1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
import warnings |
5
|
|
|
from typing import List, Optional, Union |
6
|
|
|
from functools import partial |
7
|
|
|
from itertools import combinations |
8
|
|
|
import os |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
import pandas as pd |
12
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
13
|
|
|
from joblib import Parallel, delayed |
14
|
|
|
import tqdm |
15
|
|
|
|
16
|
|
|
from .io import CifReader, CSDReader |
17
|
|
|
from .calculate import AMD, PDD |
18
|
|
|
from ._emd import network_simplex |
19
|
|
|
from .periodicset import PeriodicSet |
20
|
|
|
from .utils import neighbours_from_distance_matrix |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def compare( |
24
|
|
|
crystals, |
25
|
|
|
crystals_=None, |
26
|
|
|
by='AMD', |
27
|
|
|
k=100, |
28
|
|
|
nearest=None, |
29
|
|
|
reader='ase', |
30
|
|
|
remove_hydrogens=False, |
31
|
|
|
disorder='skip', |
32
|
|
|
heaviest_component=False, |
33
|
|
|
molecular_centres=False, |
34
|
|
|
families=False, |
35
|
|
|
show_warnings=True, |
36
|
|
|
collapse_tol=1e-4, |
37
|
|
|
metric='chebyshev', |
38
|
|
|
n_jobs=None, |
39
|
|
|
verbose=0, |
40
|
|
|
low_memory=False, |
41
|
|
|
) -> pd.DataFrame: |
42
|
|
|
r"""Given one or two sets of periodic set(s), paths to cif(s) or |
43
|
|
|
refcode(s), compare them and return a DataFrame of the distance |
44
|
|
|
matrix. Default is to comapre by AMD with k = 100. Accepts most |
45
|
|
|
keyword arguments accepted by :class:`CifReader <.io.CifReader>`, |
46
|
|
|
:class:`CSDReader <.io.CSDReader>` and functions from |
47
|
|
|
:mod:`.compare`. |
48
|
|
|
|
49
|
|
|
Parameters |
50
|
|
|
---------- |
51
|
|
|
crystals : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str |
52
|
|
|
One or a collection of paths, refcodes, file objects or |
53
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
54
|
|
|
crystals\_ : list of :class:`PeriodicSet <.periodicset.PeriodicSet>` or str, optional |
55
|
|
|
One or a collection of paths, refcodes, file objects or |
56
|
|
|
:class:`PeriodicSets <.periodicset.PeriodicSet>`. |
57
|
|
|
by : str, default 'AMD' |
58
|
|
|
Use AMD or PDD to compare crystals. |
59
|
|
|
k : int, default 100 |
60
|
|
|
Number of neighbour atoms to use for AMD/PDD. |
61
|
|
|
nearest : int, deafult None |
62
|
|
|
Find a number of nearest neighbours instead of a full distance |
63
|
|
|
matrix between crystals. |
64
|
|
|
reader : str, optional |
65
|
|
|
The backend package used to parse the CIF. The default is |
66
|
|
|
:code:`ase`, :code:`pymatgen` and :code:`gemmi` are also |
67
|
|
|
accepted, as well as :code:`ccdc` if csd-python-api is |
68
|
|
|
installed. The ccdc reader should be able to read any format |
69
|
|
|
accepted by :class:`ccdc.io.EntryReader`, though only CIFs have |
70
|
|
|
been tested. |
71
|
|
|
remove_hydrogens : bool, optional |
72
|
|
|
Remove hydrogens from the crystals. |
73
|
|
|
disorder : str, optional |
74
|
|
|
Controls how disordered structures are handled. Default is |
75
|
|
|
``skip`` which skips any crystal with disorder, since disorder |
76
|
|
|
conflicts with the periodic set model. To read disordered |
77
|
|
|
