1
|
|
|
"""Calculation of isometry invariants from periodic sets.""" |
2
|
|
|
|
3
|
|
|
import warnings |
4
|
|
|
import collections |
5
|
|
|
from typing import Tuple, Union |
6
|
|
|
import itertools |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import numpy.typing as npt |
10
|
|
|
import numba |
11
|
|
|
from scipy.spatial.distance import pdist, squareform |
12
|
|
|
|
13
|
|
|
from ._types import FloatArray |
14
|
|
|
from ._nearest_neighbors import nearest_neighbors, nearest_neighbors_minval |
15
|
|
|
from .periodicset import PeriodicSet |
16
|
|
|
from .utils import diameter |
17
|
|
|
from .globals_ import MAX_DISORDER_CONFIGS |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
__all__ = [ |
21
|
|
|
"PDD", |
22
|
|
|
"AMD", |
23
|
|
|
"ADA", |
24
|
|
|
"PDA", |
25
|
|
|
"PDD_to_AMD", |
26
|
|
|
"AMD_finite", |
27
|
|
|
"PDD_finite", |
28
|
|
|
"PDD_reconstructable", |
29
|
|
|
"AMD_estimate", |
30
|
|
|
] |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
def PDD( |
34
|
|
|
pset: PeriodicSet, |
35
|
|
|
k: int, |
36
|
|
|
lexsort: bool = True, |
37
|
|
|
collapse: bool = True, |
38
|
|
|
collapse_tol: float = 1e-4, |
39
|
|
|
return_row_data: bool = False, |
40
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
41
|
|
|
"""Return the pointwise distance distribution (PDD) of a periodic |
42
|
|
|
set (usually representing a crystal). |
43
|
|
|
|
44
|
|
|
The PDD is a geometry based descriptor independent of choice of |
45
|
|
|
motif and unit cell. It is a matrix with each row corresponding to a |
46
|
|
|
point in the motif, starting with a weight followed by distances to |
47
|
|
|
the k nearest neighbors of the point. |
48
|
|
|
|
49
|
|
|
Parameters |
50
|
|
|
---------- |
51
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
52
|
|
|
A periodic set (crystal). |
53
|
|
|
k : int |
54
|
|
|
Number of neighbors considered for each point in a unit cell. |
55
|
|
|
The output has k + 1 columns with the first column containing |
56
|
|
|
weights. |
57
|
|
|
lexsort : bool, default True |
58
|
|
|
Lexicographically order rows. |
59
|
|
|
collapse: bool, default True |
60
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
61
|
|
|
Chebyshev metric). |
62
|
|
|
collapse_tol: float, default 1e-4 |
63
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
64
|
|
|
metric, they are merged and weights are given to rows in |
65
|
|
|
proportion to their frequency. |
66
|
|
|
return_row_data: bool, default False |
67
|
|
|
Return a tuple ``(pdd, groups)`` where ``groups`` contains |
68
|
|
|
information about which rows in ``pdd`` correspond to which |
69
|
|
|
points. If ``pset.asym_unit`` is None, then ``groups[i]`` |
70
|
|
|
contains indices of points in ``pset.motif`` corresponding to |
71
|
|
|
``pdd[i]``. Otherwise, PDD rows correspond to points in the |
72
|
|
|
asymmetric unit, and ``groups[i]`` contains indices pointing to |
73
|
|
|
``pset.asym_unit``. |
74
|
|
|
|
75
|
|
|
Returns |
76
|
|
|
------- |
77
|
|
|
pdd : :class:`numpy.ndarray` |
78
|
|
|
The PDD of ``pset``, a :class:`numpy.ndarray` with ``k+1`` |
79
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
80
|
|
|
(:class:`numpy.ndarray`, list). |
