1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
import warnings |
5
|
|
|
from typing import List, Optional, Union, Tuple |
6
|
|
|
from functools import partial |
7
|
|
|
from itertools import combinations |
8
|
|
|
import os |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
import numpy.typing as npt |
12
|
|
|
import pandas as pd |
13
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
14
|
|
|
from joblib import Parallel, delayed |
15
|
|
|
import tqdm |
16
|
|
|
|
17
|
|
|
from .io import CifReader, CSDReader |
18
|
|
|
from .calculate import AMD, PDD |
19
|
|
|
from ._emd import network_simplex |
20
|
|
|
from .periodicset import PeriodicSet, PeriodicSetType |
21
|
|
|
from .utils import neighbours_from_distance_matrix |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def compare( |
25
|
|
|
crystals: Union[str, PeriodicSetType, List], |
26
|
|
|
crystals_: Optional[Union[str, PeriodicSetType, List]] = None, |
27
|
|
|
by: str = 'AMD', |
28
|
|
|
k: int = 100, |
29
|
|
|
nearest: Optional[int] = None, |
30
|
|
|
reader: str = 'ase', |
31
|
|
|
remove_hydrogens: bool = False, |
32
|
|
|
disorder: str = 'skip', |
33
|
|
|
heaviest_component: bool = False, |
34
|
|
|
molecular_centres: bool = False, |
35
|
|
|
families: bool = False, |
36
|
|
|
show_warnings: bool = True, |
37
|
|
|
collapse_tol: float = 1e-4, |
38
|
|
|
metric: str = 'chebyshev', |
39
|
|
|
n_jobs: Optional[int] = None, |
40
|
|
|
backend: str = 'multiprocessing', |
41
|
|
|
verbose: bool = False, |
42
|
|
|
low_memory: bool = False, |
43
|
|
|
) -> pd.DataFrame: |
44
|
|
|
r"""Given one or two paths to cifs/folders, lists of CSD refcodes or |
45
|
|
|
periodic sets, compare them and return a DataFrame of the distance |
46
|
|
|
matrix. Default is to comapre by AMD with k = 100. Accepts most |
47
|
|
|
keyword arguments accepted by :class:`CifReader <.io.CifReader>`, |
48
|
|
|
:class:`CSDReader <.io.CSDReader>` and functions from |
49
|
|
|
:mod:`.compare`. |
50
|
|
|
|
51
|
|
|
Parameters |
52
|
|
|
---------- |
53
|
|
|
crystals : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str |
54
|
|
|
One or a collection of paths, refcodes, file objects or |
55
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
56
|
|
|
crystals\_ : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str, optional |
57
|
|
|
One or a collection of paths, refcodes, file objects or |
58
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
59
|
|
|
by : str, default 'AMD' |
60
|
|
|
Use AMD or PDD to compare crystals. |
61
|
|
|
k : int, default 100 |
62
|
|
|
Number of neighbour atoms to use for AMD/PDD. |
63
|
|
|
nearest : int, deafult None |
64
|
|
|
Find a number of nearest neighbours instead of a full distance |
65
|
|
|
matrix between crystals. |
66
|
|
|
reader : str, optional |
67
|
|
|
The backend package used to parse the CIF. The default is |
68
|
|
|
:code:`ase`, :code:`pymatgen` and :code:`gemmi` are also |
69
|
|
|
accepted, as well as :code:`ccdc` if csd-python-api is |
70
|
|
|
installed. The ccdc reader should be able to read any format |
71
|
|
|
accepted by :class:`ccdc.io.EntryReader`, though only CIFs have |
72
|
|
|
been tested. |
73
|
|
|
remove_hydrogens : bool, optional |
74
|
|
|
Remove hydrogens from the crystals. |
75
|
|
|
disorder : str, optional |
76