structures anyway, choose either :code:`ordered_sites` to remove |
78
|
|
|
atoms with disorder or :code:`all_sites` include all atoms |
79
|
|
|
regardless of disorder. |
80
|
|
|
heaviest_component : bool, optional, csd-python-api only |
81
|
|
|
Removes all but the heaviest molecule in |
82
|
|
|
the asymmeric unit, intended for removing solvents. |
83
|
|
|
molecular_centres : bool, default False, csd-python-api only |
84
|
|
|
Use the centres of molecules for comparison |
85
|
|
|
instead of centres of atoms. |
86
|
|
|
families : bool, optional, csd-python-api only |
87
|
|
|
Read all entries whose refcode starts with |
88
|
|
|
the given strings, or 'families' (e.g. giving 'DEBXIT' reads all |
89
|
|
|
entries with refcodes starting with DEBXIT). |
90
|
|
|
show_warnings : bool, optional |
91
|
|
|
Controls whether warnings that arise during reading are printed. |
92
|
|
|
collapse_tol: float, default 1e-4, ``by='PDD'`` only |
93
|
|
|
If two PDD rows have all elements closer |
94
|
|
|
than ``collapse_tol``, they are merged and weights are given to |
95
|
|
|
rows in proportion to the number of times they appeared. |
96
|
|
|
metric : str or callable, default 'chebyshev' |
97
|
|
|
The metric to compare AMDs/PDDs with. AMDs are compared directly |
98
|
|
|
with this metric. EMD is the metric used between PDDs, which |
99
|
|
|
requires giving a metric to use between PDD rows. Chebyshev |
100
|
|
|
(L-infinity) distance is the default. Accepts any metric |
101
|
|
|
accepted by :func:`scipy.spatial.distance.cdist`. |
102
|
|
|
n_jobs : int, default None, ``by='PDD'`` only |
103
|
|
|
Maximum number of concurrent jobs for |
104
|
|
|
parallel processing with :code:`joblib`. Set to -1 to use the |
105
|
|
|
maximum. Using parallel processing may be slower for small |
106
|
|
|
inputs. |
107
|
|
|
verbose : int, default 0, ``by='PDD'`` only |
108
|
|
|
Verbosity level. If using parallel processing (n_jobs > 1), |
109
|
|
|
passed to :class:`joblib.Parallel` where larger values = more |
110
|
|
|
verbose. Otherwise uses tqdm if verbose is True. |
111
|
|
|
low_memory : bool, default False, ``by='AMD'`` only |
112
|
|
|
Use a slower but more memory efficient |
113
|
|
|
method for large collections of AMDs (metric 'chebyshev' only). |
114
|
|
|
|
115
|
|
|
Returns |
116
|
|
|
------- |
117
|
|
|
df : :class:`pandas.DataFrame` |
118
|
|
|
DataFrame of the distance matrix for the given crystals compared |
119
|
|
|
by the chosen invariant. |
120
|
|
|
|
121
|
|
|
Raises |
122
|
|
|
------ |
123
|
|
|
ValueError |
124
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid |
125
|
|
|
crystals to compare, or if crystals or crystals\_ are an invalid |
126
|
|
|
type. |
127
|
|
|
|
128
|
|
|
Examples |
129
|
|
|
-------- |
130
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
131
|
|
|
|
132
|
|
|
df = amd.compare('data.cif') |
133
|
|
|
|
134
|
|
|
Compare everything in one cif with all crystals in all cifs in a |
135
|
|
|
directory (PDD, k=50):: |
136
|
|
|
|
137
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
138
|
|
|
|
139
|
|
|
**Examples (csd-python-api only)** |
140
|
|
|
|
141
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
142
|
|
|
|
143
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50) |