81
|
|
|
|
82
|
|
|
Examples |
83
|
|
|
-------- |
84
|
|
|
Make list of PDDs with ``k=100`` for crystals in data.cif:: |
85
|
|
|
|
86
|
|
|
pdds = [] |
87
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
88
|
|
|
pdd = amd.PDD(periodic_set, 100) |
89
|
|
|
pdds.append(pdd) |
90
|
|
|
|
91
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode |
92
|
|
|
families (requires csd-python-api):: |
93
|
|
|
|
94
|
|
|
pdds = [] |
95
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
96
|
|
|
pdds.append(amd.PDD(periodic_set, 10)) |
97
|
|
|
|
98
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
99
|
|
|
|
100
|
|
|
# simple cubic lattice |
101
|
|
|
motif = np.array([[0,0,0]]) |
102
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
103
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
104
|
|
|
cubic_pdd = amd.PDD(periodic_set, 100) |
105
|
|
|
""" |
106
|
|
|
|
107
|
|
|
if not isinstance(pset, PeriodicSet): |
108
|
|
|
raise ValueError( |
109
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
weights, dists, groups = _PDD( |
113
|
|
|
pset, k, lexsort=lexsort, collapse=collapse, collapse_tol=collapse_tol |
114
|
|
|
) |
115
|
|
|
pdd = np.empty(shape=(len(dists), k + 1), dtype=np.float64) |
116
|
|
|
pdd[:, 0] = weights |
117
|
|
|
pdd[:, 1:] = dists |
118
|
|
|
if return_row_data: |
119
|
|
|
return pdd, groups |
120
|
|
|
return pdd |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def _PDD( |
124
|
|
|
pset: PeriodicSet, |
125
|
|
|
k: int, |
126
|
|
|
lexsort: bool = True, |
127
|
|
|
collapse: bool = True, |
128
|
|
|
collapse_tol: float = 1e-4, |
129
|
|
|
) -> Tuple[FloatArray, FloatArray, list[list[int]]]: |
130
|
|
|
"""See PDD() for documentation. This core function always returns a |
131
|
|
|
tuple (weights, dists, groups), with weights and dists to be merged |
132
|
|
|
by PDD() and groups to be optionally returned. |
133
|
|
|
""" |
134
|
|
|
|
135
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
136
|
|
|
weights = pset.multiplicities / pset.motif.shape[0] |
137
|
|
|
|
138
|
|
|
# Disordered structures |
139
|
|
|
subs_disorder_info = {} # i: [inds masked] where i is sub disordered |
140
|
|
|
|
141
|
|
|
if pset.disorder: |
142
|
|
|
# Gather which disorder assemblies must be considered |
143
|
|
|
_asym_mask = np.full((asym_unit.shape[0], ), fill_value=True) |
144
|
|
|
asm_sizes = {} |
145
|
|
|
for i, asm in enumerate(pset.disorder): |
146
|
|
|
grps = asm.groups |
147
|
|
|
|
148
|
|
|
# Ignore assmeblies with 1 group |
149
|
|
|
if len(grps) < 2: |
150
|
|
|
continue |
151
|
|
|
|
152
|
|
|
# For substitutional disorder, mask all but one atom |
153
|
|
|
elif asm.is_substitutional: |
154
|
|
|
mask_inds = [grps[j].indices[0] for j in range(1, len(grps))] |
155
|
|
|
keep = grps[0].indices[0] |
156
|
|
|
subs_disorder_info[keep] = mask_inds |
157
|
|
|
_asym_mask[mask_inds] = False |
158
|
|
|
|
159
|
|
|
else: |
160
|
|
|
asm_sizes[i] = len(grps) |
161
|
|
|
|
162
|
|
|
asm_sizes_arr = np.array(list(asm_sizes.values())) |
163
|
|
|
if _array_product_exceeds(asm_sizes_arr, MAX_DISORDER_CONFIGS): |
164
|
|
|
warnings.warn( |
165
|
|
|
f"Disorder configs exceeds limit " |
166
|
|
|
