| 1 |  |  | """Implements core function nearest_neighbours used for AMD and PDD calculations.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | from typing import Iterable, Optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | import itertools | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | import collections | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | import numba | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | import scipy.spatial | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | @numba.njit() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | def _dist(xy, z): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |     s = z ** 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |     for val in xy: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |         s += val ** 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     return s | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | @numba.njit() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | def _distkey(pt): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     s = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     for val in pt: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |         s += val ** 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |     return s | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  | def generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     """Generates batches of integer lattice points. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     Each yield gives all points (that have not already been yielded) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |     inside a sphere centered at the origin with radius d. d starts at 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     and increments by 1 on each loop. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |     dims : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |         The dimension of Euclidean space the lattice is in. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |     Yields | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |     ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |         Yields arrays of integer points in dims dimensional Euclidean space. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |     ymax = collections.defaultdict(int) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |     d = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |     if dims == 1: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |         yield np.array([[0]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |         while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |             d += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |             yield np.array([[-d], [d]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |     while True: | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         # get integer lattice points in +ve directions | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |         positive_int_lattice = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |         while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |             batch = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |             for xy in itertools.product(range(d+1), repeat=dims-1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |                 if _dist(xy, ymax[xy]) <= d**2: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |                     batch.append((*xy, ymax[xy])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |                     ymax[xy] += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |             if not batch: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |             positive_int_lattice += batch | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         positive_int_lattice.sort(key=_distkey) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |         # expand +ve integer lattice to full lattice with reflections | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |         int_lattice = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |         for p in positive_int_lattice: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |             int_lattice.append(p) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |             for n_reflections in range(1, dims+1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |                 for indexes in itertools.combinations(range(dims), n_reflections): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |                     if all((p[i] for i in indexes)): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |                         p_ = list(p) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |                         for i in indexes: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |                             p_[i] *= -1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |                         int_lattice.append(p_) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |         yield np.array(int_lattice) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |         d += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  | def generate_concentric_cloud( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |         motif: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |         cell: np.ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  | ) -> Iterable[np.ndarray]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |     Generates batches of points from a periodic set given by (motif, cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |     which get successively further away from the origin. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |     Each yield gives all points (that have not already been yielded) which | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |     lie in a unit cell whose corner lattice point was generated by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     _generate_integer_lattice(motif.shape[1]). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |     motif : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         Cartesian representation of the motif, shape (no points, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |     cell : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |         Cartesian representation of the unit cell, shape (dims, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |     Yields | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |     ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |         Yields arrays of points from the periodic set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     int_lattice_generator = generate_integer_lattice(cell.shape[0]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |     while True: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |         int_lattice = next(int_lattice_generator) @ cell | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |         yield np.concatenate([motif + translation for translation in int_lattice]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  | def nearest_neighbours( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |         motif: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |         cell: np.ndarray, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |         k: int, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |         asymmetric_unit: Optional[np.ndarray] = None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |     Given a periodic set represented by (motif, cell) and an integer k, find | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |     the k nearest neighbours of the motif points in the periodic set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |     Note that cloud and inds are not used yet but may be in the future. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |     motif : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |         Cartesian coords of the full motif, shape (no points, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |     cell : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |         Cartesian coords of the unit cell, shape (dims, dims). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |     k : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         Number of nearest neighbours to find for each motif point. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |     asymmetric_unit : ndarray, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |         Indices pointing to an asymmetric unit in motif. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |     Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |     pdd : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |         An array shape (motif.shape[0], k) of distances from each motif | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |         point to its k nearest neighbours in order. Points do not count | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |         as their own nearest neighbour. E.g. the distance to the n-th | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |         nearest neighbour of the m-th motif point is pdd[m][n]. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |     cloud : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |         The collection of points in the periodic set that were generated | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |         during the nearest neighbour search. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |     inds : ndarray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |         An array shape (motif.shape[0], k) containing the indices of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |         nearest neighbours in cloud. E.g. the n-th nearest neighbour to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |         the m-th motif point is cloud[inds[m][n]]. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |     if asymmetric_unit is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         asym_unit = motif[asymmetric_unit] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         asym_unit = motif | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |     cloud_generator = generate_concentric_cloud(motif, cell) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |     n_points = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |     cloud = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |     while n_points <= k: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         l = next(cloud_generator) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         n_points += l.shape[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         cloud.append(l) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |     cloud.append(next(cloud_generator)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |     cloud = np.concatenate(cloud) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |     tree = scipy.spatial.KDTree(cloud, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |                                 compact_nodes=False, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |                                 balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |     pdd_, inds = tree.query(asym_unit, k=k+1, workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |     pdd = np.zeros_like(pdd_) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |     while not np.allclose(pdd, pdd_, atol=1e-12, rtol=0): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         pdd = pdd_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |         cloud = np.vstack((cloud, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |                            next(cloud_generator), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |                            next(cloud_generator))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         tree = scipy.spatial.KDTree(cloud, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |                                     compact_nodes=False, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |                                     balanced_tree=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         pdd_, inds = tree.query(asym_unit, k=k+1, workers=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |     return pdd_[:, 1:], cloud, inds[:, 1:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 187 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 188 |  |  | def nearest_neighbours_minval(motif, cell, min_val): | 
            
