dvdoug /
PHPCoord
| 1 | <?php |
||||
| 2 | |||||
| 3 | /** |
||||
| 4 | * PHPCoord. |
||||
| 5 | * |
||||
| 6 | * @author Doug Wright |
||||
| 7 | */ |
||||
| 8 | declare(strict_types=1); |
||||
| 9 | |||||
| 10 | namespace PHPCoord\Point; |
||||
| 11 | |||||
| 12 | use DateTime; |
||||
| 13 | use DateTimeImmutable; |
||||
| 14 | use DateTimeInterface; |
||||
| 15 | use PHPCoord\CoordinateOperation\AutoConversion; |
||||
| 16 | use PHPCoord\CoordinateOperation\ComplexNumber; |
||||
| 17 | use PHPCoord\CoordinateOperation\ConvertiblePoint; |
||||
| 18 | use PHPCoord\CoordinateOperation\GeocentricValue; |
||||
| 19 | use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid; |
||||
| 20 | use PHPCoord\CoordinateOperation\GeographicGrid; |
||||
| 21 | use PHPCoord\CoordinateOperation\GeographicValue; |
||||
| 22 | use PHPCoord\CoordinateOperation\NADCON5Grid; |
||||
| 23 | use PHPCoord\CoordinateOperation\NADCON5Grids; |
||||
| 24 | use PHPCoord\CoordinateOperation\OSTNOSGM15Grid; |
||||
| 25 | use PHPCoord\CoordinateReferenceSystem\Compound; |
||||
| 26 | use PHPCoord\CoordinateReferenceSystem\Geocentric; |
||||
| 27 | use PHPCoord\CoordinateReferenceSystem\Geographic; |
||||
| 28 | use PHPCoord\CoordinateReferenceSystem\Geographic2D; |
||||
| 29 | use PHPCoord\CoordinateReferenceSystem\Geographic3D; |
||||
| 30 | use PHPCoord\CoordinateReferenceSystem\Projected; |
||||
| 31 | use PHPCoord\CoordinateReferenceSystem\Vertical; |
||||
| 32 | use PHPCoord\CoordinateSystem\Axis; |
||||
| 33 | use PHPCoord\CoordinateSystem\Cartesian; |
||||
| 34 | use PHPCoord\Datum\Datum; |
||||
| 35 | use PHPCoord\Exception\InvalidCoordinateReferenceSystemException; |
||||
| 36 | use PHPCoord\Exception\UnknownAxisException; |
||||
| 37 | use PHPCoord\Geometry\BoundingArea; |
||||
| 38 | use PHPCoord\Geometry\Geodesic; |
||||
| 39 | use PHPCoord\UnitOfMeasure\Angle\Angle; |
||||
| 40 | use PHPCoord\UnitOfMeasure\Angle\ArcSecond; |
||||
| 41 | use PHPCoord\UnitOfMeasure\Angle\Degree; |
||||
| 42 | use PHPCoord\UnitOfMeasure\Angle\Radian; |
||||
| 43 | use PHPCoord\UnitOfMeasure\Length\Length; |
||||
| 44 | use PHPCoord\UnitOfMeasure\Length\Metre; |
||||
| 45 | use PHPCoord\UnitOfMeasure\Scale\Coefficient; |
||||
| 46 | use PHPCoord\UnitOfMeasure\Scale\Scale; |
||||
| 47 | use PHPCoord\UnitOfMeasure\Scale\Unity; |
||||
| 48 | |||||
| 49 | use function abs; |
||||
| 50 | use function asinh; |
||||
| 51 | use function atan; |
||||
| 52 | use function atan2; |
||||
| 53 | use function atanh; |
||||
| 54 | use function cos; |
||||
| 55 | use function cosh; |
||||
| 56 | use function count; |
||||
| 57 | use function hypot; |
||||
| 58 | use function implode; |
||||
| 59 | use function is_nan; |
||||
| 60 | use function log; |
||||
| 61 | use function max; |
||||
| 62 | use function sin; |
||||
| 63 | use function sinh; |
||||
| 64 | use function sqrt; |
||||
| 65 | use function str_replace; |
||||
| 66 | use function tan; |
||||
| 67 | use function assert; |
||||
| 68 | |||||
| 69 | use const M_E; |
||||
| 70 | use const M_PI; |
||||
| 71 | |||||
| 72 | /** |
||||
| 73 | * Coordinate representing a point on an ellipsoid. |
||||
| 74 | */ |
||||
| 75 | class GeographicPoint extends Point implements ConvertiblePoint |
||||
| 76 | { |
||||
| 77 | use AutoConversion; |
||||
| 78 | |||||
| 79 | /** |
||||
| 80 | * Latitude. |
||||
| 81 | */ |
||||
| 82 | protected Angle $latitude; |
||||
| 83 | |||||
| 84 | /** |
||||
| 85 | * Longitude. |
||||
| 86 | */ |
||||
| 87 | protected Angle $longitude; |
||||
| 88 | |||||
| 89 | /** |
||||
| 90 | * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible). |
||||
| 91 | */ |
||||
| 92 | protected ?Length $height; |
||||
| 93 | |||||
| 94 | /** |
||||
| 95 | * Coordinate reference system. |
||||
| 96 | */ |
||||
| 97 | protected Geographic2D|Geographic3D $crs; |
||||
| 98 | |||||
| 99 | /** |
||||
| 100 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||||
| 101 | */ |
||||
| 102 | protected ?DateTimeImmutable $epoch; |
||||
| 103 | 1694 | ||||
| 104 | protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch) |
||||
| 105 | 1694 | { |
|||
| 106 | 9 | if ($crs instanceof Geographic2D && $height !== null) { |
|||
| 107 | throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height'); |
||||
| 108 | } |
||||
| 109 | 1685 | ||||
| 110 | 9 | if ($crs instanceof Geographic3D && $height === null) { |
|||
| 111 | throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given'); |
||||
| 112 | } |
||||
| 113 | 1676 | ||||
| 114 | $this->crs = $crs; |
||||
| 115 | 1676 | ||||
| 116 | 1676 | $latitude = $this->normaliseLatitude($latitude); |
|||
| 117 | $longitude = $this->normaliseLongitude($longitude); |
||||
| 118 | 1676 | ||||
| 119 | 1676 | $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId()); |
|||
| 120 | $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId()); |
||||
| 121 | 1676 | ||||
| 122 | 214 | if ($height) { |
|||
| 123 | $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId()); |
||||
| 124 | 1545 | } else { |
|||
| 125 | $this->height = null; |
||||
| 126 | } |
||||
| 127 | 1676 | ||||
| 128 | 37 | if ($epoch instanceof DateTime) { |
|||
| 129 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||||
| 130 | 1676 | } |
|||
| 131 | $this->epoch = $epoch; |
||||
| 132 | } |
||||
| 133 | |||||
| 134 | /** |
||||