f"amd.globals_.MAX_DISORDER_CONFIGS={MAX_DISORDER_CONFIGS}, " |
167
|
|
|
"defaulting to majority occupancy config" |
168
|
|
|
) |
169
|
|
|
configs = [[]] |
170
|
|
|
for asm in pset.disorder: |
171
|
|
|
i, _ = max(enumerate(asm.groups), key=lambda g: g[1].occupancy) |
172
|
|
|
configs[0].append(i) |
173
|
|
|
else: |
174
|
|
|
configs = itertools.product(*(range(t) for t in asm_sizes.values())) |
|
|
|
|
175
|
|
|
|
176
|
|
|
# One PDD for each disorder configuration |
177
|
|
|
dists_list, inds_list = [], [] |
178
|
|
|
for config_inds in configs: |
179
|
|
|
|
180
|
|
|
# Mask groups not selected |
181
|
|
|
asym_mask = _asym_mask.copy() |
182
|
|
|
motif_mask = np.full((pset.motif.shape[0], ), fill_value=True) |
183
|
|
|
for i, asm_ind in enumerate(asm_sizes.keys()): |
184
|
|
|
for j, grp in enumerate(pset.disorder[asm_ind].groups): |
185
|
|
|
if j != config_inds[i]: |
186
|
|
|
for t in grp.indices: |
187
|
|
|
asym_mask[t] = False |
188
|
|
|
m_i = pset.asym_unit[t] |
189
|
|
|
mul = pset.multiplicities[t] |
190
|
|
|
motif_mask[m_i : m_i + mul] = False |
191
|
|
|
|
192
|
|
|
dists = nearest_neighbors( |
193
|
|
|
pset.motif[motif_mask], pset.cell, asym_unit[asym_mask], k + 1 |
194
|
|
|
) |
195
|
|
|
dists_list.append(dists[:, 1:]) |
196
|
|
|
inds_list.append(np.where(asym_mask)[0]) |
197
|
|
|
|
198
|
|
|
dists = np.vstack(dists_list) |
199
|
|
|
inds = list(np.concatenate(inds_list)) |
200
|
|
|
weights = np.concatenate([weights[i] for i in inds_list]) |
201
|
|
|
weights /= np.sum(weights) |
202
|
|
|
|
203
|
|
|
else: |
204
|
|
|
dists = nearest_neighbors(pset.motif, pset.cell, asym_unit, k + 1) |
205
|
|
|
dists = dists[:, 1:] |
206
|
|
|
inds = list(range(len(dists))) |
207
|
|
|
|
208
|
|
|
# Collapse rows within tolerance |
209
|
|
|
groups = None |
210
|
|
|
if collapse: |
211
|
|
|
weights, dists, group_labs = _merge_pdd_rows(weights, dists, collapse_tol) |
212
|
|
|
if dists.shape[0] != len(group_labs): |
213
|
|
|
groups = [[] for _ in range(weights.shape[0])] |
214
|
|
|
for old_ind, new_ind in enumerate(group_labs): |
215
|
|
|
groups[new_ind].append(int(inds[old_ind])) |
216
|
|
|
|
217
|
|
|
if groups is None: |
218
|
|
|
groups = [[int(i)] for i in inds] |
219
|
|
|
|
220
|
|
|
# Add back substitutionally disordered sites to group info |
221
|
|
|
if subs_disorder_info: |
222
|
|
|
for i, masked_inds in subs_disorder_info.items(): |
223
|
|
|
for grp in groups: |
224
|
|
|
if i in grp: |
225
|
|
|
grp.extend(masked_inds) |
226
|
|
|
|
227
|
|
|
if lexsort: |
228
|
|
|
lex_ordering = np.lexsort(dists.T[::-1]) |
229
|
|
|
weights = weights[lex_ordering] |
230
|
|
|
dists = dists[lex_ordering] |
231
|
|
|
groups = [groups[i] for i in lex_ordering] |
232
|
|
|
|
233
|
|
|
return weights, dists, groups |
234
|
|
|
|
235
|
|
|
|
236
|
|
|
def AMD(pset: PeriodicSet, k: int) -> FloatArray: |
237
|
|
|
"""Return the average minimum distance (AMD) of a periodic set |
238
|
|
|
(usually representing a crystal). |
239
|
|
|
|
240
|
|
|
The AMD is the centroid or average of the PDD (pointwise distance |
241
|
|
|
distribution) and hence is also a independent of choice of motif and |
242
|
|
|
