1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
from typing import List, Optional, Union |
5
|
|
|
import warnings |
6
|
|
|
from itertools import combinations |
7
|
|
|
from functools import partial |
8
|
|
|
import os |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
from scipy.spatial.distance import cdist, pdist, squareform |
12
|
|
|
from joblib import Parallel, delayed |
13
|
|
|
import pandas as pd |
14
|
|
|
|
15
|
|
|
from ._emd import network_simplex |
16
|
|
|
from .periodicset import PeriodicSet |
17
|
|
|
from .calculate import AMD, PDD |
18
|
|
|
from .io import CifReader, CSDReader |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
def compare(crystals, crystals_=None, by='AMD', k=100, **kwargs): |
22
|
|
|
r"""Given one or two sets of periodic set(s), refcode(s) or cif(s), compare them |
23
|
|
|
returning a DataFrame of the distance matrix. Default is to comapre by PDD |
24
|
|
|
with k=100. Accepts most keyword arguments accepted by the CifReader, CSDReader |
25
|
|
|
and compare functions, for a full list see the documentation Quick Start page. |
26
|
|
|
Note that using refcodes requires csd-python-api. |
27
|
|
|
|
28
|
|
|
Parameters |
29
|
|
|
---------- |
30
|
|
|
crystals : array or list of arrays |
31
|
|
|
One or a collection of paths, refcodes, file objects or :class:`.periodicset.PeriodicSet` s. |
32
|
|
|
crystals\_ : array or list of arrays, optional |
33
|
|
|
One or a collection of paths, refcodes, file objects or :class:`.periodicset.PeriodicSet` s. |
34
|
|
|
by : str, default 'AMD' |
35
|
|
|
Invariant to compare by, either 'AMD' or 'PDD'. |
36
|
|
|
k: int, default 100 |
37
|
|
|
k value to use for the invariants (length of AMD, or number of columns in PDD). |
38
|
|
|
|
39
|
|
|
Returns |
40
|
|
|
------- |
41
|
|
|
df : pandas.DataFrame |
42
|
|
|
DataFrame of the distance matrix for the given crystals compared by the chosen invariant. |
43
|
|
|
|
44
|
|
|
Raises |
45
|
|
|
------ |
46
|
|
|
ValueError |
47
|
|
|
If by is not 'AMD' or 'PDD', if either set given have no valid crystals |
48
|
|
|
to compare, or if crystals or crystals\_ are an invalid type. |
49
|
|
|
|
50
|
|
|
Examples |
51
|
|
|
-------- |
52
|
|
|
Compare everything in a .cif (deafult, AMD with k=100):: |
53
|
|
|
|
54
|
|
|
df = amd.compare('data.cif') |
55
|
|
|
|
56
|
|
|
Compare everything in one cif with all crystals in all cifs in a directory (PDD, k=50):: |
57
|
|
|
|
58
|
|
|
df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50) |
59
|
|
|
|
60
|
|
|
**Examples (csd-python-api only)** |
61
|
|
|
|
62
|
|
|
Compare two crystals by CSD refcode (PDD, k=50):: |
63
|
|
|
|
64
|
|
|
df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50) |
65
|
|
|
|
66
|
|
|
Compare everything in a refcode family (AMD, k=100):: |
67
|
|
|
|
68
|
|
|
df = amd.compare('DEBXIT', families=True) |
69
|
|
|
""" |
70
|
|
|
|
71
|
|
|
by = by.upper() |
72
|
|
|
if by not in ('AMD', 'PDD'): |
73
|
|
|
raise ValueError(f"parameter 'by' in compare accepts 'AMD' or 'PDD', was passed {by}") |
74
|
|
|
|
75
|
|
|
reader_kwargs = { |
76
|
|
|
'reader': 'ase', |
77
|
|
|
'families': False, |
78
|
|
|
'remove_hydrogens': False, |
79
|
|
|
'disorder': 'skip', |
80
|
|
|
'heaviest_component': False, |
81
|
|
|
'show_warnings': True, |
82
|
|
|
} |
83
|
|
