1
|
|
|
"""Implements core function nearest_neighbours used for AMD and PDD |
2
|
|
|
calculations. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
import collections |
6
|
|
|
from typing import Tuple, Iterable |
7
|
|
|
from itertools import product |
8
|
|
|
|
9
|
|
|
import numba |
10
|
|
|
import numpy as np |
11
|
|
|
import numpy.typing as npt |
12
|
|
|
from scipy.spatial import KDTree |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def nearest_neighbours( |
16
|
|
|
motif: npt.NDArray, |
17
|
|
|
cell: npt.NDArray, |
18
|
|
|
x: npt.NDArray, |
19
|
|
|
k: int |
20
|
|
|
) -> Tuple[npt.NDArray[np.float64]]: |
21
|
|
|
""" |
22
|
|
|
Given a periodic set represented by (motif, cell) and an integer k, |
23
|
|
|
find the k nearest neighbours in the periodic set to points in x. |
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
---------- |
27
|
|
|
motif : :class:`numpy.ndarray` |
28
|
|
|
Orthogonal (Cartesian) coords of the motif, shape (no points, |
29
|
|
|
dims). |
30
|
|
|
cell : :class:`numpy.ndarray` |
31
|
|
|
Orthogonal (Cartesian) coords of the unit cell, shape (dims, |
32
|
|
|
dims). |
33
|
|
|
x : :class:`numpy.ndarray` |
34
|
|
|
Array of points to query for neighbours. For invariants of |
35
|
|
|
crystals this is the asymmetric unit. |
36
|
|
|
k : int |
37
|
|
|
Number of nearest neighbours to find for each point in x. |
38
|
|
|
|
39
|
|
|
Returns |
40
|
|
|
------- |
41
|
|
|
pdd : numpy.ndarray |
42
|
|
|
Array shape (motif.shape[0], k) of distances from points in x |
43
|
|
|
to their k nearest neighbours in the periodic set, in order. |
44
|
|
|
E.g. pdd[m][n] is the distance from x[m] to its n-th nearest |
45
|
|
|
neighbour in the periodic set. |
46
|
|
|
cloud : numpy.ndarray |
47
|
|
|
Collection of points in the periodic set that was generated |
48
|
|
|
during the nearest neighbour search. |
49
|
|
|
inds : numpy.ndarray |
50
|
|
|
Array shape (motif.shape[0], k) containing the indices of |
51
|
|
|
nearest neighbours in cloud. E.g. the n-th nearest neighbour to |
52
|
|
|
the m-th motif point is cloud[inds[m][n]]. |
53
|
|
|
""" |
54
|
|
|
|
55
|
|
|
cloud_generator = generate_concentric_cloud(motif, cell) |
56
|
|
|
n_points = 0 |
57
|
|
|
cloud = [] |
58
|
|
|
while n_points <= k: |
59
|
|
|
l = next(cloud_generator) |
60
|
|
|
n_points += l.shape[0] |
61
|
|
|
cloud.append(l) |
62
|
|
|
cloud.append(next(cloud_generator)) |
63
|
|
|
cloud = np.concatenate(cloud) |
64
|
|
|
|
65
|
|
|
tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) |
66
|
|
|
pdd_, inds = tree.query(x, k=k+1, workers=-1) |
67
|
|
|
pdd = np.zeros_like(pdd_, dtype=np.float64) |
68
|
|
|
|
69
|
|
|
while not np.allclose(pdd, pdd_, atol=1e-10, rtol=0): |
70
|
|
|
pdd = pdd_ |
71
|
|
|
cloud = np.vstack((cloud, next(cloud_generator))) |
72
|
|
|
tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) |
73
|
|
|
pdd_, inds = tree.query(x, k=k+1, workers=-1) |
74
|
|
|
|
75
|
|
|
return pdd_[:, 1:], cloud, inds[:, 1:] |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
def nearest_neighbours_minval( |
79
|
|
|
motif: npt.NDArray, |
80
|
|
|
cell: npt.NDArray, |
81
|
|
|
min_val: float |
82
|
|
|