144
|
|
|
|
145
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
146
|
|
|
|
147
|
|
|
df = amd.compare('DEBXIT', families=True) |
148
|
|
|
""" |
149
|
|
|
|
150
|
|
|
by = by.upper() |
151
|
|
|
if by not in ('AMD', 'PDD'): |
152
|
|
|
msg = f"parameter 'by' accepts 'AMD' or 'PDD', passed {by}" |
153
|
|
|
raise ValueError(msg) |
154
|
|
|
|
155
|
|
|
reader_kwargs = { |
156
|
|
|
'reader': reader, |
157
|
|
|
'families': families, |
158
|
|
|
'remove_hydrogens': remove_hydrogens, |
159
|
|
|
'disorder': disorder, |
160
|
|
|
'heaviest_component': heaviest_component, |
161
|
|
|
'molecular_centres': molecular_centres, |
162
|
|
|
'show_warnings': show_warnings, |
163
|
|
|
} |
164
|
|
|
|
165
|
|
|
pdd_kwargs = { |
166
|
|
|
'collapse': True, |
167
|
|
|
'collapse_tol': collapse_tol, |
168
|
|
|
'lexsort': False, |
169
|
|
|
} |
170
|
|
|
|
171
|
|
|
compare_kwargs = { |
172
|
|
|
'metric': metric, |
173
|
|
|
'n_jobs': n_jobs, |
174
|
|
|
'verbose': verbose, |
175
|
|
|
'low_memory': low_memory, |
176
|
|
|
} |
177
|
|
|
|
178
|
|
|
crystals = _unwrap_periodicset_list(crystals, **reader_kwargs) |
179
|
|
|
if not crystals: |
180
|
|
|
raise ValueError('No valid crystals to compare in first set.') |
181
|
|
|
names = [s.name for s in crystals] |
182
|
|
|
|
183
|
|
|
if crystals_ is None: |
184
|
|
|
names_ = names |
185
|
|
|
else: |
186
|
|
|
crystals_ = _unwrap_periodicset_list(crystals_, **reader_kwargs) |
187
|
|
|
if not crystals_: |
188
|
|
|
raise ValueError('No valid crystals to compare in second set.') |
189
|
|
|
names_ = [s.name for s in crystals_] |
190
|
|
|
|
191
|
|
|
if reader_kwargs['molecular_centres']: |
192
|
|
|
crystals = [(c.molecular_centres, c.cell) for c in crystals] |
193
|
|
|
if crystals_: |
194
|
|
|
crystals_ = [(c.molecular_centres, c.cell) for c in crystals_] |
195
|
|
|
|
196
|
|
|
if by == 'AMD': |
197
|
|
|
|
198
|
|
|
invs = [AMD(s, k) for s in crystals] |
199
|
|
|
compare_kwargs.pop('n_jobs', None) |
200
|
|
|
compare_kwargs.pop('verbose', None) |
201
|
|
|
|
202
|
|
|
if crystals_ is None: |
203
|
|
|
dm = AMD_pdist(invs, **compare_kwargs) |
204
|
|
|
else: |
205
|
|
|
invs_ = [AMD(s, k) for s in crystals_] |
206
|
|
|
dm = AMD_cdist(invs, invs_, **compare_kwargs) |
207
|
|
|
|
208
|
|
|
elif by == 'PDD': |
209
|
|
|
|
210
|
|
|
invs = [PDD(s, k, **pdd_kwargs) for s in crystals] |
211
|
|
|
compare_kwargs.pop('low_memory', None) |
212
|
|
|
|
213
|
|
|
if crystals_ is None: |
214
|
|
|
dm = PDD_pdist(invs, **compare_kwargs) |
215
|
|
|
else: |
216
|
|
|
invs_ = [PDD(s, k, **pdd_kwargs) for s in crystals_] |
217
|
|
|
dm = PDD_cdist(invs, invs_, **compare_kwargs) |
218
|
|
|
|
219
|
|
|
if nearest: |
220
|
|
|
nn_dm, inds = neighbours_from_distance_matrix(nearest, dm) |
221
|
|
|
data = {} |
222
|
|
|
for i in range(nearest): |
223
|
|
|
data['ID ' + str(i+1)] = [names_[j] for j in inds[:, i]] |
224
|
|
|
data['DIST ' + str(i+1)] = nn_dm[:, i] |
225
|
|
|
df = pd.DataFrame(data, index=names) |
226
|
|
|
|
227
|
|
|
else: |
228
|
|
|
if dm.ndim == 1: |
229
|
|
|
dm = squareform(dm) |
230
|
|
|
df = pd.DataFrame(dm, index=names, columns=names_) |
231
|
|
|
|
232
|
|
|
return df |
233
|
|
|
|
234
|
|
|
|
235