|
|
|
|
|
|
84
|
|
|
calc_kwargs = { |
85
|
|
|
'collapse': True, |
86
|
|
|
'collapse_tol': 1e-4, |
87
|
|
|
} |
88
|
|
|
|
89
|
|
|
compare_kwargs = { |
90
|
|
|
'metric': 'chebyshev', |
91
|
|
|
'n_jobs': None, |
92
|
|
|
'verbose': 0, |
93
|
|
|
'low_memory': False, |
94
|
|
|
} |
95
|
|
|
|
96
|
|
|
for key in kwargs.keys() & calc_kwargs.keys(): |
97
|
|
|
calc_kwargs[key] = kwargs[key] |
98
|
|
|
del kwargs[key] |
99
|
|
|
|
100
|
|
|
for key in kwargs.keys() & reader_kwargs.keys(): |
101
|
|
|
reader_kwargs[key] = kwargs[key] |
102
|
|
|
del kwargs[key] |
103
|
|
|
|
|
|
|
|
104
|
|
|
compare_kwargs.update(kwargs) |
105
|
|
|
|
106
|
|
|
crystals = _unwrap_periodicset_list(crystals, **reader_kwargs) |
107
|
|
|
if not crystals: |
108
|
|
|
raise ValueError('No valid crystals to compare in first set passed.') |
109
|
|
|
|
110
|
|
|
if by == 'AMD': |
111
|
|
|
invs = [AMD(s, k) for s in crystals] |
112
|
|
|
compare_kwargs.pop('n_jobs', None) |
113
|
|
|
compare_kwargs.pop('verbose', None) |
114
|
|
|
elif by == 'PDD': |
115
|
|
|
invs = [PDD(s, k, lexsort=False, **calc_kwargs) for s in crystals] |
116
|
|
|
compare_kwargs.pop('low_memory', None) |
117
|
|
|
|
118
|
|
|
names = [s.name for s in crystals] |
119
|
|
|
|
120
|
|
|
if crystals_ is None: |
121
|
|
|
names_ = names |
122
|
|
|
if by == 'AMD': |
123
|
|
|
dm = squareform(AMD_pdist(invs, **compare_kwargs)) |
124
|
|
|
elif by == 'PDD': |
125
|
|
|
dm = squareform(PDD_pdist(invs, **compare_kwargs)) |
126
|
|
|
else: |
127
|
|
|
crystals_ = _unwrap_periodicset_list(crystals_, **reader_kwargs) |
128
|
|
|
if not crystals_: |
129
|
|
|
raise ValueError('No valid crystals to compare in second set passed.') |
130
|
|
|
names_ = [s.name for s in crystals_] |
131
|
|
|
|
132
|
|
|
if by == 'AMD': |
133
|
|
|
invs_ = [AMD(s, k) for s in crystals_] |
134
|
|
|
dm = AMD_cdist(invs, invs_, **compare_kwargs) |
135
|
|
|
elif by == 'PDD': |
136
|
|
|
invs_ = [PDD(s, k) for s in crystals_] |
137
|
|
|
dm = PDD_cdist(invs, invs_, **compare_kwargs) |
138
|
|
|
|
139
|
|
|
return pd.DataFrame(dm, index=names, columns=names_) |
140
|
|
|
|
141
|
|
|
|
142
|
|
|
def EMD( |
143
|
|
|
pdd: np.ndarray, |
144
|
|
|
pdd_: np.ndarray, |
145
|
|
|
metric: Optional[str] = 'chebyshev', |
146
|
|
|
return_transport: Optional[bool] = False, |
147
|
|
|
**kwargs): |
148
|
|
|
r"""Earth mover's distance (EMD) between two PDDs, also known as |
149
|
|
|
the Wasserstein metric. |
150
|
|
|
|
151
|
|
|
Parameters |
152
|
|
|
---------- |
153
|
|
|
pdd : numpy.ndarray |
154
|
|
|
PDD of a crystal. |
155
|
|
|
pdd\_ : numpy.ndarray |
156
|
|
|
PDD of a crystal. |
157
|
|
|
metric : str or callable, default 'chebyshev' |
158
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
159
|
|
|
By default, Chebyshev (L-infinity) distance is chosen as with AMDs. |
160
|
|
|
Accepts any metric accepted by :func:`scipy.spatial.distance.cdist`. |
161
|
|
|
return_transport: bool, default False |
162
|
|
|
Return a tuple ``(distance, transport_plan)`` with the optimal transport. |
163
|
|
|
|
164
|
|
|
Returns |
165
|
|
|
------- |
166
|
|
|
emd : float |
167
|
|
|
Earth mover's distance between two PDDs. |
168
|
|
|
|
169
|
|
|
Raises |
170
|
|
|
------ |
171
|
|
|
ValueError |
172
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
|
