itertools.combinations(range(dims), n_reflections): |
74
|
|
|
if all((p[i] for i in indexes)): |
|
|
|
|
75
|
|
|
p_ = list(p) |
76
|
|
|
for i in indexes: |
77
|
|
|
p_[i] *= -1 |
78
|
|
|
int_lattice.append(p_) |
79
|
|
|
|
80
|
|
|
yield np.array(int_lattice) |
81
|
|
|
d += 1 |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def generate_concentric_cloud( |
85
|
|
|
motif: np.ndarray, |
86
|
|
|
cell: np.ndarray |
87
|
|
|
) -> Iterable[np.ndarray]: |
88
|
|
|
""" |
89
|
|
|
Generates batches of points from a periodic set given by (motif, cell) |
90
|
|
|
which get successively further away from the origin. |
91
|
|
|
|
92
|
|
|
Each yield gives all points (that have not already been yielded) which |
93
|
|
|
lie in a unit cell whose corner lattice point was generated by |
94
|
|
|
_generate_integer_lattice(motif.shape[1]). |
95
|
|
|
|
96
|
|
|
Parameters |
97
|
|
|
---------- |
98
|
|
|
motif : ndarray |
99
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
100
|
|
|
cell : ndarray |
101
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
102
|
|
|
|
103
|
|
|
Yields |
104
|
|
|
------- |
105
|
|
|
ndarray |
106
|
|
|
Yields arrays of points from the periodic set. |
107
|
|
|
""" |
108
|
|
|
|
109
|
|
|
int_lattice_generator = generate_integer_lattice(cell.shape[0]) |
110
|
|
|
|
111
|
|
|
while True: |
112
|
|
|
int_lattice = next(int_lattice_generator) @ cell |
|
|
|
|
113
|
|
|
yield np.concatenate([motif + translation for translation in int_lattice]) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def nearest_neighbours( |
117
|
|
|
motif: np.ndarray, |
118
|
|
|
cell: np.ndarray, |
119
|
|
|
k: int, |
120
|
|
|
asymmetric_unit: Optional[np.ndarray] = None): |
121
|
|
|
""" |
122
|
|
|
Given a periodic set represented by (motif, cell) and an integer k, find |
123
|
|
|
the k nearest neighbours of the motif points in the periodic set. |
124
|
|
|
|
125
|
|
|
Note that cloud and inds are not used yet but may be in the future. |
126
|
|
|
|
127
|
|
|
Parameters |
128
|
|
|
---------- |
129
|
|
|
motif : ndarray |
130
|
|
|
Cartesian coords of the full motif, shape (no points, dims). |
131
|
|
|
cell : ndarray |
132
|
|
|
Cartesian coords of the unit cell, shape (dims, dims). |
133
|
|
|
k : int |
134
|
|
|
Number of nearest neighbours to find for each motif point. |
135
|
|
|
asymmetric_unit : ndarray, optional |
136
|
|
|
Indices pointing to an asymmetric unit in motif. |
137
|
|
|
|
138
|
|
|
Returns |
139
|
|
|
------- |
140
|
|
|
pdd : ndarray |
141
|
|
|
An array shape (motif.shape[0], k) of distances from each motif |
142
|
|
|
point to its k nearest neighbours in order. Points do not count |
143
|
|
|
as their own nearest neighbour. E.g. the distance to the n-th |
144
|
|
|
nearest neighbour of the m-th motif point is pdd[m][n]. |
145
|
|
|
cloud : ndarray |
146
|
|
|
The collection of points in the periodic set that were generated |
147
|
|
|
during the nearest neighbour search. |
148
|
|
|
inds : ndarray |
149
|
|
|
An array shape (motif.shape[0], k) containing the indices of |
150
|
|
|
nearest neighbours in cloud. E.g. the n-th nearest neighbour to |
151
|
|
|
the m-th motif point is cloud[inds[m][n]]. |
152
|
|
|
""" |
153
|
|
|
|
154
|
|
|
if asymmetric_unit is not None: |
155
|
|
|
asym_unit = motif[asymmetric_unit] |
156
|
|
|
else: |
157
|
|
|
asym_unit = motif |
158
|
|
|
|
159
|
|
|
cloud_generator = generate_concentric_cloud(motif, cell) |
160
|
|
|
n_points = 0 |
161
|
|
|
cloud = [] |
162
|
|
|
while n_points <= k: |
163
|
|
|
l = next(cloud_generator) |
164
|
|
|
n_points += l.shape[0] |
165
|
|
|
cloud.append(l) |
166
|
|
|
cloud.append(next(cloud_generator)) |
167
|
|
|
cloud = np.concatenate(cloud) |
168
|
|
|
|
169
|
|
|
tree = scipy.spatial.KDTree(cloud, |
170
|
|
|
compact_nodes=False, |
171
|
|
|
balanced_tree=False) |
172
|
|
|
pdd_, inds = tree.query(asym_unit, k=k+1, workers=-1) |
173
|
|
|
pdd = np.zeros_like(pdd_) |
174
|
|
|
|
175
|
|
|
while not np.allclose(pdd, pdd_, atol=1e-12, rtol=0): |
176
|
|
|
pdd = pdd_ |
177
|
|
|
cloud = np.vstack((cloud, |
178
|
|
|
next(cloud_generator), |
179
|
|
|
next(cloud_generator))) |
180
|
|
|
tree = scipy.spatial.KDTree(cloud, |
181
|
|
|
compact_nodes=False, |
182
|
|
|
balanced_tree=False) |
183
|
|
|
pdd_, inds = tree.query(asym_unit, k=k+1, workers=-1) |
184
|
|
|
|
185
|
|
|
return pdd_[:, 1:], cloud, inds[:, 1:] |
186
|
|
|
|
187
|
|
|
|
188
|
|
|
def nearest_neighbours_minval(motif, cell, min_val): |
189
|
|
|
"""PDD large enough to be reconstructed from |
190
|
|
|
(such that last col values all > 2 * diam(cell)).""" |
191
|
|
|
|
192
|
|
|
cloud_generator = generate_concentric_cloud(motif, cell) |
193
|
|
|
|
194
|
|
|
cloud = [] |
195
|
|
|
for _ in range(3): |
196
|
|
|
cloud.append(next(cloud_generator)) |
197
|
|
|
|
198
|
|
|
cloud = np.concatenate(cloud) |
199
|
|
|
tree = scipy.spatial.KDTree(cloud, |
200
|
|
|
compact_nodes=False, |
201
|
|
|
balanced_tree=False) |
202
|
|
|
pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) |
203
|
|
|
pdd = np.zeros_like(pdd_) |
204
|
|
|
|
205
|
|
|
while True: |
206
|
|
|
if np.all(pdd[:, -1] >= min_val): |
207
|
|
|
col_where = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] |
208
|
|
|
if np.array_equal(pdd[:, :col_where+1], pdd_[:, :col_where+1]): |
209
|
|
|
break |
210
|
|
|
|
211
|
|
|
pdd = pdd_ |
212
|
|
|
cloud = np.vstack((cloud, |
213
|
|
|
next(cloud_generator), |
214
|
|
|
next(cloud_generator))) |
215
|
|
|
tree = scipy.spatial.KDTree(cloud, |
216
|
|
|
compact_nodes=False, |
217
|
|
|
balanced_tree=False) |
218
|
|
|
pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) |
219
|
|
|
|
220
|
|
|
k = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] |
221
|
|
|
|
222
|
|
|
return pdd[:, 1:k+1] |
223
|
|
|
|