unit cell. It is a vector containing average distances from points |
243
|
|
|
to k neighbouring points. |
244
|
|
|
|
245
|
|
|
Parameters |
246
|
|
|
---------- |
247
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
248
|
|
|
A periodic set (crystal). |
249
|
|
|
k : int |
250
|
|
|
Number of neighbors considered for each point in a unit cell. |
251
|
|
|
|
252
|
|
|
Returns |
253
|
|
|
------- |
254
|
|
|
:class:`numpy.ndarray` |
255
|
|
|
The AMD of ``pset``, a :class:`numpy.ndarray` shape ``(k, )``. |
256
|
|
|
|
257
|
|
|
Examples |
258
|
|
|
-------- |
259
|
|
|
Make list of AMDs with k = 100 for crystals in data.cif:: |
260
|
|
|
|
261
|
|
|
amds = [] |
262
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
263
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
264
|
|
|
|
265
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
266
|
|
|
|
267
|
|
|
amds = [] |
268
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
269
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
270
|
|
|
|
271
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
272
|
|
|
|
273
|
|
|
# simple cubic lattice |
274
|
|
|
motif = np.array([[0,0,0]]) |
275
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
276
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
277
|
|
|
cubic_amd = amd.AMD(periodic_set, 100) |
278
|
|
|
""" |
279
|
|
|
weights, dists, _ = _PDD(pset, k, lexsort=False, collapse=False) |
280
|
|
|
return np.average(dists, weights=weights, axis=0) |
281
|
|
|
|
282
|
|
|
|
283
|
|
|
@numba.njit(cache=True, fastmath=True) |
284
|
|
|
def PDD_to_AMD(pdd: FloatArray) -> FloatArray: |
285
|
|
|
"""Calculate an AMD from a PDD, faster than computing both from |
286
|
|
|
scratch. |
287
|
|
|
|
288
|
|
|
Parameters |
289
|
|
|
---------- |
290
|
|
|
pdd : :class:`numpy.ndarray` |
291
|
|
|
The PDD of a periodic set as given by :class:`PDD() <.PDD>`. |
292
|
|
|
Returns |
293
|
|
|
------- |
294
|
|
|
:class:`numpy.ndarray` |
295
|
|
|
The AMD of the periodic set, so that |
296
|
|
|
``amd.PDD_to_AMD(amd.PDD(pset)) == amd.AMD(pset)`` |
297
|
|
|
""" |
298
|
|
|
|
299
|
|
|
amd_ = np.empty((pdd.shape[-1] - 1,), dtype=np.float64) |
300
|
|
|
for col in range(amd_.shape[0]): |
301
|
|
|
v = 0 |
302
|
|
|
for row in range(pdd.shape[0]): |
303
|
|
|
v += pdd[row, 0] * pdd[row, col + 1] |
304
|
|
|
amd_[col] = v |
305
|
|
|
return amd_ |
306
|
|
|
|
307
|
|
|
|
308
|
|
|
def AMD_finite(motif: FloatArray) -> FloatArray: |
309
|
|
|
"""Return the AMD of a finite m-point set up to k = m - 1. |
310
|
|
|
|
311
|
|
|
Parameters |
312
|
|
|
---------- |
313
|
|
|
motif : :class:`numpy.ndarray` |
314
|
|
|
Collection of points. |
315
|
|
|
|
316
|
|
|
Returns |
317
|
|
|
------- |
318
|
|
|
:class:`numpy.ndarray` |
319
|
|
|
The AMD of ``motif``, a vector shape ``(motif.shape[0] - 1, )``. |
320
|
|
|
|
321
|
|
|
Examples |
322
|
|
|
-------- |
323
|
|
|
The (L-infinity) AMD distance between finite trapezium and kite |
324
|
|
|
point sets, which have the same list of inter-point distances:: |
325
|
|
|
|
326
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
327
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
328
|
|
|
|
329
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