|
|
|
173
|
|
|
columns (``k`` value). |
174
|
|
|
""" |
175
|
|
|
|
176
|
|
|
dm = cdist(pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs) |
177
|
|
|
emd_dist, transport_plan = network_simplex(pdd[:, 0], pdd_[:, 0], dm) |
178
|
|
|
|
179
|
|
|
if return_transport: |
180
|
|
|
return emd_dist, transport_plan |
181
|
|
|
|
182
|
|
|
return emd_dist |
183
|
|
|
|
184
|
|
|
|
185
|
|
|
def AMD_cdist( |
186
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
187
|
|
|
amds_: Union[np.ndarray, List[np.ndarray]], |
188
|
|
|
metric: str = 'chebyshev', |
189
|
|
|
low_memory: bool = False, |
190
|
|
|
**kwargs |
191
|
|
|
) -> np.ndarray: |
192
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance matrix. |
193
|
|
|
This function is essentially identical to :func:`scipy.spatial.distance.cdist` |
194
|
|
|
with the default metric ``chebyshev``. |
195
|
|
|
|
196
|
|
|
Parameters |
197
|
|
|
---------- |
198
|
|
|
amds : array_like |
199
|
|
|
A list of AMDs. |
200
|
|
|
amds\_ : array_like |
201
|
|
|
A list of AMDs. |
202
|
|
|
metric : str or callable, default 'chebyshev' |
203
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) distance. |
204
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.cdist`. |
205
|
|
|
low_memory : bool, default False |
206
|
|
|
Use a slower but more memory efficient method for |
207
|
|
|
large collections of AMDs (Chebyshev metric only). |
208
|
|
|
|
209
|
|
|
Returns |
210
|
|
|
------- |
211
|
|
|
dm : numpy.ndarray |
212
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. |
213
|
|
|
``dm[ij]`` is the distance (given by ``metric``) |
|
|
|
|
214
|
|
|
between ``amds[i]`` and ``amds[j]``. |
215
|
|
|
""" |
216
|
|
|
|
217
|
|
|
amds, amds_ = np.asarray(amds), np.asarray(amds_) |
218
|
|
|
|
219
|
|
|
if len(amds.shape) == 1: |
220
|
|
|
amds = np.array([amds]) |
221
|
|
|
if len(amds_.shape) == 1: |
222
|
|
|
amds_ = np.array([amds_]) |
223
|
|
|
|
224
|
|
|
if low_memory: |
225
|
|
|
if metric != 'chebyshev': |
226
|
|
|
warnings.warn("Using only allowed metric 'chebyshev' for low_memory", UserWarning) |
227
|
|
|
|
228
|
|
|
dm = np.empty((len(amds), len(amds_))) |
229
|
|
|
for i, amd_vec in enumerate(amds): |
230
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
231
|
|
|
else: |
232
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
233
|
|
|
|
234
|
|
|
return dm |
235
|
|
|
|
236
|
|
|
|
237
|
|
|
def AMD_pdist( |
238
|
|
|
amds: Union[np.ndarray, List[np.ndarray]], |
239
|
|
|
metric: str = 'chebyshev', |
240
|
|
|
low_memory: bool = False, |
241
|
|
|
**kwargs |
242
|
|
|
) -> np.ndarray: |
243
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance matrix. |
244
|
|
|
This function is essentially identical to :func:`scipy.spatial.distance.pdist` |
245
|
|
|
with the default metric ``chebyshev``. |
246
|
|
|
|
247
|
|
|
Parameters |
248
|
|
|
---------- |
249
|
|
|
amds : array_like |
250
|
|
|
An array/list of AMDs. |
251
|
|
|
metric : str or callable, default 'chebyshev' |
252
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) distance. |
253
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.pdist`. |
254
|
|
|
low_memory : bool, default False |
255
|
|
|
Optionally use a slightly slower but more memory efficient method for |
256
|
|
|
large collections of AMDs (Chebyshev metric only). |