                                                        
            
                                    
            
            
                | 189 |  |  |     """PDD large enough to be reconstructed from | 
            
                                                        
            
                                    
            
            
                | 190 |  |  |     (such that last col values all > 2 * diam(cell)).""" | 
            
                                                        
            
                                    
            
            
                | 191 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 192 |  |  |     cloud_generator = generate_concentric_cloud(motif, cell) | 
            
                                                        
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 194 |  |  |     cloud = [] | 
            
                                                        
            
                                    
            
            
                | 195 |  |  |     for _ in range(3): | 
            
                                                        
            
                                    
            
            
                | 196 |  |  |         cloud.append(next(cloud_generator)) | 
            
                                                        
            
                                    
            
            
                | 197 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 198 |  |  |     cloud = np.concatenate(cloud) | 
            
                                                        
            
                                    
            
            
                | 199 |  |  |     tree = scipy.spatial.KDTree(cloud, | 
            
                                                        
            
                                    
            
            
                | 200 |  |  |                                 compact_nodes=False, | 
            
                                                        
            
                                    
            
            
                | 201 |  |  |                                 balanced_tree=False) | 
            
                                                        
            
                                    
            
            
                | 202 |  |  |     pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) | 
            
                                                        
            
                                    
            
            
                | 203 |  |  |     pdd = np.zeros_like(pdd_) | 
            
                                                        
            
                                    
            
            
                | 204 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 205 |  |  |     while True: | 
            
                                                        
            
                                    
            
            
                | 206 |  |  |         if np.all(pdd[:, -1] >= min_val): | 
            
                                                        
            
                                    
            
            
                | 207 |  |  |             col_where = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] | 
            
                                                        
            
                                    
            
            
                | 208 |  |  |             if np.array_equal(pdd[:, :col_where+1], pdd_[:, :col_where+1]): | 
            
                                                        
            
                                    
            
            
                | 209 |  |  |                 break | 
            
                                                        
            
                                    
            
            
                | 210 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 211 |  |  |         pdd = pdd_ | 
            
                                                        
            
                                    
            
            
                | 212 |  |  |         cloud = np.vstack((cloud, | 
            
                                                        
            
                                    
            
            
                | 213 |  |  |                            next(cloud_generator), | 
            
                                                        
            
                                    
            
            
                | 214 |  |  |                            next(cloud_generator))) | 
            
                                                        
            
                                    
            
            
                | 215 |  |  |         tree = scipy.spatial.KDTree(cloud, | 
            
                                                        
            
                                    
            
            
                | 216 |  |  |                                     compact_nodes=False, | 
            
                                                        
            
                                    
            
            
                | 217 |  |  |                                     balanced_tree=False) | 
            
                                                        
            
                                    
            
            
                | 218 |  |  |         pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) | 
            
                                                        
            
                                    
            
            
                | 219 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 220 |  |  |     k = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] | 
            
                                                        
            
                                    
            
            
                | 221 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 222 |  |  |     return pdd[:, 1:k+1] | 
            
                                                        
            
                                    
            
            
                | 223 |  |  |  |