330
|
|
|
kite_amd = amd.AMD_finite(kite) |
331
|
|
|
|
332
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
333
|
|
|
""" |
334
|
|
|
|
335
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
336
|
|
|
return np.average(dm, axis=0) |
337
|
|
|
|
338
|
|
|
|
339
|
|
|
def PDD_finite( |
340
|
|
|
motif: FloatArray, |
341
|
|
|
lexsort: bool = True, |
342
|
|
|
collapse: bool = True, |
343
|
|
|
collapse_tol: float = 1e-4, |
344
|
|
|
return_row_data: bool = False, |
345
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
346
|
|
|
"""Return the PDD of a finite m-point set up to k = m - 1. |
347
|
|
|
|
348
|
|
|
Parameters |
349
|
|
|
---------- |
350
|
|
|
motif : :class:`numpy.ndarray` |
351
|
|
|
Collection of points. |
352
|
|
|
lexsort : bool, default True |
353
|
|
|
Lexicographically order rows. |
354
|
|
|
collapse: bool, default True |
355
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
356
|
|
|
Chebyshev metric). |
357
|
|
|
collapse_tol: float, default 1e-4 |
358
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
359
|
|
|
metric, they are merged and weights are given to rows in |
360
|
|
|
proportion to their frequency. |
361
|
|
|
return_row_data: bool, default False |
362
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups[i]`` |
363
|
|
|
contains indices of points in ``motif`` corresponding to |
364
|
|
|
``pdd[i]``. |
365
|
|
|
|
366
|
|
|
Returns |
367
|
|
|
------- |
368
|
|
|
pdd : :class:`numpy.ndarray` |
369
|
|
|
The PDD of ``motif``, a :class:`numpy.ndarray` with ``k+1`` |
370
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
371
|
|
|
(:class:`numpy.ndarray`, list). |
372
|
|
|
|
373
|
|
|
Examples |
374
|
|
|
-------- |
375
|
|
|
The PDD distance between finite trapezium and kite point sets, which |
376
|
|
|
have the same list of inter-point distances:: |
377
|
|
|
|
378
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
379
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
380
|
|
|
|
381
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
382
|
|
|
kite_pdd = amd.PDD_finite(kite) |
383
|
|
|
|
384
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
385
|
|
|
""" |
386
|
|
|
|
387
|
|
|
m = motif.shape[0] |
388
|
|
|
dists = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
389
|
|
|
weights = np.full((m,), 1 / m) |
390
|
|
|
groups = [[i] for i in range(len(dists))] |
391
|
|
|
|
392
|
|
|
# TODO: use _merge_pdd_rows |
393
|
|
|
if collapse: |
394
|
|
|
overlapping = pdist(dists, metric="chebyshev") <= collapse_tol |
395
|
|
|
if overlapping.any(): |
396
|
|
|
groups = _collapse_into_groups(overlapping) |
397
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
398
|
|
|
dists = np.array( |
399
|
|
|
[np.average(dists[group], axis=0) for group in groups], dtype=np.float64 |
400
|
|
|
) |
401
|
|
|
|
402
|
|
|
pdd = np.empty(shape=(len(weights), m), dtype=np.float64) |
403
|
|
|
|
404
|
|
|
if lexsort: |
405
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
406
|
|
|
pdd[:, 0] = weights[lex_ordering] |
407
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
408
|
|
|
if return_row_data: |
409
|
|
|
groups = [groups[i] for i in lex_ordering] |
410
|
|