) -> npt.NDArray[np.float64]: |
83
|
|
|
"""The same as nearest_neighbours except a value is given instead of |
84
|
|
|
an integer k and the result has at least enough columns so all |
85
|
|
|
values in the last column are at least the given value. |
86
|
|
|
""" |
87
|
|
|
|
88
|
|
|
cloud_generator = generate_concentric_cloud(motif, cell) |
89
|
|
|
|
90
|
|
|
cloud = [] |
91
|
|
|
for _ in range(3): |
92
|
|
|
cloud.append(next(cloud_generator)) |
93
|
|
|
cloud = np.concatenate(cloud) |
94
|
|
|
|
95
|
|
|
tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) |
96
|
|
|
pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) |
97
|
|
|
pdd = np.zeros_like(pdd_) |
98
|
|
|
|
99
|
|
|
while True: |
100
|
|
|
if np.all(pdd[:, -1] >= min_val): |
101
|
|
|
col_where = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] + 1 |
102
|
|
|
if np.array_equal(pdd[:, :col_where], pdd_[:, :col_where]): |
103
|
|
|
break |
104
|
|
|
pdd = pdd_ |
105
|
|
|
cloud = np.vstack((cloud, next(cloud_generator))) |
106
|
|
|
tree = KDTree(cloud, compact_nodes=False, balanced_tree=False) |
107
|
|
|
pdd_, _ = tree.query(motif, k=cloud.shape[0], workers=-1) |
108
|
|
|
|
109
|
|
|
k = np.argwhere(np.all(pdd >= min_val, axis=0))[0][0] |
110
|
|
|
return pdd[:, 1:k+1] |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def generate_concentric_cloud( |
114
|
|
|
motif: npt.NDArray, |
115
|
|
|
cell: npt.NDArray |
116
|
|
|
) -> Iterable[npt.NDArray[np.float64]]: |
117
|
|
|
""" |
118
|
|
|
Generates batches of points from a periodic set given by (motif, |
119
|
|
|
cell) which get successively further away from the origin. |
120
|
|
|
|
121
|
|
|
Each yield gives all points (that have not already been yielded) |
122
|
|
|
which lie in a unit cell whose corner lattice point was generated by |
123
|
|
|
``generate_integer_lattice(motif.shape[1])``. |
124
|
|
|
|
125
|
|
|
Parameters |
126
|
|
|
---------- |
127
|
|
|
motif : :class:`numpy.ndarray` |
128
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
129
|
|
|
cell : :class:`numpy.ndarray` |
130
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
131
|
|
|
|
132
|
|
|
Yields |
133
|
|
|
------- |
134
|
|
|
:class:`numpy.ndarray` |
135
|
|
|
Yields arrays of points from the periodic set. |
136
|
|
|
""" |
137
|
|
|
|
138
|
|
|
m = len(motif) |
139
|
|
|
|
140
|
|
|
for int_lattice in generate_integer_lattice(cell.shape[0]): |
141
|
|
|
|
142
|
|
|
lattice = int_lattice @ cell |
143
|
|
|
layer = np.empty((m * len(lattice), cell.shape[0]), dtype=np.float64) |
144
|
|
|
i1 = 0 |
145
|
|
|
for translation in lattice: |
146
|
|
|
i2 = i1 + m |
147
|
|
|
layer[i1:i2] = motif + translation |
148
|
|
|
i1 = i2 |
149
|
|
|
|
150
|
|
|
yield layer |
151
|
|
|
|
152
|
|
|
|
153
|
|
|
def generate_integer_lattice(dims: int) -> Iterable[npt.NDArray[np.float64]]: |
154
|
|
|
"""Generates batches of integer lattice points. Each yield gives all |
155
|
|
|
points (that have not already been yielded) inside a sphere centered |
156
|
|
|
at the origin with radius d. d starts at 0 and increments by 1 on |
157
|
|
|
each loop. |
158
|
|
|
|
159
|
|
|
Parameters |
160
|
|
|
---------- |
161
|
|
|
dims : int |
162
|
|
|
