|
1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
|
2
|
|
|
""" |
|
3
|
|
|
|
|
4
|
|
|
from typing import List, Optional, Union |
|
5
|
|
|
import warnings |
|
6
|
|
|
from itertools import combinations |
|
7
|
|
|
from functools import partial |
|
8
|
|
|
import os |
|
9
|
|
|
|
|
10
|
|
|
import numpy as np |
|
11
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
|
12
|
|
|
from joblib import Parallel, delayed |
|
13
|
|
|
import pandas as pd |
|
14
|
|
|
|
|
15
|
|
|
from ._emd import network_simplex |
|
16
|
|
|
from .periodicset import PeriodicSet |
|
17
|
|
|
from .calculate import AMD, PDD |
|
18
|
|
|
from .io import CifReader, CSDReader |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
def compare(crystals, crystals_=None, by='AMD', k=100, **kwargs): |
|
22
|
|
|
r"""Given one or two sets of periodic set(s), refcode(s) or cif(s), compare them |
|
23
|
|
|
returning a DataFrame of the distance matrix. Default is to comapre by PDD |
|
24
|
|
|
with k=100. Accepts most keyword arguments accepted by the CifReader, CSDReader |
|
25
|
|
|
and compare functions, for a full list see the documentation Quick Start page. |
|
26
|
|
|
Note that using refcodes requires csd-python-api. |
|
27
|
|
|
|
|
28
|
|
|
Parameters |
|
29
|
|
|
---------- |
|
30
|
|
|
crystals : array or list of arrays |
|
31
|
|
|
One or a collection of paths, refcodes, file objects or :class:`.periodicset.PeriodicSet` s. |
|
32
|
|
|
crystals\_ : array or list of arrays, optional |
|
33
|
|
|
One or a collection of paths, refcodes, file objects or :class:`.periodicset.PeriodicSet` s. |
|
34
|
|
|
by : str, default 'AMD' |
|
35
|
|
|
Invariant to compare by, either 'AMD' or 'PDD'. |
|
36
|
|
|
k: int, default 100 |
|
37
|
|
|
k value to use for the invariants (length of AMD, or number of columns in PDD). |
|
38
|
|
|
|
|
39
|
|
|
Returns |
|
40
|
|
|
------- |
|
41
|
|
|
df : pandas.DataFrame |
|
42
|
|
|
DataFrame of the distance matrix for the given crystals compared by the chosen invariant. |
|
43
|
|
|
|
|
44
|
|
|
Raises |
|
45
|
|
|
------ |
|
46
|
|
|
ValueError |
|
47
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid crystals |
|
48
|
|
|
to compare, or if crystals or crystals\_ are an invalid type. |
|
49
|
|
|
|
|
50
|
|
|
Examples |
|
51
|
|
|
-------- |
|
52
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
|
53
|
|
|
|
|
54
|
|
|
df = amd.compare('data.cif') |
|
55
|
|
|
|
|
56
|
|
|
Compare everything in one cif with all crystals in all cifs in a directory (PDD, k=50):: |
|
57
|
|
|
|
|
58
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
|
59
|
|
|
|
|
60
|
|
|
**Examples (csd-python-api only)** |
|
61
|
|
|
|
|
62
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
|
63
|
|
|
|
|
64
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50) |
|
65
|
|
|
|
|
66
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
|
67
|
|
|
|
|
68
|
|
|
df = amd.compare('DEBXIT', families=True) |
|
69
|
|
|
""" |
|
70
|
|
|
|
|
71
|
|
|
by = by.upper() |
|
72
|
|
|
if by not in ('AMD', 'PDD'): |
|
73
|
|
|
raise ValueError(f"parameter 'by' in compare accepts 'AMD' or 'PDD', was passed {by}") |
|
74
|
|
|
|
|
75
|
|
|
reader_kwargs = { |
|
76
|
|
|
'reader': 'ase', |
|
77
|
|
|
'families': False, |
|
78
|
|
|
'remove_hydrogens': False, |
|
79
|
|
|
'disorder': 'skip', |
|
80
|
|
|
'heaviest_component': False, |
|
81
|
|
|
'show_warnings': True, |
|
82
|
|
|
} |
|
83
|
|
|
|
|
|
|
|
|
|
84
|
|
|