|
else: |
411
|
|
|
pdd[:, 0] = weights |
412
|
|
|
pdd[:, 1:] = dists |
413
|
|
|
|
414
|
|
|
if return_row_data: |
415
|
|
|
return pdd, groups |
416
|
|
|
return pdd |
417
|
|
|
|
418
|
|
|
|
419
|
|
|
def PDD_reconstructable(pset: PeriodicSet, lexsort: bool = True) -> FloatArray: |
420
|
|
|
"""Return the PDD of a periodic set with ``k`` (number of columns) |
421
|
|
|
large enough such that the periodic set can be reconstructed from |
422
|
|
|
the PDD with :func:`amd.reconstruct.reconstruct`. Does NOT return |
423
|
|
|
weights or collapse rows. |
424
|
|
|
|
425
|
|
|
Parameters |
426
|
|
|
---------- |
427
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
428
|
|
|
A periodic set (crystal). |
429
|
|
|
lexsort : bool, default True |
430
|
|
|
Lexicographically order rows. |
431
|
|
|
|
432
|
|
|
Returns |
433
|
|
|
------- |
434
|
|
|
pdd : :class:`numpy.ndarray` |
435
|
|
|
The PDD of ``pset`` with enough columns to reconstruct ``pset`` |
436
|
|
|
using :func:`amd.reconstruct.reconstruct`. |
437
|
|
|
""" |
438
|
|
|
|
439
|
|
|
if not isinstance(pset, PeriodicSet): |
440
|
|
|
raise ValueError( |
441
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
442
|
|
|
) |
443
|
|
|
|
444
|
|
|
if pset.ndim not in (2, 3): |
445
|
|
|
raise ValueError( |
446
|
|
|
"Reconstructing from PDD is only possible for 2 and 3 dimensions." |
447
|
|
|
) |
448
|
|
|
min_val = diameter(pset.cell) * 2 |
449
|
|
|
pdd, _, _ = nearest_neighbors_minval(pset.motif, pset.cell, min_val) |
450
|
|
|
if lexsort: |
451
|
|
|
lex_ordering = np.lexsort(pdd.T[::-1]) |
452
|
|
|
pdd = pdd[lex_ordering] |
453
|
|
|
return pdd |
454
|
|
|
|
455
|
|
|
|
456
|
|
|
def AMD_estimate(pset: PeriodicSet, k: int) -> FloatArray: |
457
|
|
|
r"""Calculate an estimate of :class:`AMD <.AMD>` based on the |
458
|
|
|
:class:`PPC <.periodicset.PeriodicSet.PPC>` of ``pset``. |
459
|
|
|
|
460
|
|
|
Parameters |
461
|
|
|
---------- |
462
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
463
|
|
|
A periodic set (crystal). |
464
|
|
|
|
465
|
|
|
Returns |
466
|
|
|
------- |
467
|
|
|
amd_est : :class:`numpy.ndarray` |
468
|
|
|
An array shape (k, ), where ``amd_est[i]`` |
469
|
|
|
:math:`= \text{PPC} \sqrt[n]{k}` in n dimensions, whose ratio |
470
|
|
|
with AMD has been shown to converge to 1. |
471
|
|
|
""" |
472
|
|
|
|
473
|
|
|
if not isinstance(pset, PeriodicSet): |
474
|
|
|
raise ValueError( |
475
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
476
|
|
|
) |
477
|
|
|
arange = np.arange(1, k + 1, dtype=np.float64) |
478
|
|
|
return pset.PPC() * np.power(arange, 1.0 / pset.ndim) |
479
|
|
|
|
480
|
|
|
|
481
|
|
|
def PDA( |
482
|
|
|
pset: PeriodicSet, |
483
|
|
|
k: int, |
484
|
|
|
lexsort: bool = True, |
485
|
|
|
collapse: bool = True, |
486
|
|
|
collapse_tol: float = 1e-4, |
487
|
|
|
return_row_data: bool = False, |
488
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
489
|
|
|
"""Return the pointwise deviation from asymptotic distribution, |
490
|
|
|
essentially a normalisation of the pointwise distance distribution |
491
|
|
|
of ``pset``. The PDA records how much the distances in the PDD |
492
|
|
|
deviate from what is expected based on the asymptotic estimate. |