| 135 | * @param ?Length $height refer to CRS for preferred unit of measure, but any length unit accepted |
||||
| 136 | * @param Angle $latitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||||
| 137 | * @param Angle $longitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||||
| 138 | 1694 | */ |
|||
| 139 | public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self |
||||
| 140 | 1694 | { |
|||
| 141 | return new self($crs, $latitude, $longitude, $height, $epoch); |
||||
| 142 | } |
||||
| 143 | 875 | ||||
| 144 | public function getLatitude(): Angle |
||||
| 145 | 875 | { |
|||
| 146 | return $this->latitude; |
||||
| 147 | } |
||||
| 148 | 839 | ||||
| 149 | public function getLongitude(): Angle |
||||
| 150 | 839 | { |
|||
| 151 | return $this->longitude; |
||||
| 152 | } |
||||
| 153 | 369 | ||||
| 154 | public function getHeight(): ?Length |
||||
| 155 | 369 | { |
|||
| 156 | return $this->height; |
||||
| 157 | } |
||||
| 158 | 507 | ||||
| 159 | public function getCRS(): Geographic2D|Geographic3D |
||||
| 160 | 507 | { |
|||
| 161 | return $this->crs; |
||||
| 162 | } |
||||
| 163 | 50 | ||||
| 164 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||||
| 165 | 50 | { |
|||
| 166 | return $this->epoch; |
||||
| 167 | } |
||||
| 168 | 1676 | ||||
| 169 | protected function normaliseLatitude(Angle $latitude): Angle |
||||
| 170 | 1676 | { |
|||
| 171 | if ($latitude->asDegrees()->getValue() > 90) { |
||||
| 172 | return new Degree(90); |
||||
| 173 | 1676 | } |
|||
| 174 | if ($latitude->asDegrees()->getValue() < -90) { |
||||
| 175 | return new Degree(-90); |
||||
| 176 | } |
||||
| 177 | 1676 | ||||
| 178 | return $latitude; |
||||
| 179 | } |
||||
| 180 | 1676 | ||||
| 181 | protected function normaliseLongitude(Angle $longitude): Angle |
||||
| 182 | 1676 | { |
|||
| 183 | 9 | while ($longitude->asDegrees()->getValue() > 180) { |
|||
| 184 | $longitude = $longitude->subtract(new Degree(360)); |
||||
| 185 | 1676 | } |
|||
| 186 | while ($longitude->asDegrees()->getValue() <= -180) { |
||||
| 187 | $longitude = $longitude->add(new Degree(360)); |
||||
| 188 | } |
||||
| 189 | 1676 | ||||
| 190 | return $longitude; |
||||
| 191 | } |
||||
| 192 | |||||
| 193 | /** |
||||
| 194 | * Calculate surface distance between two points. |
||||
| 195 | 207 | */ |
|||
| 196 | public function calculateDistance(Point $to): Length |
||||
| 197 | { |
||||
| 198 | 207 | try { |
|||
| 199 | 198 | if ($to instanceof ConvertiblePoint) { |
|||
| 200 | $to = $to->convert($this->crs); |
||||
| 201 | } |
||||
| 202 | 207 | } finally { |
|||
| 203 | 9 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
|||
| 204 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||||
| 205 | } |
||||
| 206 | |||||
| 207 | 198 | /** @var GeographicPoint $to */ |
|||
| 208 | $geodesic = new Geodesic($this->getCRS()->getDatum()->getEllipsoid()); |
||||
| 209 | 198 | ||||
| 210 | return $geodesic->distance($this->asGeographicValue(), $to->asGeographicValue()); |
||||
| 211 | } |
||||
| 212 | } |
||||
| 213 | 36 | ||||
| 214 | public function __toString(): string |
||||
| 215 | 36 | { |
|||
| 216 | 36 | $values = []; |
|||
| 217 | 36 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
|||
| 218 | 36 | if ($axis->getName() === Axis::GEODETIC_LATITUDE) { |
|||
| 219 | 36 | $values[] = $this->latitude; |
|||
| 220 | 36 | } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) { |
|||
| 221 | 9 | $values[] = $this->longitude; |
|||
| 222 | 9 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
|||
| 223 | $values[] = $this->height; |
||||
| 224 | } else { |
||||
| 225 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||||
| 226 | } |
||||
| 227 | } |
||||
| 228 | 36 | ||||
| 229 | return '(' . implode(', ', $values) . ')'; |
||||
| 230 | } |
||||
| 231 | |||||
| 232 | /** |
||||
| 233 | * Geographic/geocentric conversions |
||||
| 234 | * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
||||
| 235 | * 9636 to form a geographic to geographic transformation. |
||||
| 236 | 138 | */ |
|||
| 237 | public function geographicGeocentric( |
||||
| 238 | Geocentric $to |
||||
| 239 | 138 | ): GeocentricPoint { |
|||
| 240 | 138 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
|||
| 241 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||||
| 242 | 138 | ||||
| 243 | return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch); |
||||
| 244 | } |
||||
| 245 | |||||
| 246 | /** |
||||
| 247 | * Coordinate Frame rotation (geog2D/geog3D domain) |
||||
| 248 | * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences! The Position Vector |
||||
| 249 | * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating |
||||
| 250 | * between other CRS types. |
||||
| 251 | 72 | */ |
|||
| 252 | public function coordinateFrameRotation( |
||||
| 253 | Geographic2D|Geographic3D $to, |
||||
| 254 | Length $xAxisTranslation, |
||||
| 255 | Length $yAxisTranslation, |
||||
| 256 | Length $zAxisTranslation, |
||||
| 257 | Angle $xAxisRotation, |
||||
| 258 | Angle $yAxisRotation, |
||||
| 259 | Angle $zAxisRotation, |
||||
| 260 | Scale $scaleDifference |
||||
| 261 | 72 | ): self { |
|||
| 262 | 72 | return $this->coordinateFrameMolodenskyBadekas( |
|||
| 263 | 72 | $to, |
|||
| 264 | 72 | $xAxisTranslation, |
|||
| 265 | 72 | $yAxisTranslation, |
|||
| 266 | 72 | $zAxisTranslation, |