|
|
|
Controls how disordered structures are handled. Default is |
77
|
|
|
``skip`` which skips any crystal with disorder, since disorder |
78
|
|
|
conflicts with the periodic set model. To read disordered |
79
|
|
|
structures anyway, choose either :code:`ordered_sites` to remove |
80
|
|
|
atoms with disorder or :code:`all_sites` include all atoms |
81
|
|
|
regardless of disorder. |
82
|
|
|
heaviest_component : bool, optional, csd-python-api only |
83
|
|
|
Removes all but the heaviest molecule in |
84
|
|
|
the asymmeric unit, intended for removing solvents. |
85
|
|
|
molecular_centres : bool, default False, csd-python-api only |
86
|
|
|
Use the centres of molecules for comparison |
87
|
|
|
instead of centres of atoms. |
88
|
|
|
families : bool, optional, csd-python-api only |
89
|
|
|
Read all entries whose refcode starts with |
90
|
|
|
the given strings, or 'families' (e.g. giving 'DEBXIT' reads all |
91
|
|
|
entries with refcodes starting with DEBXIT). |
92
|
|
|
show_warnings : bool, optional |
93
|
|
|
Controls whether warnings that arise during reading are printed. |
94
|
|
|
collapse_tol: float, default 1e-4, ``by='PDD'`` only |
95
|
|
|
If two PDD rows have all elements closer |
96
|
|
|
than ``collapse_tol``, they are merged and weights are given to |
97
|
|
|
rows in proportion to the number of times they appeared. |
98
|
|
|
metric : str or callable, default 'chebyshev' |
99
|
|
|
The metric to compare AMDs/PDDs with. AMDs are compared directly |
100
|
|
|
with this metric. EMD is the metric used between PDDs, which |
101
|
|
|
requires giving a metric to use between PDD rows. Chebyshev |
102
|
|
|
(L-infinity) distance is the default. Accepts any metric |
103
|
|
|
accepted by :func:`scipy.spatial.distance.cdist`. |
104
|
|
|
n_jobs : int, default None, ``by='PDD'`` only |
105
|
|
|
Maximum number of concurrent jobs for |
106
|
|
|
parallel processing with :code:`joblib`. Set to -1 to use the |
107
|
|
|
maximum. Using parallel processing may be slower for small |
108
|
|
|
inputs. |
109
|
|
|
backend : str, default 'multiprocessing', ``by='PDD'`` only |
110
|
|
|
The parallelization backend implementation for PDD comparisons. |
111
|
|
|
For a list of supported backends, see the backend argument of |
112
|
|
|
:class:`joblib.Parallel`. |
113
|
|
|
verbose : bool, default False |
114
|
|
|
Prints a progress bar when reading crystals and comparing PDDs. |
115
|
|
|
If using parallel processing (n_jobs > 1), the verbose argument |
116
|
|
|
of :class:`joblib.Parallel` is used, otherwise uses tqdm. |
117
|
|
|
low_memory : bool, default False, ``by='AMD'`` only |
118
|
|
|
Use a slower but more memory efficient |
119
|
|
|
method for large collections of AMDs (metric 'chebyshev' only). |
120
|
|
|
|
121
|
|
|
Returns |
122
|
|
|
------- |
123
|
|
|
df : :class:`pandas.DataFrame` |
124
|
|
|
DataFrame of the distance matrix for the given crystals compared |
125
|
|
|
by the chosen invariant. |
126
|
|
|
|
127
|
|
|
Raises |
128
|
|
|
------ |
129
|
|
|
ValueError |
130
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid |
131
|
|
|
crystals to compare, or if crystals or crystals\_ are an invalid |
132
|
|
|
type. |
133
|
|
|
|
134
|
|
|
Examples |
135
|
|
|
-------- |
136
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
137