257
|
|
|
|
258
|
|
|
Returns |
259
|
|
|
------- |
260
|
|
|
numpy.ndarray |
261
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
262
|
|
|
matrix into a vector, just keeping the upper half. See |
263
|
|
|
:func:`scipy.spatial.distance.squareform` to convert to a square |
|
|
|
|
264
|
|
|
distance matrix or for more on condensed distance matrices. |
265
|
|
|
""" |
266
|
|
|
|
267
|
|
|
amds = np.asarray(amds) |
268
|
|
|
|
269
|
|
|
if len(amds.shape) == 1: |
270
|
|
|
amds = np.array([amds]) |
271
|
|
|
|
272
|
|
|
if low_memory: |
273
|
|
|
m = len(amds) |
274
|
|
|
if metric != 'chebyshev': |
275
|
|
|
warnings.warn("Using only allowed metric 'chebyshev' for low_memory", UserWarning) |
276
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.double) |
277
|
|
|
ind = 0 |
278
|
|
|
for i in range(m): |
279
|
|
|
ind_ = ind + m - i - 1 |
280
|
|
|
cdm[ind:ind_] = np.amax(np.abs(amds[i+1:] - amds[i]), axis=-1) |
281
|
|
|
ind = ind_ |
282
|
|
|
else: |
283
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
284
|
|
|
|
285
|
|
|
return cdm |
286
|
|
|
|
287
|
|
|
|
288
|
|
|
def PDD_cdist( |
289
|
|
|
pdds: List[np.ndarray], |
290
|
|
|
pdds_: List[np.ndarray], |
291
|
|
|
metric: str = 'chebyshev', |
292
|
|
|
n_jobs=None, |
293
|
|
|
verbose=0, |
294
|
|
|
**kwargs |
295
|
|
|
) -> np.ndarray: |
296
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance matrix. |
297
|
|
|
|
298
|
|
|
Parameters |
299
|
|
|
---------- |
300
|
|
|
pdds : List[numpy.ndarray] |
301
|
|
|
A list of PDDs. |
302
|
|
|
pdds\_ : List[numpy.ndarray] |
303
|
|
|
A list of PDDs. |
304
|
|
|
metric : str or callable, default 'chebyshev' |
305
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity distance. |
306
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.cdist`. |
307
|
|
|
n_jobs : int, default None |
308
|
|
|
Maximum number of concurrent jobs for parallel processing with joblib. |
309
|
|
|
Set to -1 to use the maximum possible. Note that for small inputs (< 100), |
|
|
|
|
310
|
|
|
using parallel processing may be slower than the default n_jobs=None. |
311
|
|
|
verbose : int, default 0 |
312
|
|
|
The verbosity level. Higher = more verbose, see joblib.Parallel. |
313
|
|
|
|
314
|
|
|
Returns |
315
|
|
|
------- |
316
|
|
|
numpy.ndarray |
317
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. |
318
|
|
|
The :math:`ij` th entry is the distance between ``pdds[i]`` |
319
|
|
|
and ``pdds_[j]`` given by Earth mover's distance. |
320
|
|
|
""" |
321
|
|
|
|
322
|
|
|
if isinstance(pdds, np.ndarray): |
323
|
|
|
if len(pdds.shape) == 2: |
324
|
|
|
pdds = [pdds] |
325
|
|
|
|
326
|
|
|
if isinstance(pdds_, np.ndarray): |
327
|
|
|
if len(pdds_.shape) == 2: |
328
|
|
|
pdds_ = [pdds_] |
329
|
|
|
|
330
|
|
|
kwargs.pop('return_transport', None) |
331
|
|
|
|
332
|
|
|
# TODO: put results into preallocated empty array in place |
|
|
|
|
333
|
|
|
dm = Parallel(backend='multiprocessing', n_jobs=n_jobs, verbose=verbose)( |
334
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
335
|
|
|
for j in range(len(pdds_)) for i in range(len(pdds)) |
336
|
|
|
) |
337
|
|
|
dm = np.array(dm) |
338
|
|
|
return dm.reshape((len(pdds), len(pdds_))) |
339
|
|
|
|
340
|
|
|
|
341
|
|
|
def PDD_pdist( |
342
|
|
|
pdds: List[np.ndarray], |
343
|
|