|||
| 267 | 72 | $xAxisRotation, |
|||
| 268 | 72 | $yAxisRotation, |
|||
| 269 | 72 | $zAxisRotation, |
|||
| 270 | 72 | $scaleDifference, |
|||
| 271 | 72 | new Metre(0), |
|||
| 272 | 72 | new Metre(0), |
|||
| 273 | 72 | new Metre(0) |
|||
| 274 | ); |
||||
| 275 | } |
||||
| 276 | |||||
| 277 | /** |
||||
| 278 | * Molodensky-Badekas (CF geog2D/geog3D domain) |
||||
| 279 | * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the |
||||
| 280 | * opposite rotation convention in geographic 2D domain. |
||||
| 281 | 108 | */ |
|||
| 282 | public function coordinateFrameMolodenskyBadekas( |
||||
| 283 | Geographic2D|Geographic3D $to, |
||||
| 284 | Length $xAxisTranslation, |
||||
| 285 | Length $yAxisTranslation, |
||||
| 286 | Length $zAxisTranslation, |
||||
| 287 | Angle $xAxisRotation, |
||||
| 288 | Angle $yAxisRotation, |
||||
| 289 | Angle $zAxisRotation, |
||||
| 290 | Scale $scaleDifference, |
||||
| 291 | Length $ordinate1OfEvaluationPoint, |
||||
| 292 | Length $ordinate2OfEvaluationPoint, |
||||
| 293 | Length $ordinate3OfEvaluationPoint |
||||
| 294 | 108 | ): self { |
|||
| 295 | 108 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
|||
| 296 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||||
| 297 | 108 | ||||
| 298 | 108 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
|||
| 299 | 108 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
|||
| 300 | 108 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
|||
| 301 | 108 | $tx = $xAxisTranslation->asMetres()->getValue(); |
|||
| 302 | 108 | $ty = $yAxisTranslation->asMetres()->getValue(); |
|||
| 303 | 108 | $tz = $zAxisTranslation->asMetres()->getValue(); |
|||
| 304 | 108 | $rx = $xAxisRotation->asRadians()->getValue(); |
|||
| 305 | 108 | $ry = $yAxisRotation->asRadians()->getValue(); |
|||
| 306 | 108 | $rz = $zAxisRotation->asRadians()->getValue(); |
|||
| 307 | 108 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
|||
| 308 | 108 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
|||
| 309 | 108 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
|||
| 310 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||||
| 311 | 108 | ||||
| 312 | 108 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp; |
|||
| 313 | 108 | $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp; |
|||
| 314 | 108 | $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp; |
|||
| 315 | 108 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
|||
| 316 | $newGeographic = $newGeocentric->asGeographicValue(); |
||||
| 317 | 108 | ||||
| 318 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||||
| 319 | } |
||||
| 320 | |||||
| 321 | /** |
||||
| 322 | * Position Vector transformation (geog2D/geog3D domain) |
||||
| 323 | * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences! The Position |
||||
| 324 | * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms |
||||
| 325 | * operating between other CRS types. |
||||
| 326 | 191 | */ |
|||
| 327 | public function positionVectorTransformation( |
||||
| 328 | Geographic2D|Geographic3D $to, |
||||
| 329 | Length $xAxisTranslation, |
||||
| 330 | Length $yAxisTranslation, |
||||
| 331 | Length $zAxisTranslation, |
||||
| 332 | Angle $xAxisRotation, |
||||
| 333 | Angle $yAxisRotation, |
||||
| 334 | Angle $zAxisRotation, |
||||
| 335 | Scale $scaleDifference |
||||
| 336 | 191 | ): self { |
|||
| 337 | 191 | return $this->positionVectorMolodenskyBadekas( |
|||
| 338 | 191 | $to, |
|||
| 339 | 191 | $xAxisTranslation, |
|||
| 340 | 191 | $yAxisTranslation, |
|||
| 341 | 191 | $zAxisTranslation, |
|||
| 342 | 191 | $xAxisRotation, |
|||
| 343 | 191 | $yAxisRotation, |
|||
| 344 | 191 | $zAxisRotation, |
|||
| 345 | 191 | $scaleDifference, |
|||
| 346 | 191 | new Metre(0), |
|||
| 347 | 191 | new Metre(0), |
|||
| 348 | 191 | new Metre(0) |
|||
| 349 | ); |
||||
| 350 | } |
||||
| 351 | |||||
| 352 | /** |
||||
| 353 | * Molodensky-Badekas (PV geog2D/geog3D domain) |
||||
| 354 | * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite |
||||
| 355 | * rotation in geographic 2D/3D domain. |
||||
| 356 | 209 | */ |
|||
| 357 | public function positionVectorMolodenskyBadekas( |
||||
| 358 | Geographic2D|Geographic3D $to, |
||||
| 359 | Length $xAxisTranslation, |
||||
| 360 | Length $yAxisTranslation, |
||||
| 361 | Length $zAxisTranslation, |
||||
| 362 | Angle $xAxisRotation, |
||||
| 363 | Angle $yAxisRotation, |
||||
| 364 | Angle $zAxisRotation, |
||||
| 365 | Scale $scaleDifference, |
||||
| 366 | Length $ordinate1OfEvaluationPoint, |
||||
| 367 | Length $ordinate2OfEvaluationPoint, |
||||
| 368 | Length $ordinate3OfEvaluationPoint |
||||
| 369 | 209 | ): self { |
|||
| 370 | 209 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
|||
| 371 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||||
| 372 | 209 | ||||
| 373 | 209 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
|||
| 374 | 209 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
|||
| 375 | 209 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
|||
| 376 | 209 | $tx = $xAxisTranslation->asMetres()->getValue(); |
|||
| 377 | 209 | $ty = $yAxisTranslation->asMetres()->getValue(); |
|||
| 378 | 209 | $tz = $zAxisTranslation->asMetres()->getValue(); |
|||
| 379 | 209 | $rx = $xAxisRotation->asRadians()->getValue(); |
|||