|
|
|
|
138
|
|
|
df = amd.compare('data.cif') |
139
|
|
|
|
140
|
|
|
Compare everything in one cif with all crystals in all cifs in a |
141
|
|
|
directory (PDD, k=50):: |
142
|
|
|
|
143
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
144
|
|
|
|
145
|
|
|
**Examples (csd-python-api only)** |
146
|
|
|
|
147
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
148
|
|
|
|
149
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50) |
150
|
|
|
|
151
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
152
|
|
|
|
153
|
|
|
df = amd.compare('DEBXIT', families=True) |
154
|
|
|
""" |
155
|
|
|
|
156
|
|
|
by = by.upper() |
157
|
|
|
if by not in ('AMD', 'PDD'): |
158
|
|
|
msg = f"parameter 'by' accepts 'AMD' or 'PDD', passed {by}" |
159
|
|
|
raise ValueError(msg) |
160
|
|
|
|
161
|
|
|
reader_kwargs = { |
162
|
|
|
'reader': reader, |
163
|
|
|
'families': families, |
164
|
|
|
'remove_hydrogens': remove_hydrogens, |
165
|
|
|
'disorder': disorder, |
166
|
|
|
'heaviest_component': heaviest_component, |
167
|
|
|
'molecular_centres': molecular_centres, |
168
|
|
|
'show_warnings': show_warnings, |
169
|
|
|
'verbose': verbose, |
170
|
|
|
} |
171
|
|
|
|
172
|
|
|
pdd_kwargs = { |
173
|
|
|
'collapse': True, |
174
|
|
|
'collapse_tol': collapse_tol, |
175
|
|
|
'lexsort': False, |
176
|
|
|
} |
177
|
|
|
|
178
|
|
|
compare_kwargs = { |
179
|
|
|
'metric': metric, |
180
|
|
|
'n_jobs': n_jobs, |
181
|
|
|
'backend': backend, |
182
|
|
|
'verbose': verbose, |
183
|
|
|
'low_memory': low_memory, |
184
|
|
|
} |
185
|
|
|
|
186
|
|
|
crystals = _unwrap_periodicset_list(crystals, **reader_kwargs) |
187
|
|
|
if not crystals: |
188
|
|
|
raise ValueError('No valid crystals to compare in first set.') |
189
|
|
|
names = [s.name for s in crystals] |
190
|
|
|
|
191
|
|
|
if crystals_ is None: |
192
|
|
|
names_ = names |
193
|
|
|
else: |
194
|
|
|
crystals_ = _unwrap_periodicset_list(crystals_, **reader_kwargs) |
195
|
|
|
if not crystals_: |
196
|
|
|
raise ValueError('No valid crystals to compare in second set.') |
197
|
|
|
names_ = [s.name for s in crystals_] |
198
|
|
|
|
199
|
|
|
if by == 'AMD': |
200
|
|
|
invs = [AMD(s, k) for s in crystals] |
201
|
|
|
compare_kwargs.pop('n_jobs', None) |
202
|
|
|
compare_kwargs.pop('backend', None) |
203
|
|
|
compare_kwargs.pop('verbose', None) |
204
|
|
|
|
205
|
|
|
if crystals_ is None: |
206
|
|
|
dm = AMD_pdist(invs, **compare_kwargs) |
207
|
|
|
else: |
208
|
|
|
invs_ = [AMD(s, k) for s in crystals_] |
209
|
|
|
dm = AMD_cdist(invs, invs_, **compare_kwargs) |
210
|
|
|
|
211
|
|
|
elif by == 'PDD': |
212
|
|
|
invs = [PDD(s, k, **pdd_kwargs) for s in crystals] |
213
|
|
|
compare_kwargs.pop('low_memory', None) |
214
|
|
|
|
215
|
|
|
if crystals_ is None: |
216
|
|
|
dm = PDD_pdist(invs, **compare_kwargs) |
217
|
|
|
else: |
218
|
|
|
invs_ = [PDD(s, k, **pdd_kwargs) for s in crystals_] |
219
|
|
|
dm = PDD_cdist(invs, invs_, **compare_kwargs) |
220
|
|
|
|
221
|
|
|
if nearest: |
222
|
|
|
nn_dm, inds = neighbours_from_distance_matrix(nearest, dm) |
223
|
|
|
data = {} |
224
|
|
|
for i in range(nearest): |
225
|
|
|
data['ID ' + str(i+1)] = [names_[j] for j in inds[:, i]] |
226
|
|
|
data['DIST ' + str(i+1)] = nn_dm[:, i] |
227
|
|
|
df = pd.DataFrame(data, index=names) |
228
|
|
|
else: |
229