calc_kwargs = { |
|
85
|
|
|
'collapse': True, |
|
86
|
|
|
'collapse_tol': 1e-4, |
|
87
|
|
|
} |
|
88
|
|
|
|
|
89
|
|
|
compare_kwargs = { |
|
90
|
|
|
'metric': 'chebyshev', |
|
91
|
|
|
'n_jobs': None, |
|
92
|
|
|
'verbose': 0, |
|
93
|
|
|
'low_memory': False, |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
for key in kwargs.keys() & calc_kwargs.keys(): |
|
97
|
|
|
calc_kwargs[key] = kwargs[key] |
|
98
|
|
|
del kwargs[key] |
|
99
|
|
|
|
|
100
|
|
|
for key in kwargs.keys() & reader_kwargs.keys(): |
|
101
|
|
|
reader_kwargs[key] = kwargs[key] |
|
102
|
|
|
del kwargs[key] |
|
103
|
|
|
|
|
|
|
|
|
|
104
|
|
|
compare_kwargs.update(kwargs) |
|
105
|
|
|
|
|
106
|
|
|
crystals = _unwrap_periodicset_list(crystals, **reader_kwargs) |
|
107
|
|
|
if not crystals: |
|
108
|
|
|
raise ValueError('No valid crystals to compare in first set passed.') |
|
109
|
|
|
|
|
110
|
|
|
if by == 'AMD': |
|
111
|
|
|
invs = [AMD(s, k) for s in crystals] |
|
112
|
|
|
compare_kwargs.pop('n_jobs') |
|
113
|
|
|
compare_kwargs.pop('verbose') |
|
114
|
|
|
elif by == 'PDD': |
|
115
|
|
|
invs = [PDD(s, k, lexsort=False, **calc_kwargs) for s in crystals] |
|
116
|
|
|
compare_kwargs.pop('low_memory') |
|
117
|
|
|
|
|
118
|
|
|
names = [s.name for s in crystals] |
|
119
|
|
|
|
|
120
|
|
|
if crystals_ is None: |
|
121
|
|
|
names_ = names |
|
122
|
|
|
if by == 'AMD': |
|
123
|
|
|
dm = squareform(AMD_pdist(invs, **compare_kwargs)) |
|
124
|
|
|
elif by == 'PDD': |
|
125
|
|
|
dm = squareform(PDD_pdist(invs, **compare_kwargs)) |
|
126
|
|
|
else: |
|
127
|
|
|
crystals_ = _unwrap_periodicset_list(crystals_, **reader_kwargs) |
|
128
|
|
|
if not crystals_: |
|
129
|
|
|
raise ValueError('No valid crystals to compare in second set passed.') |
|
130
|
|
|
names_ = [s.name for s in crystals_] |
|
131
|
|
|
|
|
132
|
|
|
if by == 'AMD': |
|
133
|
|
|
invs_ = [AMD(s, k) for s in crystals_] |
|
134
|
|
|
dm = AMD_cdist(invs, invs_, **compare_kwargs) |
|
135
|
|
|
elif by == 'PDD': |
|
136
|
|
|
invs_ = [PDD(s, k) for s in crystals_] |
|
137
|
|
|
dm = PDD_cdist(invs, invs_, **compare_kwargs) |
|
138
|
|
|
|
|
139
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
|
140
|
|
|
|
|
141
|
|
|
|
|
142
|
|
|
def EMD( |
|
143
|
|
|
pdd: np.ndarray, |
|
144
|
|
|
pdd_: np.ndarray, |
|
145
|
|
|
metric: Optional[str] = 'chebyshev', |
|
146
|
|
|
return_transport: Optional[bool] = False, |
|
147
|
|
|
**kwargs): |
|
148
|
|
|
r"""Earth mover's distance (EMD) between two PDDs, also known as |
|
149
|
|
|
the Wasserstein metric. |
|
150
|
|
|
|
|
151
|
|
|
Parameters |
|
152
|
|
|
---------- |
|
153
|
|
|
pdd : numpy.ndarray |
|
154
|
|
|
PDD of a crystal. |
|
155
|
|
|
pdd\_ : numpy.ndarray |
|
156
|
|
|
PDD of a crystal. |
|
157
|
|
|
metric : str or callable, default 'chebyshev' |
|
158
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
|
159
|
|
|
By default, Chebyshev (L-infinity) distance is chosen as with AMDs. |
|
160
|
|
|
Accepts any metric accepted by :func:`scipy.spatial.distance.cdist`. |
|
161
|
|
|
return_transport: bool, default False |
|
162
|
|
|
Return a tuple ``(distance, transport_plan)`` with the optimal transport. |
|
163
|
|
|
|
|
164
|
|
|
Returns |
|
165
|
|
|
------- |
|
166
|
|
|
emd : float |
|
167
|
|
|
Earth mover's distance between two PDDs. |
|
168
|
|
|
|
|
169
|
|
|
Raises |
|
170
|
|
|
------ |
|
171
|
|
|
ValueError |
|
172
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
|