| 380 | 209 | $ry = $yAxisRotation->asRadians()->getValue(); |
|||
| 381 | 209 | $rz = $zAxisRotation->asRadians()->getValue(); |
|||
| 382 | 209 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
|||
| 383 | 209 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
|||
| 384 | 209 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
|||
| 385 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||||
| 386 | 209 | ||||
| 387 | 209 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp; |
|||
| 388 | 209 | $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp; |
|||
| 389 | 209 | $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp; |
|||
| 390 | 209 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
|||
| 391 | $newGeographic = $newGeocentric->asGeographicValue(); |
||||
| 392 | 209 | ||||
| 393 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||||
| 394 | } |
||||
| 395 | |||||
| 396 | /** |
||||
| 397 | * Geocentric translations |
||||
| 398 | * This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
||||
| 399 | * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms |
||||
| 400 | * operating between other CRSs types. |
||||
| 401 | 83 | */ |
|||
| 402 | public function geocentricTranslation( |
||||
| 403 | Geographic2D|Geographic3D $to, |
||||
| 404 | Length $xAxisTranslation, |
||||
| 405 | Length $yAxisTranslation, |
||||
| 406 | Length $zAxisTranslation |
||||
| 407 | 83 | ): self { |
|||
| 408 | 83 | return $this->positionVectorTransformation( |
|||
| 409 | 83 | $to, |
|||
| 410 | 83 | $xAxisTranslation, |
|||
| 411 | 83 | $yAxisTranslation, |
|||
| 412 | 83 | $zAxisTranslation, |
|||
| 413 | 83 | new Radian(0), |
|||
| 414 | 83 | new Radian(0), |
|||
| 415 | 83 | new Radian(0), |
|||
| 416 | 83 | new Unity(0) |
|||
| 417 | ); |
||||
| 418 | } |
||||
| 419 | |||||
| 420 | /** |
||||
| 421 | * Abridged Molodensky |
||||
| 422 | * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
||||
| 423 | * systems, modelled as a set of geocentric translations. |
||||
| 424 | 18 | */ |
|||
| 425 | public function abridgedMolodensky( |
||||
| 426 | Geographic2D|Geographic3D $to, |
||||
| 427 | Length $xAxisTranslation, |
||||
| 428 | Length $yAxisTranslation, |
||||
| 429 | Length $zAxisTranslation, |
||||
| 430 | Length $differenceInSemiMajorAxis, |
||||
| 431 | Scale $differenceInFlattening |
||||
| 432 | 18 | ): self { |
|||
| 433 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 434 | 18 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 435 | 18 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
| 436 | 18 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
|||
| 437 | 18 | $tx = $xAxisTranslation->asMetres()->getValue(); |
|||
| 438 | 18 | $ty = $yAxisTranslation->asMetres()->getValue(); |
|||
| 439 | 18 | $tz = $zAxisTranslation->asMetres()->getValue(); |
|||
| 440 | 18 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
|||
| 441 | $df = $differenceInFlattening->asUnity()->getValue(); |
||||
| 442 | 18 | ||||
| 443 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 444 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 445 | 18 | ||||
| 446 | 18 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
|||
| 447 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||||
| 448 | 18 | ||||
| 449 | $f = $ellipsoid->getFlattening(); |
||||
| 450 | 18 | ||||
| 451 | 18 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue())); |
|||
| 452 | 18 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
|||
| 453 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da; |
||||
| 454 | 18 | ||||
| 455 | 18 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
|||
| 456 | 18 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
|||
| 457 | $toHeight = $fromHeight + $dHeight; |
||||
| 458 | 18 | ||||
| 459 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||||
| 460 | } |
||||
| 461 | |||||
| 462 | /** |
||||
| 463 | * Molodensky |
||||
| 464 | * See Abridged Molodensky. |
||||
| 465 | 18 | */ |
|||
| 466 | public function molodensky( |
||||
| 467 | Geographic2D|Geographic3D $to, |
||||
| 468 | Length $xAxisTranslation, |
||||
| 469 | Length $yAxisTranslation, |
||||
| 470 | Length $zAxisTranslation, |
||||
| 471 | Length $differenceInSemiMajorAxis, |
||||
| 472 | Scale $differenceInFlattening |
||||
| 473 | 18 | ): self { |
|||
| 474 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 475 | 18 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 476 | 18 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
| 477 | 18 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
|||
| 478 | 18 | $tx = $xAxisTranslation->asMetres()->getValue(); |
|||
| 479 | 18 | $ty = $yAxisTranslation->asMetres()->getValue(); |
|||
| 480 | 18 | $tz = $zAxisTranslation->asMetres()->getValue(); |
|||
| 481 | 18 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
|||
| 482 | $df = $differenceInFlattening->asUnity()->getValue(); |
||||
| 483 | 18 | ||||
| 484 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 485 | 18 | $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue(); |
|||
| 486 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 487 | 18 | ||||
| 488 | 18 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
|||
| 489 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||||
| 490 | 18 | ||||
| 491 | $f = $ellipsoid->getFlattening(); |