|
|
|
def EMD( |
236
|
|
|
pdd: np.ndarray, |
237
|
|
|
pdd_: np.ndarray, |
238
|
|
|
metric: Optional[str] = 'chebyshev', |
239
|
|
|
return_transport: Optional[bool] = False, |
240
|
|
|
**kwargs): |
241
|
|
|
r"""Earth mover's distance (EMD) between two PDDs, aka the |
242
|
|
|
Wasserstein metric. |
243
|
|
|
|
244
|
|
|
Parameters |
245
|
|
|
---------- |
246
|
|
|
pdd : :class:`numpy.ndarray` |
247
|
|
|
PDD of a crystal. |
248
|
|
|
pdd\_ : :class:`numpy.ndarray` |
249
|
|
|
PDD of a crystal. |
250
|
|
|
metric : str or callable, default 'chebyshev' |
251
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
252
|
|
|
By default, Chebyshev (L-infinity) distance is chosen like with |
253
|
|
|
AMDs. Accepts any metric accepted by |
254
|
|
|
:func:`scipy.spatial.distance.cdist`. |
255
|
|
|
return_transport: bool, default False |
256
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
257
|
|
|
transport_plan describes the optimal flow. |
258
|
|
|
|
259
|
|
|
Returns |
260
|
|
|
------- |
261
|
|
|
emd : float |
262
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
263
|
|
|
is True, return a tuple (emd, transport_plan). |
264
|
|
|
|
265
|
|
|
Raises |
266
|
|
|
------ |
267
|
|
|
ValueError |
268
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
269
|
|
|
columns. |
270
|
|
|
""" |
271
|
|
|
|
272
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
273
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
274
|
|
|
|
275
|
|
|
if return_transport: |
276
|
|
|
return emd_dist, transport_plan |
277
|
|
|
|
278
|
|
|
return emd_dist |
279
|
|
|
|
280
|
|
|
|
281
|
|
|
def AMD_cdist( |
282
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
283
|
|
|
amds_: Union[np.ndarray, List[np.ndarray]], |
284
|
|
|
metric: str = 'chebyshev', |
285
|
|
|
low_memory: bool = False, |
286
|
|
|
**kwargs |
287
|
|
|
) -> np.ndarray: |
288
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
289
|
|
|
matrix. This function is essentially |
290
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
291
|
|
|
``chebyshev`` and a low memory option. |
292
|
|
|
|
293
|
|
|
Parameters |
294
|
|
|
---------- |
295
|
|
|
amds : array_like |
296
|
|
|
A list/array of AMDs. |
297
|
|
|
amds\_ : array_like |
298
|
|
|
A list/array of AMDs. |
299
|
|
|
metric : str or callable, default 'chebyshev' |
300
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) distance. |
301
|
|
|
Accepts any metric accepted by :func:`scipy.spatial.distance.cdist`. |
302
|
|
|
low_memory : bool, default False |
303
|
|
|
Use a slower but more memory efficient method for large collections of |
304
|
|
|
AMDs (metric 'chebyshev' only). |
305
|
|
|
|
306
|
|
|
Returns |
307
|
|
|
------- |
308
|
|
|
dm : :class:`numpy.ndarray` |
309
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` is the |
310
|
|
|
distance (given by ``metric``) between ``amds[i]`` and ``amds[j]``. |
311
|
|
|
""" |
312
|
|
|
|
313
|
|
|
amds, amds_ = np.asarray(amds), np.asarray(amds_) |
314
|
|
|
|
315
|
|
|
if len(amds.shape) == 1: |
316
|
|
|
amds = np.array([amds]) |
317
|
|
|
if len(amds_.shape) == 1: |
318
|
|
|
amds_ = np.array([amds_]) |
319
|
|
|
|
320
|
|
|
if low_memory: |
321
|
|
|
if metric != 'chebyshev': |
322
|
