1
|
|
|
"""Implements the :class:`PeriodicSet` class representing a periodic set, |
2
|
|
|
defined by a motif and unit cell. This models a crystal with a point at the |
3
|
|
|
center of each atom. |
4
|
|
|
|
5
|
|
|
This is the object type yielded by the readers :class:`.io.CifReader` and |
6
|
|
|
:class:`.io.CSDReader`. The :class:`PeriodicSet` can be passed as the first argument |
7
|
|
|
to :func:`.calculate.AMD` or :func:`.calculate.PDD` to calculate its invariants. |
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from typing import Optional |
11
|
|
|
import numpy as np |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class PeriodicSet: |
15
|
|
|
"""A periodic set is the mathematical representation of a crystal by putting a |
16
|
|
|
single point in the center of every atom. It is defined by a basis (unit cell) |
|
|
|
|
17
|
|
|
and collection of points (motif) which repeats according to the basis. |
18
|
|
|
|
19
|
|
|
:class:`PeriodicSet` s are returned by the readers in the :mod:`.io` module. |
20
|
|
|
Instances of this object can be passed to :func:`.calculate.AMD` or |
21
|
|
|
:func:`.calculate.PDD` to calculate the invariant. |
22
|
|
|
|
23
|
|
|
Parameters |
24
|
|
|
---------- |
25
|
|
|
motif : numpy.ndarray |
26
|
|
|
Cartesian (orthogonal) coordinates of the motif, shape (no points, dims). |
27
|
|
|
cell : numpy.ndarray |
28
|
|
|
Cartesian (orthogonal) square array representing the unit cell, shape (dims, dims). |
29
|
|
|
Use :func:`.utils.cellpar_to_cell` to convert 6 cell parameters to an orthogonal square matrix. |
30
|
|
|
name : str, optional |
31
|
|
|
Name of the periodic set. |
32
|
|
|
asymmetric_unit : numpy.ndarray, optional |
33
|
|
|
Indices for the asymmetric unit, pointing to the motif. |
34
|
|
|
wyckoff_multiplicities : numpy.ndarray, optional |
35
|
|
|
Wyckoff multiplicities of each atom in the asymmetric unit |
36
|
|
|
(number of unique sites generated under all symmetries). |
37
|
|
|
types : numpy.ndarray, optional |
38
|
|
|
Array of atomic numbers of motif points. |
39
|
|
|
""" |
40
|
|
|
|
41
|
|
|
def __init__( |
|
|
|
|
42
|
|
|
self, |
43
|
|
|
motif: np.ndarray, |
44
|
|
|
cell: np.ndarray, |
45
|
|
|
name: Optional[str] = None, |
46
|
|
|
asymmetric_unit: Optional[np.ndarray] = None, |
47
|
|
|
wyckoff_multiplicities: Optional[np.ndarray] = None, |
48
|
|
|
types : Optional[np.ndarray] = None |
|
|
|
|
49
|
|
|
): |
50
|
|
|
|
51
|
|
|
self.motif = motif |
52
|
|
|
self.cell = cell |
53
|
|
|
self.name = name |
54
|
|
|
self.asymmetric_unit = asymmetric_unit |
55
|
|
|
self.wyckoff_multiplicities = wyckoff_multiplicities |
56
|
|
|
self.types = types |
57
|
|
|
|
58
|
|
|
def __str__(self): |
59
|
|
|
|
60
|
|
|
m, dims = self.motif.shape |
61
|
|
|
return f"PeriodicSet({self.name}: {m} motif points in {dims} dimensions)" |
62
|
|
|
|
63
|
|
|
def __repr__(self): |
64
|
|
|
return f"PeriodicSet(name: {self.name}, cell: {self.cell}, motif shape {self.motif.shape})" |
65
|
|
|
|
|
|
|
|
66
|
|
|
# used for debugging, checks if the motif/cell agree point for point |
67
|
|
|
# (disregarding order), NOT up to isometry. |
68
|
|
|
def __eq__(self, other): |
69
|
|
|
|
70
|
|
|
if self.cell.shape != other.cell.shape or self.motif.shape != other.motif.shape: |
71
|
|
|
return False |
72
|
|
|
|
73
|
|
|
if not np.allclose(self.cell, other.cell): |
74
|
|
|
return False |
75
|
|
|
|
76
|
|
|
# this is the part that'd be confused by overlapping sites |
77
|
|
|
# just checks every motif point in either have a neighbour in the other |
78
|
|
|
diffs = np.amax(np.abs(other.motif[:, None] - self.motif), axis=-1) |
79
|
|
|
if not np.all((np.amin(diffs, axis=0) <= 1e-6) & (np.amin(diffs, axis=-1) <= 1e-6)): |
80
|
|
|
return False |
81
|
|
|
|
82
|
|
|
return True |
83
|
|
|
|
84
|
|
|
def __ne__(self, other): |
85
|
|
|
return not self.__eq__(other) |
86
|
|
|
|