|
|
|
|
|
173
|
|
|
columns (``k`` value). |
|
174
|
|
|
""" |
|
175
|
|
|
|
|
176
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
|
177
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
|
178
|
|
|
|
|
179
|
|
|
if return_transport: |
|
180
|
|
|
return emd_dist, transport_plan |
|
181
|
|
|
|
|
182
|
|
|
return emd_dist |
|
183
|
|
|
|
|
184
|
|
|
|
|
185
|
|
|
def AMD_cdist( |
|
186
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
|
187
|
|
|
amds_: Union[np.ndarray, List[np.ndarray]], |
|
188
|
|
|
metric: str = 'chebyshev', |
|
189
|
|
|
low_memory: bool = False, |
|
190
|
|
|
**kwargs |
|
191
|
|
|
) -> np.ndarray: |
|
192
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance matrix. |
|
193
|
|
|
This function is essentially identical to :func:`scipy.spatial.distance.cdist` |
|
194
|
|
|
with the default metric ``chebyshev``. |
|
195
|
|
|
|
|
196
|
|
|
Parameters |
|
197
|
|
|
---------- |
|
198
|
|
|
amds : array_like |
|
199
|
|
|
A list of AMDs. |
|
200
|
|
|
amds\_ : array_like |
|
201
|
|
|
A list of AMDs. |
|
202
|
|
|
metric : str or callable, default 'chebyshev' |
|
203
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) distance. |
|
204
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.cdist`. |
|
205
|
|
|
low_memory : bool, default False |
|
206
|
|
|
Use a slower but more memory efficient method for |
|
207
|
|
|
large collections of AMDs (Chebyshev metric only). |
|
208
|
|
|
|
|
209
|
|
|
Returns |
|
210
|
|
|
------- |
|
211
|
|
|
dm : numpy.ndarray |
|
212
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. |
|
213
|
|
|
``dm[ij]`` is the distance (given by ``metric``) |
|
|
|
|
|
|
214
|
|
|
between ``amds[i]`` and ``amds[j]``. |
|
215
|
|
|
""" |
|
216
|
|
|
|
|
217
|
|
|
amds, amds_ = np.asarray(amds), np.asarray(amds_) |
|
218
|
|
|
|
|
219
|
|
|
if len(amds.shape) == 1: |
|
220
|
|
|
amds = np.array([amds]) |
|
221
|
|
|
if len(amds_.shape) == 1: |
|
222
|
|
|
amds_ = np.array([amds_]) |
|
223
|
|
|
|
|
224
|
|
|
if low_memory: |
|
225
|
|
|
if metric != 'chebyshev': |
|
226
|
|
|
warnings.warn("Using only allowed metric 'chebyshev' for low_memory", UserWarning) |
|
227
|
|
|
|
|
228
|
|
|
dm = np.empty((len(amds), len(amds_))) |
|
229
|
|
|
for i, amd_vec in enumerate(amds): |
|
230
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
|
231
|
|
|
else: |
|
232
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
|
233
|
|
|
|
|
234
|
|
|
return dm |
|
235
|
|
|
|
|
236
|
|
|
|
|
237
|
|
|
def AMD_pdist( |
|
238
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
|
239
|
|
|
metric: str = 'chebyshev', |
|
240
|
|
|
low_memory: bool = False, |
|
241
|
|
|
**kwargs |
|
242
|
|
|
) -> np.ndarray: |
|
243
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance matrix. |
|
244
|
|
|
This function is essentially identical to :func:`scipy.spatial.distance.pdist` |
|
245
|
|
|
with the default metric ``chebyshev``. |
|
246
|
|
|
|
|
247
|
|
|
Parameters |
|
248
|
|
|
---------- |
|
249
|
|
|
amds : array_like |
|
250
|
|
|
An array/list of AMDs. |
|
251
|
|
|
metric : str or callable, default 'chebyshev' |
|
252
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) distance. |
|
253
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.pdist`. |
|
254
|
|
|
low_memory : bool, default False |
|
255
|
|
|
Optionally use a slightly slower but more memory efficient method for |
|
256
|
|
|
large collections of AMDs (Chebyshev metric only). |