|
|
msg = "Using only allowed metric 'chebyshev' for low_memory" |
323
|
|
|
warnings.warn(msg, UserWarning) |
324
|
|
|
|
325
|
|
|
dm = np.empty((len(amds), len(amds_))) |
326
|
|
|
for i, amd_vec in enumerate(amds): |
327
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
328
|
|
|
else: |
329
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
330
|
|
|
|
331
|
|
|
return dm |
332
|
|
|
|
333
|
|
|
|
334
|
|
|
def AMD_pdist( |
335
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
336
|
|
|
metric: str = 'chebyshev', |
337
|
|
|
low_memory: bool = False, |
338
|
|
|
**kwargs |
339
|
|
|
) -> np.ndarray: |
340
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
341
|
|
|
matrix. This function is essentially |
342
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
343
|
|
|
``chebyshev`` and a low memory parameter. |
344
|
|
|
|
345
|
|
|
Parameters |
346
|
|
|
---------- |
347
|
|
|
amds : array_like |
348
|
|
|
An list/array of AMDs. |
349
|
|
|
metric : str or callable, default 'chebyshev' |
350
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
351
|
|
|
distance. Accepts any metric accepted by |
352
|
|
|
:func:`scipy.spatial.distance.pdist`. |
353
|
|
|
low_memory : bool, default False |
354
|
|
|
Use a slower but more memory efficient method for large |
355
|
|
|
collections of AMDs (metric 'chebyshev' only). |
356
|
|
|
|
357
|
|
|
Returns |
358
|
|
|
------- |
359
|
|
|
cdm : :class:`numpy.ndarray` |
360
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
361
|
|
|
matrix into a vector, just keeping the upper half. See the |
362
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
363
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
364
|
|
|
""" |
365
|
|
|
|
366
|
|
|
amds = np.asarray(amds) |
367
|
|
|
|
368
|
|
|
if len(amds.shape) == 1: |
369
|
|
|
amds = np.array([amds]) |
370
|
|
|
|
371
|
|
|
if low_memory: |
372
|
|
|
m = len(amds) |
373
|
|
|
if metric != 'chebyshev': |
374
|
|
|
msg = "Using only allowed metric 'chebyshev' for low_memory" |
375
|
|
|
warnings.warn(msg, UserWarning) |
376
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.double) |
377
|
|
|
ind = 0 |
378
|
|
|
for i in range(m): |
379
|
|
|
ind_ = ind + m - i - 1 |
380
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
381
|
|
|
ind = ind_ |
382
|
|
|
else: |
383
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
384
|
|
|
|
385
|
|
|
return cdm |
386
|
|
|
|
387
|
|
|
|
388
|
|
|
def PDD_cdist( |
389
|
|
|
pdds: List[np.ndarray], |
390
|
|
|
pdds_: List[np.ndarray], |
391
|
|
|
metric: str = 'chebyshev', |
392
|
|
|
backend='multiprocessing', |
393
|
|
|
n_jobs=None, |
394
|
|
|
verbose=0, |
395
|
|
|
**kwargs |
396
|
|
|
) -> np.ndarray: |
397
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
398
|
|
|
matrix. Supports parallel processing via joblib. If using |
399
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
400
|
|
|
guard around this function. |
401
|
|
|
|
402
|
|
|
Parameters |
403
|
|
|
---------- |
404
|
|
|
pdds : List[:class:`numpy.ndarray`] |
405
|
|
|
A list of PDDs. |
406
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
407
|
|
|
A list of PDDs. |
408
|
|
|
metric : str or callable, default 'chebyshev' |
409