||||
|
0 ignored issues
–
show
Unused Code
introduced
by
Loading history...
|
|||||
| 492 | 18 | ||||
| 493 | 18 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue())); |
|||
| 494 | 18 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
|||
| 495 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2; |
||||
| 496 | 18 | ||||
| 497 | 18 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
|||
| 498 | 18 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
|||
| 499 | $toHeight = $fromHeight + $dHeight; |
||||
| 500 | 18 | ||||
| 501 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||||
| 502 | } |
||||
| 503 | |||||
| 504 | /** |
||||
| 505 | * Albers Equal Area. |
||||
| 506 | 18 | */ |
|||
| 507 | public function albersEqualArea( |
||||
| 508 | Projected $to, |
||||
| 509 | Angle $latitudeOfFalseOrigin, |
||||
| 510 | Angle $longitudeOfFalseOrigin, |
||||
| 511 | Angle $latitudeOf1stStandardParallel, |
||||
| 512 | Angle $latitudeOf2ndStandardParallel, |
||||
| 513 | Length $eastingAtFalseOrigin, |
||||
| 514 | Length $northingAtFalseOrigin |
||||
| 515 | 18 | ): ProjectedPoint { |
|||
| 516 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 517 | 18 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 518 | 18 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
|
0 ignored issues
–
show
|
|||||
| 519 | 18 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||
| 520 | 18 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 521 | 18 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||
| 522 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 523 | 18 | $e = $ellipsoid->getEccentricity(); |
|||
| 524 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 525 | 18 | ||||
| 526 | 18 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2)); |
|||
| 527 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2)); |
||||
| 528 | 18 | ||||
| 529 | 18 | $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
|||
| 530 | 18 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
|||
| 531 | 18 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
|||
| 532 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||||
| 533 | 18 | ||||
| 534 | 18 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
|||
| 535 | 18 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
|||
| 536 | 18 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
|||
| 537 | 18 | $rho = $a * sqrt($C - $n * $alpha) / $n; |
|||
| 538 | $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n; |
||||
| 539 | 18 | ||||
| 540 | 18 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta)); |
|||
| 541 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta)); |
||||
| 542 | 18 | ||||
| 543 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 544 | } |
||||
| 545 | |||||
| 546 | /** |
||||
| 547 | * American Polyconic. |
||||
| 548 | 9 | */ |
|||
| 549 | public function americanPolyconic( |
||||
| 550 | Projected $to, |
||||
| 551 | Angle $latitudeOfNaturalOrigin, |
||||
| 552 | Angle $longitudeOfNaturalOrigin, |
||||
| 553 | Length $falseEasting, |
||||
| 554 | Length $falseNorthing |
||||
| 555 | 9 | ): ProjectedPoint { |
|||
| 556 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 557 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 558 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 559 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 560 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 561 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 562 | 9 | $e4 = $e ** 4; |
|||
| 563 | $e6 = $e ** 6; |
||||
| 564 | 9 | ||||
| 565 | 9 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 566 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||
| 567 | 9 | ||||
| 568 | if ($latitude === 0.0) { |
||||
|
0 ignored issues
–
show
|
|||||
| 569 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||||
| 570 | $northing = $falseNorthing->asMetres()->getValue() - $MO; |
||||
| 571 | 9 | } else { |
|||
| 572 | 9 | $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude); |
|||
| 573 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||
| 574 | 9 | ||||
| 575 | 9 | $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L); |
|||
| 576 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L)); |
||||
| 577 | } |
||||
| 578 | 9 | ||||
| 579 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 580 | } |
||||
| 581 | |||||
| 582 | /** |
||||
| 583 | * Bonne. |
||||
| 584 | 9 | */ |
|||
| 585 | public function bonne( |
||||
| 586 | Projected $to, |
||||
| 587 | Angle $latitudeOfNaturalOrigin, |
||||
| 588 | Angle $longitudeOfNaturalOrigin, |
||||
| 589 | Length $falseEasting, |
||||
| 590 | Length $falseNorthing |
||||
| 591 | 9 | ): ProjectedPoint { |
|||
| 592 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 593 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 594 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 595 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 596 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 597 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 598 | 9 | $e4 = $e ** 4; |
|||
| 599 | $e6 = $e ** 6; |
||||
| 600 | 9 | ||||
| 601 | 9 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
|||
| 602 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||||
| 603 | 9 | ||||