493
|
|
|
|
494
|
|
|
The PDD of ``pset`` is a geometry based descriptor independent of |
495
|
|
|
choice of motif and unit cell. Its asymptotic behaviour is well |
496
|
|
|
understood and depends on the point density of the periodic set. |
497
|
|
|
The PDA is the difference between the PDD and its asymptotic curve. |
498
|
|
|
|
499
|
|
|
Parameters |
500
|
|
|
---------- |
501
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
502
|
|
|
A periodic set (crystal). |
503
|
|
|
k : int |
504
|
|
|
Number of neighbors considered for each point in a unit cell. |
505
|
|
|
The output has k + 1 columns with the first column containing |
506
|
|
|
weights. |
507
|
|
|
lexsort : bool, default True |
508
|
|
|
Lexicographically order rows. |
509
|
|
|
collapse: bool, default True |
510
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
511
|
|
|
Chebyshev metric). |
512
|
|
|
collapse_tol: float, default 1e-4 |
513
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
514
|
|
|
metric, they are merged and weights are given to rows in |
515
|
|
|
proportion to their frequency. |
516
|
|
|
return_row_data: bool, default False |
517
|
|
|
Return a tuple ``(pda, groups)`` where ``groups`` contains |
518
|
|
|
information about which rows in ``pda`` correspond to which |
519
|
|
|
points. If ``pset.asym_unit`` is None, then ``groups[i]`` |
520
|
|
|
contains indices of points in ``pset.motif`` corresponding to |
521
|
|
|
``pda[i]``. Otherwise, PDA rows correspond to points in the |
522
|
|
|
asymmetric unit, and ``groups[i]`` contains indices pointing to |
523
|
|
|
``pset.asym_unit``. |
524
|
|
|
|
525
|
|
|
Returns |
526
|
|
|
------- |
527
|
|
|
pda : :class:`numpy.ndarray` |
528
|
|
|
The PDA of ``pset``, a :class:`numpy.ndarray` with ``k+1`` |
529
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
530
|
|
|
(:class:`numpy.ndarray`, list). |
531
|
|
|
""" |
532
|
|
|
pdd, grps = PDD( |
533
|
|
|
pset, |
534
|
|
|
k, |
535
|
|
|
collapse=collapse, |
536
|
|
|
collapse_tol=collapse_tol, |
537
|
|
|
lexsort=lexsort, |
538
|
|
|
return_row_data=True, |
539
|
|
|
) |
540
|
|
|
pdd[:, 1:] -= AMD_estimate(pset, k) |
541
|
|
|
if return_row_data: |
542
|
|
|
return pdd, grps |
543
|
|
|
return pdd |
544
|
|
|
|
545
|
|
|
|
546
|
|
|
def ADA(pset: PeriodicSet, k: int) -> FloatArray: |
547
|
|
|
"""Return the average deviation from asymptotic, essentially a |
548
|
|
|
normalisation of the average minimum distance of ``pset``. The ADA |
549
|
|
|
records how much the distances in the AMD deviate from what is |
550
|
|
|
expected based on the asymptotic estimate. |
551
|
|
|
|
552
|
|
|
The AMD of ``pset`` is a geometry based descriptor independent of |
553
|
|
|
choice of motif and unit cell. Its asymptotic behaviour is well |
554
|
|
|
understood and depends on the point density of the periodic set. |
555
|
|
|
The ADA is the difference between the AMD and its asymptotic curve. |
556
|
|
|
|
557
|
|
|
Parameters |
558
|
|
|
---------- |
559
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
560
|
|
|
A periodic set (crystal). |
561
|
|
|
k : int |
562
|
|
|
Number of neighbors considered for each point in a unit cell. |
