1
|
|
|
"""Helpful utility functions, e.g. unit cell diameter, converting |
2
|
|
|
cell parameters to Cartesian form, and an ETA class.""" |
3
|
|
|
|
4
|
|
|
from typing import Tuple |
5
|
|
|
import time |
6
|
|
|
import datetime |
7
|
|
|
|
8
|
|
|
import scipy.spatial |
9
|
|
|
import numpy as np |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
def diameter(cell): |
13
|
|
|
"""Diameter of a unit cell in 3 or fewer dimensions.""" |
14
|
|
|
dims = cell.shape[0] |
15
|
|
|
if dims == 1: |
16
|
|
|
return cell[0][0] |
17
|
|
|
if dims == 2: |
18
|
|
|
d = np.amax(np.linalg.norm(np.array([cell[0] + cell[1], cell[0] - cell[1]]), axis=-1)) |
19
|
|
|
elif dims == 3: |
20
|
|
|
d = np.amax(np.array([ |
21
|
|
|
np.linalg.norm(cell[0] + cell[1] + cell[2]), |
22
|
|
|
np.linalg.norm(cell[0] + cell[1] - cell[2]), |
23
|
|
|
np.linalg.norm(cell[0] - cell[1] + cell[2]), |
24
|
|
|
np.linalg.norm(-cell[0] + cell[1] + cell[2]) |
25
|
|
|
])) |
26
|
|
|
else: |
27
|
|
|
raise ValueError(f'diameter only implimented for dimensions <= 3 (passed {dims})') |
28
|
|
|
return d |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
def cellpar_to_cell(a, b, c, alpha, beta, gamma): |
|
|
|
|
32
|
|
|
"""Simplified version of function from ase.geometry. |
33
|
|
|
3D unit cell parameters a,b,c,α,β,γ --> cell as 3x3 ndarray. |
34
|
|
|
""" |
35
|
|
|
# Handle orthorhombic cells separately to avoid rounding errors |
36
|
|
|
eps = 2 * np.spacing(90.0, dtype=np.float64) # around 1.4e-14 |
37
|
|
|
|
38
|
|
|
cos_alpha = 0. if abs(abs(alpha) - 90.) < eps else np.cos(alpha * np.pi / 180.) |
39
|
|
|
cos_beta = 0. if abs(abs(beta) - 90.) < eps else np.cos(beta * np.pi / 180.) |
|
|
|
|
40
|
|
|
cos_gamma = 0. if abs(abs(gamma) - 90.) < eps else np.cos(gamma * np.pi / 180.) |
41
|
|
|
|
42
|
|
|
if abs(gamma - 90) < eps: |
43
|
|
|
sin_gamma = 1. |
44
|
|
|
elif abs(gamma + 90) < eps: |
45
|
|
|
sin_gamma = -1. |
46
|
|
|
else: |
47
|
|
|
sin_gamma = np.sin(gamma * np.pi / 180.) |
48
|
|
|
|
49
|
|
|
cy = (cos_alpha - cos_beta * cos_gamma) / sin_gamma |
50
|
|
|
cz_sqr = 1. - cos_beta ** 2 - cy ** 2 |
51
|
|
|
if cz_sqr < 0: |
52
|
|
|
raise RuntimeError('Could not create unit cell from parameters ' + \ |
53
|
|
|
f'a={a},b={b},c={c},α={alpha},β={beta},γ={gamma}') |
54
|
|
|
|
55
|
|
|
return np.array([[a, 0, 0], |
56
|
|
|
[b*cos_gamma, b*sin_gamma, 0], |
57
|
|
|
[c*cos_beta, c*cy, c*np.sqrt(cz_sqr)]]) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def cellpar_to_cell_2D(a, b, alpha): |
61
|
|
|
"""UD unit cell parameters a,b,α --> cell as 2x2 ndarray.""" |
62
|
|
|
cell = np.array([[a, 0], |
63
|
|
|
[b * np.cos(alpha * np.pi / 180.), b * np.sin(alpha * np.pi / 180.)]]) |
64
|
|
|
return cell |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
def neighbours_from_distance_matrix( |
68
|
|
|
n: int, |
69
|
|
|
dm: np.ndarray |
70
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
71
|
|
|
"""Given a distance matrix, find the ``n`` nearest neighbours of each item. |
72
|
|
|
|
73
|
|
|
Parameters |
74
|
|
|
---------- |
75
|
|
|
n : int |
76
|
|
|
Number of nearest neighbours to find for each item. |
77
|
|
|
dm : ndarray |
78
|
|
|
2D distance matrix or 1D condensed distance matrix. |
79
|
|
|
|
80
|
|
|
Returns |
81
|
|
|
------- |
82
|
|
|
tuple of ndarrays (nn_dm, inds) |
83
|
|
|
For item ``i``, ``nn_dm[i][j]`` is the distance from item ``i`` to its ``j+1`` st |
84
|
|
|
nearest neighbour, and ``inds[i][j]`` is the index of this neighbour (``j+1`` since |
85
|
|
|
index 0 is the first nearest neighbour). |
86
|
|
|
""" |
87
|
|
|
|
88
|
|
|
inds = None |
89
|
|
|
|
90
|
|
|
# 2D distance matrix |
91
|
|
|
if len(dm.shape) == 2: |
92
|
|
|
inds = np.array([np.argpartition(row, n)[:n] for row in dm]) |
93
|
|
|
|
94
|
|
|
# 1D condensed distance vector |
95
|
|
|
elif len(dm.shape) == 1: |
96
|
|
|
dm = scipy.spatial.distance.squareform(dm) |
97
|
|
|
inds = [] |
98
|
|
|
for i, row in enumerate(dm): |
99
|
|
|
inds_row = np.argpartition(row, n+1)[:n+1] |
100
|
|
|