| 604 | 9 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 605 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||
| 606 | 9 | ||||
| 607 | 9 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
|||
| 608 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||||
| 609 | 9 | ||||
| 610 | 9 | $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau)); |
|||
| 611 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||||
| 612 | 9 | ||||
| 613 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 614 | } |
||||
| 615 | |||||
| 616 | /** |
||||
| 617 | * Bonne South Orientated. |
||||
| 618 | 9 | */ |
|||
| 619 | public function bonneSouthOrientated( |
||||
| 620 | Projected $to, |
||||
| 621 | Angle $latitudeOfNaturalOrigin, |
||||
| 622 | Angle $longitudeOfNaturalOrigin, |
||||
| 623 | Length $falseEasting, |
||||
| 624 | Length $falseNorthing |
||||
| 625 | 9 | ): ProjectedPoint { |
|||
| 626 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 627 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 628 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 629 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 630 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 631 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 632 | 9 | $e4 = $e ** 4; |
|||
| 633 | $e6 = $e ** 6; |
||||
| 634 | 9 | ||||
| 635 | 9 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
|||
| 636 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||||
| 637 | 9 | ||||
| 638 | 9 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 639 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||
| 640 | 9 | ||||
| 641 | 9 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
|||
| 642 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||||
| 643 | 9 | ||||
| 644 | 9 | $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau)); |
|||
| 645 | $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||||
| 646 | 9 | ||||
| 647 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||||
| 648 | } |
||||
| 649 | |||||
| 650 | /** |
||||
| 651 | * Cassini-Soldner. |
||||
| 652 | 9 | */ |
|||
| 653 | public function cassiniSoldner( |
||||
| 654 | Projected $to, |
||||
| 655 | Angle $latitudeOfNaturalOrigin, |
||||
| 656 | Angle $longitudeOfNaturalOrigin, |
||||
| 657 | Length $falseEasting, |
||||
| 658 | Length $falseNorthing |
||||
| 659 | 9 | ): ProjectedPoint { |
|||
| 660 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 661 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 662 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 663 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 664 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 665 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 666 | 9 | $e4 = $e ** 4; |
|||
| 667 | $e6 = $e ** 6; |
||||
| 668 | 9 | ||||
| 669 | 9 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 670 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||
| 671 | 9 | ||||
| 672 | 9 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
|||
| 673 | 9 | $T = tan($latitude) ** 2; |
|||
| 674 | 9 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
|||
| 675 | 9 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
|||
| 676 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||||
| 677 | 9 | ||||
| 678 | 9 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
|||
| 679 | $northing = $falseNorthing->asMetres()->getValue() + $X; |
||||
| 680 | 9 | ||||
| 681 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 682 | } |
||||
| 683 | |||||
| 684 | /** |
||||
| 685 | * Hyperbolic Cassini-Soldner. |
||||
| 686 | 18 | */ |
|||
| 687 | public function hyperbolicCassiniSoldner( |
||||
| 688 | Projected $to, |
||||
| 689 | Angle $latitudeOfNaturalOrigin, |
||||
| 690 | Angle $longitudeOfNaturalOrigin, |
||||
| 691 | Length $falseEasting, |
||||
| 692 | Length $falseNorthing |
||||
| 693 | 18 | ): ProjectedPoint { |
|||
| 694 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 695 | 18 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 696 | 18 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 697 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 698 | 18 | $e = $ellipsoid->getEccentricity(); |
|||
| 699 | 18 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 700 | 18 | $e4 = $e ** 4; |
|||
| 701 | $e6 = $e ** 6; |
||||
| 702 | 18 | ||||
| 703 | 18 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 704 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||
| 705 | 18 | ||||
| 706 | 18 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
|||
| 707 | 18 | $T = tan($latitude) ** 2; |
|||
| 708 | 18 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
|||
| 709 | 18 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
|||
| 710 | 18 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
|||
| 711 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||||
| 712 | 18 | ||||
| 713 | 18 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
|||
| 714 | $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu)); |
||||
| 715 | 18 | ||||
| 716 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 717 | } |
||||
| 718 | |||||
| 719 | /** |
||||
| 720 | * Colombia Urban. |
||||
| 721 | 9 | */ |
|||
| 722 | public function columbiaUrban( |
||||
| 723 | Projected $to, |
||||
| 724 | Angle $latitudeOfNaturalOrigin, |
||||
| 725 | Angle $longitudeOfNaturalOrigin, |