|
|
|
if dm.ndim == 1: |
230
|
|
|
dm = squareform(dm) |
231
|
|
|
df = pd.DataFrame(dm, index=names, columns=names_) |
232
|
|
|
|
233
|
|
|
return df |
234
|
|
|
|
235
|
|
|
|
236
|
|
|
def EMD( |
237
|
|
|
pdd: npt.NDArray, |
238
|
|
|
pdd_: npt.NDArray, |
239
|
|
|
metric: Optional[str] = 'chebyshev', |
240
|
|
|
return_transport: Optional[bool] = False, |
241
|
|
|
**kwargs |
242
|
|
|
) -> float: |
243
|
|
|
r"""Earth mover's distance (EMD) between two PDDs, aka the |
244
|
|
|
Wasserstein metric. |
245
|
|
|
|
246
|
|
|
Parameters |
247
|
|
|
---------- |
248
|
|
|
pdd : :class:`numpy.ndarray` |
249
|
|
|
PDD of a crystal. |
250
|
|
|
pdd\_ : :class:`numpy.ndarray` |
251
|
|
|
PDD of a crystal. |
252
|
|
|
metric : str or callable, default 'chebyshev' |
253
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
254
|
|
|
By default, Chebyshev (L-infinity) distance is chosen like with |
255
|
|
|
AMDs. Accepts any metric accepted by |
256
|
|
|
:func:`scipy.spatial.distance.cdist`. |
257
|
|
|
return_transport: bool, default False |
258
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
259
|
|
|
transport_plan describes the optimal flow. |
260
|
|
|
|
261
|
|
|
Returns |
262
|
|
|
------- |
263
|
|
|
emd : float |
264
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
265
|
|
|
is True, return a tuple (emd, transport_plan). |
266
|
|
|
|
267
|
|
|
Raises |
268
|
|
|
------ |
269
|
|
|
ValueError |
270
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
271
|
|
|
columns. |
272
|
|
|
""" |
273
|
|
|
|
274
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
275
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
276
|
|
|
|
277
|
|
|
if return_transport: |
278
|
|
|
return emd_dist, transport_plan |
279
|
|
|
return emd_dist |
280
|
|
|
|
281
|
|
|
|
282
|
|
|
def AMD_cdist( |
283
|
|
|
amds: npt.ArrayLike, |
284
|
|
|
amds_: npt.ArrayLike, |
285
|
|
|
metric: str = 'chebyshev', |
286
|
|
|
low_memory: bool = False, |
287
|
|
|
**kwargs |
288
|
|
|
) -> npt.NDArray: |
289
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
290
|
|
|
matrix. This function is essentially |
291
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
292
|
|
|
``chebyshev`` and a low memory option. |
293
|
|
|
|
294
|
|
|
Parameters |
295
|
|
|
---------- |
296
|
|
|
amds : ArrayLike |
297
|
|
|
A list/array of AMDs. |
298
|
|
|
amds\_ : ArrayLike |
299
|
|
|
A list/array of AMDs. |
300
|
|
|
metric : str or callable, default 'chebyshev' |
301
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) distance. |
302
|
|
|
Accepts any metric accepted by :func:`scipy.spatial.distance.cdist`. |
303
|
|
|
low_memory : bool, default False |
304
|
|
|
Use a slower but more memory efficient method for large collections of |
305
|
|
|
AMDs (metric 'chebyshev' only). |
306
|
|
|
|
307
|
|
|
Returns |
308
|
|
|
------- |
309
|
|
|
dm : :class:`numpy.ndarray` |
310
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` is the |
311
|
|
|
distance (given by ``metric``) between ``amds[i]`` and ``amds[j]``. |
312
|
|
|
""" |
313
|
|
|
|
314
|
|
|
amds, amds_ = np.asarray(amds), np.asarray(amds_) |
315
|
|
|
|
316
|
|
|
if len(amds.shape) == 1: |
317
|
|
|
amds = np.array([amds]) |
318
|
|
|
if len(amds_.shape) == 1: |
319
|
|
|
amds_ = np.array([amds_]) |
320
|
|
|
|
321
|
