| 1 |  |  | """Implements core function nearest_neighbours used for AMD and PDD calculations.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | import collections | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | from typing import Iterable | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | from itertools import product | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | import numba | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | from scipy.spatial import KDTree | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | def nearest_neighbours( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |         motif: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |         cell: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |         x: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |         k: int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |     Given a periodic set represented by (motif, cell) and an integer k, find | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |     the k nearest neighbours in the periodic set to points in x. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |     motif : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |         Orthogonal (Cartesian) coords of the motif, shape (no points, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |     cell : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |         Orthogonal (Cartesian) coords of the unit cell, shape (dims, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |     x : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |         Array of points to query for neighbours. For invariants of crystals | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |         this is the asymmetric unit. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     k : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |         Number of nearest neighbours to find for each point in x. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |     Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     pdd : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |         Array shape (motif.shape[0], k) of distances from points in x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |         to their k nearest neighbours in the periodic set, in order. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |         E.g. pdd[m][n] is the distance from x[m] to its n-th nearest | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |         neighbour in the periodic set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |     cloud : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         Collection of points in the periodic set that was generated | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |         during the nearest neighbour search. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |     inds : numpy.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |         Array shape (motif.shape[0], k) containing the indices of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |         nearest neighbours in cloud. E.g. the n-th nearest neighbour to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |         the m-th motif point is cloud[inds[m][n]]. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |     cloud_generator = generate_concentric_cloud(motif, cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |     n_points = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |     cloud = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |     while n_points <= k: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |         l = next(cloud_generator) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |         n_points += l.shape[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         cloud.append(l) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     cloud.append(next(cloud_generator)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     cloud = np.concatenate(cloud) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |     pdd_, inds = tree.query(x, k=k+1, workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |     pdd = np.zeros_like(pdd_) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |     while not np.allclose(pdd, pdd_, atol=1e-10, rtol=0): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         pdd = pdd_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |         cloud = np.vstack((cloud, next(cloud_generator))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |         pdd_, inds = tree.query(x, k=k+1, workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |     return pdd_[:, 1:], cloud, inds[:, 1:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  | def nearest_neighbours_minval(motif, cell, min_val): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |     """The same as nearest_neighbours except a value is given instead of an | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |     integer k and the result has at least enough columns so all values in | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |     the last column are at least the given value.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |     cloud_generator = generate_concentric_cloud(motif, cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |     cloud = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     for _ in range(3): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |         cloud.append(next(cloud_generator)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |     cloud = np.concatenate(cloud) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |     tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |     pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     pdd = np.zeros_like(pdd_) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |     while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |         if np.all(pdd[:, -1] >= min_val): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |             col_where = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |             if np.array_equal(pdd[:, :col_where+1], pdd_[:, :col_where+1]): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |         pdd = pdd_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |         cloud = np.vstack((cloud, next(cloud_generator))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |         tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |         pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |     k = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |     return pdd[:, 1:k+1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  | def generate_concentric_cloud( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |         motif: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |         cell: np.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  | ) -> Iterable[np.ndarray]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     Generates batches of points from a periodic set given by (motif, cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |     which get successively further away from the origin. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |     Each yield gives all points (that have not already been yielded) which | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |     lie in a unit cell whose corner lattice point was generated by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |     generate_integer_lattice(motif.shape[1]). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |     motif : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |         Cartesian representation of the motif, shape (no points, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |     cell : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |         Cartesian representation of the unit cell, shape (dims, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |     Yields | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |     ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |         Yields arrays of points from the periodic set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |     m = len(motif) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |     for int_lattice in generate_integer_lattice(cell.shape[0]): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |         lattice = int_lattice @ cell | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         layer = np.empty((m * len(lattice), cell.shape[0])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |         for i, translation in enumerate(lattice): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |             layer[m*i:m*(i+1)] = motif + translation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |         yield layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  | def generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |     """Generates batches of integer lattice points. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |     Each yield gives all points (that have not already been yielded) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |     inside a sphere centered at the origin with radius d. d starts at 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |     and increments by 1 on each loop. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |     dims : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |         The dimension of Euclidean space the lattice is in. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |     Yields | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |     ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         Yields arrays of integer points in dims dimensional Euclidean space. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |     ymax = collections.defaultdict(int) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |     d = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |     if dims == 1: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         yield np.array([[0]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |             d += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |             yield np.array([[-d], [d]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |     while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |         positive_int_lattice = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |         while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |             batch = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |             for xy in product(range(d+1), repeat=dims-1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |                 if _dist(xy, ymax[xy]) <= d**2: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |                     batch.append((*xy, ymax[xy])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |                     ymax[xy] += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |             if not batch: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |             positive_int_lattice += batch | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         positive_int_lattice = np.array(positive_int_lattice) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |         batches = _reflect_positive_lattice(positive_int_lattice) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         yield np.concatenate(batches) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |         d += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  | @numba.njit() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  | def _dist(xy, z): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |     s = z ** 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |     for val in xy: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         s += val ** 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |     return s | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  | # def generate_even_cloud(motif, cell): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  | #     m = len(motif) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  | #     lattice_generator = generate_even_lattice(cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  | #     while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  | #         lattice = next(lattice_generator) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  | #         layer = np.empty((m * len(lattice), cell.shape[0])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  | #         for i, translation in enumerate(lattice): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  | #             layer[m * i : m * (i + 1)] = motif + translation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  | #         yield layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  | # def generate_even_lattice(cell): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  | #     inv_cell = np.linalg.inv(cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  | #     n = cell.shape[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  | #     cell_lengths = np.linalg.norm(cell, axis=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  | #     ratios = np.amax(cell_lengths) / cell_lengths | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  | #     approx_ratios = np.copy(ratios) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  | #     xyz = np.zeros(n, dtype=int) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  | #     while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  | #         xyz_ = np.floor(approx_ratios).astype(int) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  | #         pve_int_lattice = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  | #         for axis in range(n): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  | #             generators = [range(0, xyz_[d]) for d in range(axis)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  | #             generators.append(range(xyz[axis], xyz_[axis])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  | #             generators.extend(range(0, xyz[d]) for d in range(axis + 1, n)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  | #             pve_int_lattice.extend(product(*generators)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  | #         pve_int_lattice = np.array(pve_int_lattice) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  | #         pos_int_lat_cloud = np.concatenate(_reflect_positive_lattice(pve_int_lattice)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  | #         yield pos_int_lat_cloud @ cell | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  | #         xyz = xyz_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  | #         approx_ratios += ratios | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  | @numba.njit() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  | def _reflect_positive_lattice(positive_int_lattice): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |     """Reflect a set of points in the +ve quadrant in all axes. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |     Does not duplicate points lying on the axes themselves.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |     dims = positive_int_lattice.shape[-1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |     batches = [positive_int_lattice] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |     for n_reflections in range(1, dims + 1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |         indices = np.arange(n_reflections) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |         batch = positive_int_lattice[(positive_int_lattice[:, indices] == 0).sum(axis=-1) == 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |         batch[:, indices] *= -1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |         batches.append(batch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |         while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |             i = n_reflections - 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |             for _ in range(n_reflections): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |                 if indices[i] != i + dims - n_reflections: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |                     break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |                 i -= 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |             indices[i] += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |             for j in range(i+1, n_reflections): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |                 indices[j] = indices[j-1] + 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |             batch = positive_int_lattice[(positive_int_lattice[:, indices] == 0).sum(axis=-1) == 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |             batch[:, indices] *= -1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |             batches.append(batch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  |     return batches | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  | # # @numba.njit() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  | # def cartesian_product(n, repeat): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  | #     arrays = [np.arange(n)] * repeat | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  | #     arr = np.empty(tuple([n] * repeat + [repeat]), dtype=np.int64) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  | #     for i, a in enumerate(np.ix_(*arrays)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  | #         arr[..., i] = a | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  | #     return arr.reshape(-1, repeat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  | # def cartesian_product(*arrays): | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 276 |  |  | #     la = len(arrays) | 
            
                                                        
            
                                    
            
            
                | 277 |  |  | #     # dtype = np.result_type(*arrays) | 
            
                                                        
            
                                    
            
            
                | 278 |  |  | #     arr = np.empty([len(a) for a in arrays] + [la]) | 
            
                                                        
            
                                    
            
            
                | 279 |  |  | #     for i, a in enumerate(np.ix_(*arrays)): | 
            
                                                        
            
                                    
            
            
                | 280 |  |  | #         arr[..., i] = a | 
            
                                                        
            
                                    
            
            
                | 281 |  |  | #     return arr.reshape(-1, la) | 
            
                                                        
            
                                    
            
            
                | 282 |  |  |  |