|
257
|
|
|
|
|
258
|
|
|
Returns |
|
259
|
|
|
------- |
|
260
|
|
|
numpy.ndarray |
|
261
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
262
|
|
|
matrix into a vector, just keeping the upper half. See |
|
263
|
|
|
:func:`scipy.spatial.distance.squareform` to convert to a square |
|
|
|
|
|
|
264
|
|
|
distance matrix or for more on condensed distance matrices. |
|
265
|
|
|
""" |
|
266
|
|
|
|
|
267
|
|
|
amds = np.asarray(amds) |
|
268
|
|
|
|
|
269
|
|
|
if len(amds.shape) == 1: |
|
270
|
|
|
amds = np.array([amds]) |
|
271
|
|
|
|
|
272
|
|
|
if low_memory: |
|
273
|
|
|
m = len(amds) |
|
274
|
|
|
if metric != 'chebyshev': |
|
275
|
|
|
warnings.warn("Using only allowed metric 'chebyshev' for low_memory", UserWarning) |
|
276
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.double) |
|
277
|
|
|
ind = 0 |
|
278
|
|
|
for i in range(m): |
|
279
|
|
|
ind_ = ind + m - i - 1 |
|
280
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
|
281
|
|
|
ind = ind_ |
|
282
|
|
|
else: |
|
283
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
|
284
|
|
|
|
|
285
|
|
|
return cdm |
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
|
def PDD_cdist( |
|
289
|
|
|
pdds: List[np.ndarray], |
|
290
|
|
|
pdds_: List[np.ndarray], |
|
291
|
|
|
metric: str = 'chebyshev', |
|
292
|
|
|
n_jobs=None, |
|
293
|
|
|
verbose=0, |
|
294
|
|
|
**kwargs |
|
295
|
|
|
) -> np.ndarray: |
|
296
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance matrix. |
|
297
|
|
|
|
|
298
|
|
|
Parameters |
|
299
|
|
|
---------- |
|
300
|
|
|
pdds : List[numpy.ndarray] |
|
301
|
|
|
A list of PDDs. |
|
302
|
|
|
pdds\_ : List[numpy.ndarray] |
|
303
|
|
|
A list of PDDs. |
|
304
|
|
|
metric : str or callable, default 'chebyshev' |
|
305
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity distance. |
|
306
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.cdist`. |
|
307
|
|
|
n_jobs : int, default None |
|
308
|
|
|
Maximum number of concurrent jobs for parallel processing with joblib. |
|
309
|
|
|
Set to -1 to use the maximum possible. Note that for small inputs (< 100), |
|
|
|
|
|
|
310
|
|
|
using parallel processing may be slower than the default n_jobs=None. |
|
311
|
|
|
verbose : int, default 0 |
|
312
|
|
|
The verbosity level. Higher = more verbose, see joblib.Parallel. |
|
313
|
|
|
|
|
314
|
|
|
Returns |
|
315
|
|
|
------- |
|
316
|
|
|
numpy.ndarray |
|
317
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. |
|
318
|
|
|
The :math:`ij` th entry is the distance between ``pdds[i]`` |
|
319
|
|
|
and ``pdds_[j]`` given by Earth mover's distance. |
|
320
|
|
|
""" |
|
321
|
|
|
|
|
322
|
|
|
if isinstance(pdds, np.ndarray): |
|
323
|
|
|
if len(pdds.shape) == 2: |
|
324
|
|
|
pdds = [pdds] |
|
325
|
|
|
|
|
326
|
|
|
if isinstance(pdds_, np.ndarray): |
|
327
|
|
|
if len(pdds_.shape) == 2: |
|
328
|
|
|
pdds_ = [pdds_] |
|
329
|
|
|
|
|
330
|
|
|
kwargs.pop('return_transport', None) |
|
331
|
|
|
|
|
332
|
|
|
# TODO: put results into preallocated empty array in place |
|
|
|
|
|
|
333
|
|
|
dm = Parallel(backend='multiprocessing', n_jobs=n_jobs, verbose=verbose)( |
|
334
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
|
335
|
|
|
for j in range(len(pdds_)) for i in range(len(pdds)) |
|
336
|
|
|
) |
|
337
|
|
|
dm = np.array(dm) |
|
338
|
|
|
return dm.reshape((len(pdds), len(pdds_))) |
|
339
|
|
|
|
|
340
|
|
|
|
|
341
|
|
|
def PDD_pdist( |
|
342
|
|
|
pdds: List[np.ndarray], |