|
|
if low_memory: |
322
|
|
|
if metric != 'chebyshev': |
323
|
|
|
msg = "Using only allowed metric 'chebyshev' for low_memory" |
324
|
|
|
warnings.warn(msg, UserWarning) |
325
|
|
|
|
326
|
|
|
dm = np.empty((len(amds), len(amds_))) |
327
|
|
|
for i, amd_vec in enumerate(amds): |
328
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
329
|
|
|
else: |
330
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
331
|
|
|
|
332
|
|
|
return dm |
333
|
|
|
|
334
|
|
|
|
335
|
|
|
def AMD_pdist( |
336
|
|
|
amds: npt.ArrayLike, |
337
|
|
|
metric: str = 'chebyshev', |
338
|
|
|
low_memory: bool = False, |
339
|
|
|
**kwargs |
340
|
|
|
) -> npt.NDArray: |
341
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
342
|
|
|
matrix. This function is essentially |
343
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
344
|
|
|
``chebyshev`` and a low memory parameter. |
345
|
|
|
|
346
|
|
|
Parameters |
347
|
|
|
---------- |
348
|
|
|
amds : ArrayLike |
349
|
|
|
An list/array of AMDs. |
350
|
|
|
metric : str or callable, default 'chebyshev' |
351
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
352
|
|
|
distance. Accepts any metric accepted by |
353
|
|
|
:func:`scipy.spatial.distance.pdist`. |
354
|
|
|
low_memory : bool, default False |
355
|
|
|
Use a slower but more memory efficient method for large |
356
|
|
|
collections of AMDs (metric 'chebyshev' only). |
357
|
|
|
|
358
|
|
|
Returns |
359
|
|
|
------- |
360
|
|
|
cdm : :class:`numpy.ndarray` |
361
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
362
|
|
|
matrix into a vector, just keeping the upper half. See the |
363
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
364
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
365
|
|
|
""" |
366
|
|
|
|
367
|
|
|
amds = np.asarray(amds) |
368
|
|
|
|
369
|
|
|
if len(amds.shape) == 1: |
370
|
|
|
amds = np.array([amds]) |
371
|
|
|
|
372
|
|
|
if low_memory: |
373
|
|
|
m = len(amds) |
374
|
|
|
if metric != 'chebyshev': |
375
|
|
|
msg = 'Using only implemented metric "chebyshev" for low_memory' |
376
|
|
|
warnings.warn(msg, UserWarning) |
377
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.float64) |
378
|
|
|
ind = 0 |
379
|
|
|
for i in range(m): |
380
|
|
|
ind_ = ind + m - i - 1 |
381
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
382
|
|
|
ind = ind_ |
383
|
|
|
else: |
384
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
385
|
|
|
|
386
|
|
|
return cdm |
387
|
|
|
|
388
|
|
|
|
389
|
|
|
def PDD_cdist( |
390
|
|
|
pdds: List[npt.NDArray], |
391
|
|
|
pdds_: List[npt.NDArray], |
392
|
|
|
metric: str = 'chebyshev', |
393
|
|
|
backend: str = 'multiprocessing', |
394
|
|
|
n_jobs: Optional[int] = None, |
395
|
|
|
verbose: bool = False, |
396
|
|
|
**kwargs |
397
|
|
|
) -> npt.NDArray: |
398
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
399
|
|
|
matrix. Supports parallel processing via joblib. If using |
400
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
401
|
|
|
guard around this function. |
402
|
|
|
|
403
|
|
|
Parameters |
404
|
|
|
---------- |
405
|
|
|
pdds : List[:class:`numpy.ndarray`] |
406
|
|
|
A list of PDDs. |
407
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
408
|
|
|
A list of PDDs. |
409
|
|
|
metric : str or callable, default 'chebyshev' |
410