|
metric: str = 'chebyshev', |
344
|
|
|
n_jobs=None, |
345
|
|
|
verbose=0, |
346
|
|
|
**kwargs |
347
|
|
|
) -> np.ndarray: |
348
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance matrix. |
349
|
|
|
|
350
|
|
|
Parameters |
351
|
|
|
---------- |
352
|
|
|
pdds : List[numpy.ndarray] |
353
|
|
|
A list of PDDs. |
354
|
|
|
metric : str or callable, default 'chebyshev' |
355
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity distance. |
356
|
|
|
Can take any metric accepted by :func:`scipy.spatial.distance.pdist`. |
357
|
|
|
n_jobs : int, default None |
358
|
|
|
Maximum number of concurrent jobs for parallel processing with joblib. |
359
|
|
|
Set to -1 to use the maximum possible. Note that for small inputs (< 100), |
|
|
|
|
360
|
|
|
using parallel processing may be slower than the default n_jobs=None. |
361
|
|
|
verbose : int, default 0 |
362
|
|
|
The verbosity level. Higher = more verbose, see joblib.Parallel for more. |
363
|
|
|
|
364
|
|
|
Returns |
365
|
|
|
------- |
366
|
|
|
numpy.ndarray |
367
|
|
|
Returns a condensed distance matrix. Collapses a square |
368
|
|
|
distance matrix into a vector just keeping the upper half. See |
369
|
|
|
:func:`scipy.spatial.distance.squareform` to convert to a square |
|
|
|
|
370
|
|
|
distance matrix or for more on condensed distance matrices. |
371
|
|
|
""" |
372
|
|
|
|
373
|
|
|
kwargs.pop('return_transport', None) |
374
|
|
|
|
375
|
|
|
# TODO: put results into preallocated empty array in place |
|
|
|
|
376
|
|
|
dm = Parallel(n_jobs=n_jobs, verbose=verbose)( |
377
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
378
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
379
|
|
|
) |
380
|
|
|
return np.array(dm) |
381
|
|
|
|
382
|
|
|
def emd( |
383
|
|
|
pdd: np.ndarray, |
384
|
|
|
pdd_: np.ndarray, |
385
|
|
|
metric: Optional[str] = 'chebyshev', |
386
|
|
|
return_transport: Optional[bool] = False, |
387
|
|
|
**kwargs): |
388
|
|
|
"""Alias for amd.EMD().""" |
389
|
|
|
return EMD(pdd, pdd_, metric=metric, return_transport=return_transport, **kwargs) |
390
|
|
|
|
391
|
|
|
|
392
|
|
|
def _unwrap_periodicset_list(psets_or_str, **reader_kwargs): |
393
|
|
|
"""Valid input for compare (PeriodicSet, path, refcode, lists of such) |
394
|
|
|
--> |
|
|
|
|
395
|
|
|
list of PeriodicSets""" |
396
|
|
|
|
397
|
|
|
if isinstance(psets_or_str, PeriodicSet): |
|
|
|
|
398
|
|
|
return [psets_or_str] |
399
|
|
|
elif isinstance(psets_or_str, list): |
400
|
|
|
return [s for item in psets_or_str for s in _extract_periodicsets(item, **reader_kwargs)] |
401
|
|
|
else: |
402
|
|
|
return _extract_periodicsets(psets_or_str, **reader_kwargs) |
403
|
|
|
|
404
|
|
|
|
405
|
|
|
def _extract_periodicsets(item, **reader_kwargs): |
406
|
|
|
"""str (path/refocde), file or PeriodicSet --> list of PeriodicSets.""" |
407
|
|
|
|
408
|
|
|
if isinstance(item, PeriodicSet): |
|
|
|
|
409
|
|
|
return [item] |
410
|
|
|
elif isinstance(item, str) and not os.path.isfile(item) and not os.path.isdir(item): |
411
|
|
|
reader_kwargs.pop('reader', None) |
412
|
|
|
return list(CSDReader(item, **reader_kwargs)) |
413
|
|
|
else: |
414
|
|
|
reader_kwargs.pop('families', None) |
415
|
|
|
reader_kwargs.pop('refcodes', None) |
416
|
|
|
return list(CifReader(item, **reader_kwargs)) |
417
|
|
|
|