The dimension of Euclidean space the lattice is in. |
163
|
|
|
|
164
|
|
|
Yields |
165
|
|
|
------- |
166
|
|
|
:class:`numpy.ndarray` |
167
|
|
|
Yields arrays of integer points in dims dimensional Euclidean |
168
|
|
|
space. |
169
|
|
|
""" |
170
|
|
|
|
171
|
|
|
ymax = collections.defaultdict(int) |
172
|
|
|
d = 0 |
173
|
|
|
|
174
|
|
|
if dims == 1: |
175
|
|
|
yield np.array([[0]]) |
176
|
|
|
while True: |
177
|
|
|
d += 1 |
178
|
|
|
yield np.array([[-d], [d]]) |
179
|
|
|
|
180
|
|
|
while True: |
181
|
|
|
positive_int_lattice = [] |
182
|
|
|
while True: |
183
|
|
|
batch = [] |
184
|
|
|
for xy in product(range(d + 1), repeat=dims-1): |
185
|
|
|
if _dist(xy, ymax[xy]) <= d ** 2: |
186
|
|
|
batch.append((*xy, ymax[xy])) |
187
|
|
|
ymax[xy] += 1 |
188
|
|
|
if not batch: |
189
|
|
|
break |
190
|
|
|
positive_int_lattice.extend(batch) |
191
|
|
|
|
192
|
|
|
yield _reflect_positive_lattice(np.array(positive_int_lattice)) |
193
|
|
|
d += 1 |
194
|
|
|
|
195
|
|
|
|
196
|
|
|
@numba.njit() |
197
|
|
|
def _dist(xy: Tuple[float, float], z: float) -> float: |
198
|
|
|
s = z ** 2 |
199
|
|
|
for val in xy: |
200
|
|
|
s += val ** 2 |
201
|
|
|
return s |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
@numba.njit() |
205
|
|
|
def _reflect_positive_lattice( |
206
|
|
|
positive_int_lattice: npt.NDArray |
207
|
|
|
) -> npt.NDArray[np.float64]: |
208
|
|
|
"""Reflect a set of points in the +ve quadrant in all axes. Does not |
209
|
|
|
duplicate points lying on the axes themselves. |
210
|
|
|
""" |
211
|
|
|
|
212
|
|
|
dims = positive_int_lattice.shape[-1] |
213
|
|
|
batches = [] |
214
|
|
|
batches.extend(positive_int_lattice) |
215
|
|
|
|
216
|
|
|
for n_reflections in range(1, dims + 1): |
217
|
|
|
|
218
|
|
|
indices = np.arange(n_reflections) |
219
|
|
|
batches.extend(_reflect_batch(positive_int_lattice, indices)) |
220
|
|
|
|
221
|
|
|
while True: |
222
|
|
|
i = n_reflections - 1 |
223
|
|
|
for _ in range(n_reflections): |
224
|
|
|
if indices[i] != i + dims - n_reflections: |
225
|
|
|
break |
226
|
|
|
i -= 1 |
227
|
|
|
else: |
228
|
|
|
break |
229
|
|
|
indices[i] += 1 |
230
|
|
|
for j in range(i+1, n_reflections): |
231
|
|
|
indices[j] = indices[j-1] + 1 |
232
|
|
|
|
233
|
|
|
batches.extend(_reflect_batch(positive_int_lattice, indices)) |
234
|
|
|
|
235
|
|
|
int_lattice = np.empty(shape=(len(batches), dims), dtype=np.float64) |
236
|
|
|
for i in range(len(batches)): |
237
|
|
|
int_lattice[i] = batches[i] |
238
|
|
|
|
239
|
|
|
return int_lattice |
240
|
|
|
|
241
|
|
|
|
242
|
|
|
@numba.njit() |
243
|
|
|
def _reflect_batch( |
244
|
|
|
positive_int_lattice: npt.NDArray, |
245
|
|
|
indices: npt.NDArray |
246
|
|
|
) -> npt.NDArray: |
247
|
|
|
"""Takes a collection of points in any dimension and the indices of |
248
|
|
|
axes to reflect in, returning a batch of reflected points not |
249
|
|
|
including any points which are invariant under the reflections. |
250
|
|
|
""" |
251
|
|
|
|
252
|
|
|
where_on_axes = (positive_int_lattice[:, indices] == 0).sum(axis=-1) == 0 |
253
|
|
|
batch = positive_int_lattice[where_on_axes] |
254
|
|
|
batch[:, indices] *= -1 |
255
|
|
|
return batch |
256
|
|
|
|