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
411
|
|
|
distance. Accepts any metric accepted by |
412
|
|
|
:func:`scipy.spatial.distance.cdist`. |
413
|
|
|
backend : str, default 'multiprocessing' |
414
|
|
|
The parallelization backend implementation. For a list of |
415
|
|
|
supported backends, see the backend argument of |
416
|
|
|
:class:`joblib.Parallel`. |
417
|
|
|
n_jobs : int, default None |
418
|
|
|
Maximum number of concurrent jobs for parallel processing with |
419
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
420
|
|
|
processing may be slower for small inputs. |
421
|
|
|
verbose : bool, default False |
422
|
|
|
Prints a progress bar. If using parallel processing |
423
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
424
|
|
|
is used, otherwise uses tqdm. |
425
|
|
|
|
426
|
|
|
Returns |
427
|
|
|
------- |
428
|
|
|
dm : :class:`numpy.ndarray` |
429
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
430
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
431
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
432
|
|
|
""" |
433
|
|
|
|
434
|
|
|
kwargs.pop('return_transport', None) |
435
|
|
|
k = pdds[0].shape[-1] - 1 |
436
|
|
|
if verbose: |
437
|
|
|
verbose = 3 |
438
|
|
|
|
439
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
440
|
|
|
# TODO: put results into preallocated empty array in place |
441
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
442
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
443
|
|
|
for i in range(len(pdds)) for j in range(len(pdds_)) |
444
|
|
|
) |
445
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
446
|
|
|
|
447
|
|
|
else: |
448
|
|
|
n, m = len(pdds), len(pdds_) |
449
|
|
|
dm = np.empty((n, m)) |
450
|
|
|
if verbose: |
451
|
|
|
desc = f'Comparing {len(pdds)}x{len(pdds_)} items by PDD (k={k})' |
452
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=n*m) |
453
|
|
|
for i in range(n): |
454
|
|
|
for j in range(m): |
455
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
456
|
|
|
if verbose: |
457
|
|
|
progress_bar.update(1) |
458
|
|
|
if verbose: |
459
|
|
|
progress_bar.close() |
460
|
|
|
|
461
|
|
|
return dm |
462
|
|
|
|
463
|
|
|
|
464
|
|
|
def PDD_pdist( |
465
|
|
|
pdds: List[npt.NDArray], |
466
|
|
|
metric: str = 'chebyshev', |
467
|
|
|
backend: str = 'multiprocessing', |
468
|
|
|
n_jobs: Optional[int] = None, |
469
|
|
|
verbose: bool = False, |
470
|
|
|
**kwargs |
471
|
|
|
) -> npt.NDArray: |
472
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
473
|
|
|
matrix. Supports parallelisation via joblib. If using |
474
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
475
|
|
|
guard around this function. |
476
|
|
|
|
477
|
|
|
Parameters |
478
|
|
|
---------- |
479
|
|
|
pdds : List[:class:`numpy.ndarray`] |
480
|
|
|
A list of PDDs. |
481
|
|
|
metric : str or callable, default 'chebyshev' |
482
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
483
|
|
|
distance. Accepts any metric accepted by |
484
|
|
|
:func:`scipy.spatial.distance.cdist`. |
485
|
|
|
backend : str, default 'multiprocessing' |
486
|
|
|
The parallelization backend implementation. For a list of |
487
|
|
|
supported backends, see the backend argument of |
488
|
|
|
:class:`joblib.Parallel`. |
489
|
|
|
n_jobs : int, default None |
490
|
|
|