||||
| 726 | Length $falseEasting, |
||||
| 727 | Length $falseNorthing, |
||||
| 728 | Length $projectionPlaneOriginHeight |
||||
| 729 | 9 | ): ProjectedPoint { |
|||
| 730 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 731 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 732 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 733 | 9 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
|||
| 734 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 735 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 736 | 9 | ||||
| 737 | 9 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||
| 738 | $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2); |
||||
| 739 | 9 | ||||
| 740 | 9 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
|||
| 741 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||||
| 742 | 9 | ||||
| 743 | 9 | $A = 1 + $heightOrigin / $nuOrigin; |
|||
| 744 | 9 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
|||
| 745 | $G = 1 + $heightOrigin / $rhoMid; |
||||
| 746 | 9 | ||||
| 747 | 9 | $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 748 | $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2)); |
||||
| 749 | 9 | ||||
| 750 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 751 | } |
||||
| 752 | |||||
| 753 | /** |
||||
| 754 | * Equal Earth. |
||||
| 755 | 9 | */ |
|||
| 756 | public function equalEarth( |
||||
| 757 | Projected $to, |
||||
| 758 | Angle $longitudeOfNaturalOrigin, |
||||
| 759 | Length $falseEasting, |
||||
| 760 | Length $falseNorthing |
||||
| 761 | 9 | ): ProjectedPoint { |
|||
| 762 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 763 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 764 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 765 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 766 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 767 | 9 | ||||
| 768 | 9 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
|||
| 769 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
|||
| 770 | 9 | $beta = self::asin($q / $qP); |
|||
| 771 | 9 | $theta = self::asin(sin($beta) * sqrt(3) / 2); |
|||
| 772 | $Rq = $a * sqrt($qP / 2); |
||||
| 773 | 9 | ||||
| 774 | 9 | $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2))); |
|||
| 775 | $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)); |
||||
| 776 | 9 | ||||
| 777 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 778 | } |
||||
| 779 | |||||
| 780 | /** |
||||
| 781 | * Equidistant Cylindrical |
||||
| 782 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||||
| 783 | 9 | */ |
|||
| 784 | public function equidistantCylindrical( |
||||
| 785 | Projected $to, |
||||
| 786 | Angle $latitudeOf1stStandardParallel, |
||||
| 787 | Angle $longitudeOfNaturalOrigin, |
||||
| 788 | Length $falseEasting, |
||||
| 789 | Length $falseNorthing |
||||
| 790 | 9 | ): ProjectedPoint { |
|||
| 791 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 792 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 793 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 794 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 795 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 796 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 797 | 9 | $e4 = $e ** 4; |
|||
| 798 | 9 | $e6 = $e ** 6; |
|||
| 799 | 9 | $e8 = $e ** 8; |
|||
| 800 | 9 | $e10 = $e ** 10; |
|||
| 801 | 9 | $e12 = $e ** 12; |
|||
| 802 | $e14 = $e ** 14; |
||||
| 803 | 9 | ||||
| 804 | $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||||
| 805 | 9 | ||||
| 806 | 9 | $M = $a * ( |
|||
| 807 | 9 | (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude + |
|||
| 808 | 9 | (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) + |
|||
| 809 | 9 | (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) + |
|||
| 810 | 9 | (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) + |
|||
| 811 | 9 | (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) + |
|||
| 812 | 9 | (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) + |
|||
| 813 | 9 | (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) + |
|||
| 814 | 9 | (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude) |
|||
| 815 | ); |
||||
| 816 | 9 | ||||
| 817 | 9 | $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 818 | $northing = $falseNorthing->asMetres()->getValue() + $M; |
||||
| 819 | 9 | ||||
| 820 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 821 | } |
||||
| 822 | |||||
| 823 | /** |
||||
| 824 | * Guam Projection |
||||
| 825 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||||
| 826 | 9 | */ |
|||
| 827 | public function guamProjection( |
||||
| 828 | Projected $to, |
||||
| 829 | Angle $latitudeOfNaturalOrigin, |
||||
| 830 | Angle $longitudeOfNaturalOrigin, |
||||
| 831 | Length $falseEasting, |
||||
| 832 | Length $falseNorthing |
||||
| 833 | 9 | ): ProjectedPoint { |
|||
| 834 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 835 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 836 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 837 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 838 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 839 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 840 | 9 | $e4 = $e ** 4; |
|||
| 841 | $e6 = $e ** 6; |
||||
| 842 | 9 | ||||