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
410
|
|
|
distance. Accepts any metric accepted by |
411
|
|
|
:func:`scipy.spatial.distance.cdist`. |
412
|
|
|
backend : str, default 'multiprocessing' |
413
|
|
|
The parallelization backend implementation. For a list of |
414
|
|
|
supported backends, see the backend argument of |
415
|
|
|
:class:`joblib.Parallel`. |
416
|
|
|
n_jobs : int, default None |
417
|
|
|
Maximum number of concurrent jobs for parallel processing with |
418
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
419
|
|
|
processing may be slower for small inputs. |
420
|
|
|
verbose : int, default 0 |
421
|
|
|
Verbosity level. If using parallel processing (n_jobs > 1), |
422
|
|
|
passed to :class:`joblib.Parallel` where larger values = more |
423
|
|
|
verbose. Otherwise uses tqdm if verbose is True. |
424
|
|
|
|
425
|
|
|
Returns |
426
|
|
|
------- |
427
|
|
|
dm : :class:`numpy.ndarray` |
428
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
429
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
430
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
431
|
|
|
""" |
432
|
|
|
|
433
|
|
|
if isinstance(pdds, np.ndarray): |
434
|
|
|
if len(pdds.shape) == 2: |
435
|
|
|
pdds = [pdds] |
436
|
|
|
|
437
|
|
|
if isinstance(pdds_, np.ndarray): |
438
|
|
|
if len(pdds_.shape) == 2: |
439
|
|
|
pdds_ = [pdds_] |
440
|
|
|
|
441
|
|
|
kwargs.pop('return_transport', None) |
442
|
|
|
|
443
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
444
|
|
|
# TODO: put results into preallocated empty array in place |
445
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
446
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
447
|
|
|
for i in range(len(pdds)) for j in range(len(pdds_)) |
448
|
|
|
) |
449
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
450
|
|
|
|
451
|
|
|
else: |
452
|
|
|
n, m = len(pdds), len(pdds_) |
453
|
|
|
dm = np.empty((n, m)) |
454
|
|
|
if verbose: |
455
|
|
|
pbar = tqdm.tqdm(total=n*m) |
456
|
|
|
for i in range(n): |
457
|
|
|
for j in range(m): |
458
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
459
|
|
|
if verbose: |
460
|
|
|
pbar.update(1) |
461
|
|
|
if verbose: |
462
|
|
|
pbar.close() |
463
|
|
|
|
464
|
|
|
return dm |
465
|
|
|
|
466
|
|
|
|
467
|
|
|
def PDD_pdist( |
468
|
|
|
pdds: List[np.ndarray], |
469
|
|
|
metric: str = 'chebyshev', |
470
|
|
|
backend='multiprocessing', |
471
|
|
|
n_jobs=None, |
472
|
|
|
verbose=0, |
473
|
|
|
**kwargs |
474
|
|
|
) -> np.ndarray: |
475
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
476
|
|
|
matrix. Supports parallelisation via joblib. If using |
477
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
478
|
|
|
guard around this function. |
479
|
|
|
|
480
|
|
|
Parameters |
481
|
|
|
---------- |
482
|
|
|
pdds : List[:class:`numpy.ndarray`] |
483
|
|
|
A list of PDDs. |
484
|
|
|
metric : str or callable, default 'chebyshev' |
485
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
486
|
|
|
distance. Accepts any metric accepted by |
487
|
|
|
:func:`scipy.spatial.distance.cdist`. |
488
|
|
|
backend : str, default 'multiprocessing' |
489
|
|
|
The parallelization backend implementation. For a list of |
490
|
|
|