Maximum number of concurrent jobs for parallel processing with |
491
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
492
|
|
|
processing may be slower for small inputs. |
493
|
|
|
verbose : bool, default False |
494
|
|
|
Prints a progress bar. If using parallel processing |
495
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
496
|
|
|
is used, otherwise uses tqdm. |
497
|
|
|
|
498
|
|
|
Returns |
499
|
|
|
------- |
500
|
|
|
cdm : :class:`numpy.ndarray` |
501
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
502
|
|
|
matrix into a vector, just keeping the upper half. See the |
503
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
504
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
505
|
|
|
""" |
506
|
|
|
|
507
|
|
|
kwargs.pop('return_transport', None) |
508
|
|
|
k = pdds[0].shape[-1] - 1 |
509
|
|
|
if verbose: |
510
|
|
|
verbose = 3 |
511
|
|
|
|
512
|
|
|
if n_jobs is not None and n_jobs > 1: |
513
|
|
|
# TODO: put results into preallocated empty array in place |
514
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
515
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
516
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
517
|
|
|
) |
518
|
|
|
cdm = np.array(cdm) |
519
|
|
|
|
520
|
|
|
else: |
521
|
|
|
m = len(pdds) |
522
|
|
|
cdm_len = (m * (m - 1)) // 2 |
523
|
|
|
cdm = np.empty(cdm_len, dtype=np.float64) |
524
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
525
|
|
|
if verbose: |
526
|
|
|
desc = f'Comparing {len(pdds)} items pairwise by PDD (k={k})' |
527
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=cdm_len) |
528
|
|
|
for r, (i, j) in enumerate(inds): |
529
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
530
|
|
|
if verbose: |
531
|
|
|
progress_bar.update(1) |
532
|
|
|
if verbose: |
533
|
|
|
progress_bar.close() |
534
|
|
|
return cdm |
535
|
|
|
|
536
|
|
|
|
537
|
|
|
def emd(pdd: npt.NDArray, pdd_: npt.NDArray, **kwargs) -> float: |
538
|
|
|
"""Alias for :func:`EMD() <.compare.EMD>`.""" |
539
|
|
|
return EMD(pdd, pdd_, **kwargs) |
540
|
|
|
|
541
|
|
|
|
542
|
|
|
def _unwrap_periodicset_list(psets_or_str, **reader_kwargs): |
543
|
|
|
"""Valid input for amd.compare() (``PeriodicSet``, path, refcode, |
544
|
|
|
lists of such) --> list of PeriodicSets. |
545
|
|
|
""" |
546
|
|
|
|
547
|
|
|
def _extract_periodicsets(item, **reader_kwargs): |
548
|
|
|
"""str (path/refcode), file or ``PeriodicSet`` --> list of |
549
|
|
|
``PeriodicSets``. |
550
|
|
|
""" |
551
|
|
|
|
552
|
|
|
if isinstance(item, PeriodicSet): |
553
|
|
|
return [item] |
554
|
|
|
if isinstance(psets_or_str, Tuple): |
555
|
|
|
return [PeriodicSet(psets_or_str[0], psets_or_str[1])] |
556
|
|
|
if isinstance(item, str) and not os.path.isfile(item) \ |
557
|
|
|
and not os.path.isdir(item): |
558
|
|
|
reader_kwargs.pop('reader', None) |
559
|
|
|
return list(CSDReader(item, **reader_kwargs)) |
560
|
|
|
reader_kwargs.pop('families', None) |
561
|
|
|
reader_kwargs.pop('refcodes', None) |
562
|
|
|
return list(CifReader(item, **reader_kwargs)) |
563
|
|
|
|
564
|
|
|
if isinstance(psets_or_str, list): |
565
|
|
|
return [s for item in psets_or_str |
566
|
|
|
for s in _extract_periodicsets(item, **reader_kwargs)] |
567
|
|
|
return _extract_periodicsets(psets_or_str, **reader_kwargs) |
568
|
|
|
|