inds_row = inds_row[inds_row != i][:n] |
101
|
|
|
inds.append(inds_row) |
102
|
|
|
inds = np.array(inds) |
103
|
|
|
|
104
|
|
|
else: |
105
|
|
|
ValueError( |
106
|
|
|
'Input must be an ndarray, either a 2D distance matrix ' |
107
|
|
|
'or a condensed distance matrix (returned by pdist).') |
108
|
|
|
|
109
|
|
|
# inds are the indexes of nns: inds[i,j] is the j-th nn to point i |
110
|
|
|
nn_dm = np.take_along_axis(dm, inds, axis=-1) |
111
|
|
|
sorted_inds = np.argsort(nn_dm, axis=-1) |
112
|
|
|
inds = np.take_along_axis(inds, sorted_inds, axis=-1) |
113
|
|
|
nn_dm = np.take_along_axis(nn_dm, sorted_inds, axis=-1) |
114
|
|
|
return nn_dm, inds |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
def lattice_cubic(scale=1, dims=3): |
118
|
|
|
"""Return a pair (motif, cell) representing a cubic lattice, passable to |
119
|
|
|
``amd.AMD()`` or ``amd.PDD()``.""" |
120
|
|
|
return (np.zeros((1, dims)), np.identity(dims) * scale) |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def random_cell(length_bounds=(1, 2), angle_bounds=(60, 120), dims=3): |
124
|
|
|
"""Random unit cell.""" |
125
|
|
|
|
|
|
|
|
126
|
|
|
lengths = [np.random.uniform(low=length_bounds[0], |
127
|
|
|
high=length_bounds[1]) |
|
|
|
|
128
|
|
|
for _ in range(dims)] |
129
|
|
|
|
|
|
|
|
130
|
|
|
if dims == 3: |
131
|
|
|
angles = [np.random.uniform(low=angle_bounds[0], |
132
|
|
|
high=length_bounds[1]) |
|
|
|
|
133
|
|
|
for _ in range(dims)] |
134
|
|
|
return cellpar_to_cell(*lengths, *angles) |
135
|
|
|
|
136
|
|
|
if dims == 2: |
137
|
|
|
alpha = np.random.uniform(low=angle_bounds[0], |
138
|
|
|
high=length_bounds[1]) |
|
|
|
|
139
|
|
|
return cellpar_to_cell_2D(*lengths, alpha) |
140
|
|
|
|
141
|
|
|
raise ValueError(f'random_cell only implimented for dimensions 2 and 3 (passed {dims})') |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
class ETA: |
145
|
|
|
"""Pass total amount to do, then call .update() on every loop. |
146
|
|
|
This object will estimate an ETA and print it to the terminal.""" |
147
|
|
|
|
148
|
|
|
# epochtime_{n+1} = factor * epochtime + (1-factor) * epochtime_{n} |
149
|
|
|
_moving_average_factor = 0.3 |
150
|
|
|
|
151
|
|
|
def __init__(self, to_do, update_rate=100): |
152
|
|
|
self.to_do = to_do |
153
|
|
|
self.update_rate = update_rate |
154
|
|
|
self.counter = 0 |
155
|
|
|
self.start_time = time.perf_counter() |
156
|
|
|
self.tic = self.start_time |
157
|
|
|
self.time_per_epoch = None |
158
|
|
|
self.done = False |
159
|
|
|
|
160
|
|
|
def update(self): |
161
|
|
|
"""Call when one item is finished.""" |
162
|
|
|
|
163
|
|
|
self.counter += 1 |
164
|
|
|
|
165
|
|
|
if self.counter == self.to_do: |
166
|
|
|
msg = self._finished() |
167
|
|
|
print(msg, end='\r\n') |
168
|
|
|
self.done = True |
169
|
|
|
return |
170
|
|
|
|
171
|
|
|
if self.counter > self.to_do: |
172
|
|
|
return |
173
|
|
|
|
174
|
|
|
if not self.counter % self.update_rate: |
175
|
|
|
msg = self._end_epoch() |
176
|
|
|
print(msg, end='\r') |
177
|
|
|
|
178
|
|
|
def _end_epoch(self): |
179
|
|
|
toc = time.perf_counter() |
180
|
|
|
epoch_time = toc - self.tic |
181
|
|
|
if self.time_per_epoch is None: |
182
|
|
|
self.time_per_epoch = epoch_time |
183
|
|
|
else: |
184
|
|
|
self.time_per_epoch = ETA._moving_average_factor * epoch_time + \ |
185
|
|
|
(1 - ETA._moving_average_factor) * self.time_per_epoch |
186
|
|
|
|
187
|
|
|
percent = round(100 * self.counter / self.to_do, 2) |
188
|
|
|
percent = '{:.2f}'.format(percent) |
189
|
|
|
remaining = int(((self.to_do - self.counter) / self.update_rate) * self.time_per_epoch) |
190
|
|
|
eta = str(datetime.timedelta(seconds=remaining)) |
191
|
|
|
self.tic = toc |
192
|
|
|
return f'{percent}%, ETA {eta}' + ' ' * 30 |
193
|
|
|
|
194
|
|
|
def _finished(self): |
195
|
|
|
total = time.perf_counter() - self.start_time |
196
|
|
|
msg = f'Total time: {round(total, 2)}s, ' \ |
197
|
|
|
f'n passes: {self.counter} ' \ |
198
|
|
|
f'({round(self.to_do/total, 2)} passes/second)' |
199
|
|
|
return msg |
200
|
|
|
|