supported backends, see the backend argument of |
491
|
|
|
:class:`joblib.Parallel`. |
492
|
|
|
n_jobs : int, default None |
493
|
|
|
Maximum number of concurrent jobs for parallel processing with |
494
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
495
|
|
|
processing may be slower for small inputs. |
496
|
|
|
verbose : int, default 0 |
497
|
|
|
Verbosity level. If using parallel processing (n_jobs > 1), |
498
|
|
|
passed to :class:`joblib.Parallel` where larger values = more |
499
|
|
|
verbose. Otherwise uses tqdm if verbose is True. |
500
|
|
|
|
501
|
|
|
Returns |
502
|
|
|
------- |
503
|
|
|
cdm : :class:`numpy.ndarray` |
504
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
505
|
|
|
matrix into a vector, just keeping the upper half. See the |
506
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
507
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
508
|
|
|
""" |
509
|
|
|
|
510
|
|
|
kwargs.pop('return_transport', None) |
511
|
|
|
|
512
|
|
|
if n_jobs is not None and n_jobs > 1: |
513
|
|
|
# TODO: put results into preallocated empty array in place |
514
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=verbose)( |
515
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
516
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
517
|
|
|
) |
518
|
|
|
cdm = np.array(cdm) |
519
|
|
|
|
520
|
|
|
else: |
521
|
|
|
m = len(pdds) |
522
|
|
|
cdm_len = (m * (m - 1)) // 2 |
523
|
|
|
cdm = np.empty(cdm_len, dtype=np.double) |
524
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
525
|
|
|
if verbose: |
526
|
|
|
eta = tqdm.tqdm(cdm_len) |
527
|
|
|
for r, (i, j) in enumerate(inds): |
528
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
529
|
|
|
if verbose: |
530
|
|
|
eta.update(1) |
531
|
|
|
if verbose: |
532
|
|
|
eta.close() |
533
|
|
|
return cdm |
534
|
|
|
|
535
|
|
|
|
536
|
|
|
def emd(pdd: np.ndarray, pdd_: np.ndarray, **kwargs): |
537
|
|
|
"""Alias for :func:`EMD() <.compare.EMD>`.""" |
538
|
|
|
return EMD(pdd, pdd_, **kwargs) |
539
|
|
|
|
540
|
|
|
|
541
|
|
|
def _unwrap_periodicset_list(psets_or_str, **reader_kwargs): |
542
|
|
|
"""Valid input for amd.compare() (``PeriodicSet``, path, refcode, |
543
|
|
|
lists of such) --> list of PeriodicSets. |
544
|
|
|
""" |
545
|
|
|
|
546
|
|
|
def _extract_periodicsets(item, **reader_kwargs): |
547
|
|
|
"""str (path/refcode), file or ``PeriodicSet`` --> list of |
548
|
|
|
``PeriodicSets``. |
549
|
|
|
""" |
550
|
|
|
|
551
|
|
|
if isinstance(item, PeriodicSet): |
552
|
|
|
return [item] |
553
|
|
|
if isinstance(item, str) and not os.path.isfile(item) \ |
554
|
|
|
and not os.path.isdir(item): |
555
|
|
|
reader_kwargs.pop('reader', None) |
556
|
|
|
return list(CSDReader(item, **reader_kwargs)) |
557
|
|
|
reader_kwargs.pop('families', None) |
558
|
|
|
reader_kwargs.pop('refcodes', None) |
559
|
|
|
return list(CifReader(item, **reader_kwargs)) |
560
|
|
|
|
561
|
|
|
if isinstance(psets_or_str, PeriodicSet): |
562
|
|
|
return [psets_or_str] |
563
|
|
|
if isinstance(psets_or_str, list): |
564
|
|
|
return [s for item in psets_or_str |
565
|
|
|
for s in _extract_periodicsets(item, **reader_kwargs)] |
566
|
|
|
return _extract_periodicsets(psets_or_str, **reader_kwargs) |
567
|
|
|
|