563
|
|
|
|
564
|
|
|
Returns |
565
|
|
|
------- |
566
|
|
|
:class:`numpy.ndarray` |
567
|
|
|
The ADA of ``pset``, a :class:`numpy.ndarray` shape ``(k, )``. |
568
|
|
|
""" |
569
|
|
|
return AMD(pset, k) - AMD_estimate(pset, k) |
570
|
|
|
|
571
|
|
|
|
572
|
|
|
@numba.njit(cache=True, fastmath=True) |
573
|
|
|
def _array_product_exceeds(values, limit): |
574
|
|
|
"""Returns False if np.prod(values) > limit.""" |
575
|
|
|
tot = 1 |
576
|
|
|
for i in range(len(values)): |
577
|
|
|
tot *= values[i] |
578
|
|
|
if tot > limit: |
579
|
|
|
return True |
580
|
|
|
return False |
581
|
|
|
|
582
|
|
|
|
583
|
|
|
@numba.njit(cache=True, fastmath=True) |
584
|
|
|
def _merge_pdd_rows(weights, dists, collapse_tol): |
585
|
|
|
"""Collpases weights & rows of a PDD, and return an array of group |
586
|
|
|
labels (new indices of old rows).""" |
587
|
|
|
|
588
|
|
|
n, k = dists.shape |
589
|
|
|
group_labels = np.empty((n,), dtype=np.int64) |
590
|
|
|
done = set() |
591
|
|
|
group = 0 |
592
|
|
|
|
593
|
|
|
for i in range(n): |
594
|
|
|
if i in done: |
595
|
|
|
continue |
596
|
|
|
|
597
|
|
|
group_labels[i] = group |
598
|
|
|
|
599
|
|
|
for j in range(i + 1, n): |
600
|
|
|
if j in done: |
601
|
|
|
continue |
602
|
|
|
|
603
|
|
|
grouped = True |
604
|
|
|
for i_ in range(k): |
605
|
|
|
v = np.abs(dists[i, i_] - dists[j, i_]) |
606
|
|
|
if v > collapse_tol: |
607
|
|
|
grouped = False |
608
|
|
|
break |
609
|
|
|
|
610
|
|
|
if grouped: |
611
|
|
|
group_labels[j] = group |
612
|
|
|
done.add(j) |
613
|
|
|
|
614
|
|
|
group += 1 |
615
|
|
|
|
616
|
|
|
if group == n: |
617
|
|
|
return weights, dists, group_labels |
618
|
|
|
|
619
|
|
|
weights_ = np.zeros((group,), dtype=np.float64) |
620
|
|
|
dists_ = np.zeros((group, k), dtype=np.float64) |
621
|
|
|
group_counts = np.zeros((group,), dtype=np.int64) |
622
|
|
|
|
623
|
|
|
for i in range(n): |
624
|
|
|
row = group_labels[i] |
625
|
|
|
weights_[row] += weights[i] |
626
|
|
|
dists_[row] += dists[i] |
627
|
|
|
group_counts[row] += 1 |
628
|
|
|
|
629
|
|
|
for i in range(group): |
630
|
|
|
dists_[i] /= group_counts[i] |
631
|
|
|
|
632
|
|
|
return weights_, dists_, group_labels |
633
|
|
|
|
634
|
|
|
|
635
|
|
|
def _collapse_into_groups(overlapping: npt.NDArray[np.bool_]) -> list: |
636
|
|
|
"""Return a list of groups of indices where all indices in the same |
637
|
|
|
group overlap. ``overlapping`` indicates for each pair of items in a |
638
|
|
|
set whether or not the items overlap, in the shape of a condensed |
639
|
|
|
distance matrix. |
640
|
|
|
""" |
641
|
|
|
|
642
|
|
|
overlapping = squareform(overlapping) |
643
|
|
|
group_nums = {} |
644
|
|
|
group = 0 |
645
|
|
|
for i, row in enumerate(overlapping): |
646
|
|
|
if i not in group_nums: |
647
|
|
|
group_nums[i] = group |
648
|
|
|
group += 1 |
649
|
|
|
for j in np.argwhere(row).T[0]: |
650
|
|
|
if j not in group_nums: |
651
|
|
|
group_nums[j] = group_nums[i] |
652
|
|
|
|
653
|
|
|
groups = collections.defaultdict(list) |
654
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
655
|
|
|
groups[group_num].append(row_ind) |
656
|
|
|
|
657
|
|
|
return list(groups.values()) |
658
|
|
|
|