|
343
|
|
|
metric: str = 'chebyshev', |
|
344
|
|
|
n_jobs=None, |
|
345
|
|
|
verbose=0, |
|
346
|
|
|
**kwargs |
|
347
|
|
|
) -> np.ndarray: |
|
348
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance matrix. |
|
349
|
|
|
|
|
350
|
|
|
Parameters |
|
351
|
|
|
---------- |
|
352
|
|
|
pdds : List[numpy.ndarray] |
|
353
|
|
|
A list of PDDs. |
|
354
|
|
|
metric : str or callable, default 'chebyshev' |
|
355
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity distance. |
|
356
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.pdist`. |
|
357
|
|
|
n_jobs : int, default None |
|
358
|
|
|
Maximum number of concurrent jobs for parallel processing with joblib. |
|
359
|
|
|
Set to -1 to use the maximum possible. Note that for small inputs (< 100), |
|
|
|
|
|
|
360
|
|
|
using parallel processing may be slower than the default n_jobs=None. |
|
361
|
|
|
verbose : int, default 0 |
|
362
|
|
|
The verbosity level. Higher = more verbose, see joblib.Parallel for more. |
|
363
|
|
|
|
|
364
|
|
|
Returns |
|
365
|
|
|
------- |
|
366
|
|
|
numpy.ndarray |
|
367
|
|
|
Returns a condensed distance matrix. Collapses a square |
|
368
|
|
|
distance matrix into a vector just keeping the upper half. See |
|
369
|
|
|
:func:`scipy.spatial.distance.squareform` to convert to a square |
|
|
|
|
|
|
370
|
|
|
distance matrix or for more on condensed distance matrices. |
|
371
|
|
|
""" |
|
372
|
|
|
|
|
373
|
|
|
kwargs.pop('return_transport', None) |
|
374
|
|
|
|
|
375
|
|
|
# TODO: put results into preallocated empty array in place |
|
|
|
|
|
|
376
|
|
|
dm = Parallel(n_jobs=n_jobs, verbose=verbose)( |
|
377
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
|
378
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
|
379
|
|
|
) |
|
380
|
|
|
return np.array(dm) |
|
381
|
|
|
|
|
382
|
|
|
def emd( |
|
383
|
|
|
pdd: np.ndarray, |
|
384
|
|
|
pdd_: np.ndarray, |
|
385
|
|
|
metric: Optional[str] = 'chebyshev', |
|
386
|
|
|
return_transport: Optional[bool] = False, |
|
387
|
|
|
**kwargs): |
|
388
|
|
|
"""Alias for amd.EMD().""" |
|
389
|
|
|
return EMD(pdd, pdd_, metric=metric, return_transport=return_transport, **kwargs) |
|
390
|
|
|
|
|
391
|
|
|
|
|
392
|
|
|
def _unwrap_periodicset_list(psets_or_str, **reader_kwargs): |
|
393
|
|
|
"""Valid input for compare (PeriodicSet, path, refcode, lists of such) |
|
394
|
|
|
--> |
|
|
|
|
|
|
395
|
|
|
list of PeriodicSets""" |
|
396
|
|
|
|
|
397
|
|
|
if isinstance(psets_or_str, PeriodicSet): |
|
|
|
|
|
|
398
|
|
|
return [psets_or_str] |
|
399
|
|
|
elif isinstance(psets_or_str, list): |
|
400
|
|
|
return [s for item in psets_or_str for s in _extract_periodicsets(item, **reader_kwargs)] |
|
401
|
|
|
else: |
|
402
|
|
|
return _extract_periodicsets(psets_or_str, **reader_kwargs) |
|
403
|
|
|
|
|
404
|
|
|
|
|
405
|
|
|
def _extract_periodicsets(item, **reader_kwargs): |
|
406
|
|
|
"""str (path/refocde), file or PeriodicSet --> list of PeriodicSets.""" |
|
407
|
|
|
|
|
408
|
|
|
if isinstance(item, PeriodicSet): |
|
|
|
|
|
|
409
|
|
|
return [item] |
|
410
|
|
|
elif isinstance(item, str) and not os.path.isfile(item) and not os.path.isdir(item): |
|
411
|
|
|
reader_kwargs.pop('reader') |
|
412
|
|
|
return list(CSDReader(item, **reader_kwargs)) |
|
413
|
|
|
else: |
|
414
|
|
|
reader_kwargs.pop('families') |
|
415
|
|
|
reader_kwargs.pop('refcodes') |
|
416
|
|
|
return list(CifReader(item, **reader_kwargs)) |
|
417
|
|
|
|