| 843 | 9 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
|||
| 844 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||
| 845 | $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||
| 846 | 9 | ||||
| 847 | 9 | $easting = $falseEasting->asMetres()->getValue() + $x; |
|||
| 848 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
||||
| 849 | 9 | ||||
| 850 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 851 | } |
||||
| 852 | |||||
| 853 | /** |
||||
| 854 | * Krovak. |
||||
| 855 | 36 | */ |
|||
| 856 | public function krovak( |
||||
| 857 | Projected $to, |
||||
| 858 | Angle $latitudeOfProjectionCentre, |
||||
| 859 | Angle $longitudeOfOrigin, |
||||
| 860 | Angle $coLatitudeOfConeAxis, |
||||
| 861 | Angle $latitudeOfPseudoStandardParallel, |
||||
| 862 | Scale $scaleFactorOnPseudoStandardParallel, |
||||
| 863 | Length $falseEasting, |
||||
| 864 | Length $falseNorthing |
||||
| 865 | 36 | ): ProjectedPoint { |
|||
| 866 | 36 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 867 | 36 | $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
|||
| 868 | 36 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 869 | 36 | $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset; |
|||
| 870 | 36 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 871 | 36 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
|||
| 872 | 36 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
|||
| 873 | 36 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
|||
| 874 | 36 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
|||
| 875 | 36 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 876 | 36 | $e = $ellipsoid->getEccentricity(); |
|||
| 877 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 878 | 36 | ||||
| 879 | 36 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
|||
| 880 | 36 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
|||
| 881 | 36 | $upsilonO = self::asin(sin($latitudeC) / $B); |
|||
| 882 | 36 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
|||
| 883 | 36 | $n = sin($latitudeP); |
|||
| 884 | $rO = $kP * $A / tan($latitudeP); |
||||
| 885 | 36 | ||||
| 886 | 36 | $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4); |
|||
| 887 | 36 | $V = $B * ($longitudeO - $longitude); |
|||
| 888 | 36 | $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V)); |
|||
| 889 | 36 | $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))); |
|||
| 890 | 36 | $theta = $n * $D; |
|||
| 891 | 36 | $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n; |
|||
| 892 | 36 | $X = $r * cos($theta); |
|||
| 893 | $Y = $r * sin($theta); |
||||
| 894 | 36 | ||||
| 895 | 36 | $westing = $Y + $falseEasting->asMetres()->getValue(); |
|||
| 896 | $southing = $X + $falseNorthing->asMetres()->getValue(); |
||||
| 897 | 36 | ||||
| 898 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||||
| 899 | } |
||||
| 900 | |||||
| 901 | /** |
||||
| 902 | * Krovak Modified |
||||
| 903 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||||
| 904 | * to be a map projection. |
||||
| 905 | 18 | */ |
|||
| 906 | public function krovakModified( |
||||
| 907 | Projected $to, |
||||
| 908 | Angle $latitudeOfProjectionCentre, |
||||
| 909 | Angle $longitudeOfOrigin, |
||||
| 910 | Angle $coLatitudeOfConeAxis, |
||||
| 911 | Angle $latitudeOfPseudoStandardParallel, |
||||
| 912 | Scale $scaleFactorOnPseudoStandardParallel, |
||||
| 913 | Length $falseEasting, |
||||
| 914 | Length $falseNorthing, |
||||
| 915 | Length $ordinate1OfEvaluationPoint, |
||||
| 916 | Length $ordinate2OfEvaluationPoint, |
||||
| 917 | Coefficient $C1, |
||||
| 918 | Coefficient $C2, |
||||
| 919 | Coefficient $C3, |
||||
| 920 | Coefficient $C4, |
||||
| 921 | Coefficient $C5, |
||||
| 922 | Coefficient $C6, |
||||
| 923 | Coefficient $C7, |
||||
| 924 | Coefficient $C8, |
||||
| 925 | Coefficient $C9, |
||||
| 926 | Coefficient $C10 |
||||
| 927 | 18 | ): ProjectedPoint { |
|||
| 928 | $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||||
| 929 | 18 | ||||
| 930 | 18 | $westing = $asKrovak->getWesting()->asMetres()->getValue(); |
|||
| 931 | 18 | $southing = $asKrovak->getSouthing()->asMetres()->getValue(); |
|||
| 932 | 18 | $c1 = $C1->asUnity()->getValue(); |
|||
| 933 | 18 | $c2 = $C2->asUnity()->getValue(); |
|||
| 934 | 18 | $c3 = $C3->asUnity()->getValue(); |
|||
| 935 | 18 | $c4 = $C4->asUnity()->getValue(); |
|||
| 936 | 18 | $c5 = $C5->asUnity()->getValue(); |
|||
| 937 | 18 | $c6 = $C6->asUnity()->getValue(); |
|||
| 938 | 18 | $c7 = $C7->asUnity()->getValue(); |
|||
| 939 | 18 | $c8 = $C8->asUnity()->getValue(); |
|||
| 940 | 18 | $c9 = $C9->asUnity()->getValue(); |
|||
| 941 | $c10 = $C10->asUnity()->getValue(); |
||||
| 942 | 18 | ||||
| 943 | 18 | $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
|||
| 944 | $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||||
| 945 | 18 | ||||
| 946 | 18 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
|||
| 947 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||||
| 948 | 18 | ||||
| 949 | 18 | $westing += $falseEasting->asMetres()->getValue() - $dY; |
|||
| 950 | $southing += $falseNorthing->asMetres()->getValue() - $dX; |
||||
| 951 | 18 | ||||
| 952 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||||
| 953 | } |
||||
| 954 | |||||
| 955 | /** |
||||
| 956 | * Lambert Azimuthal Equal Area |
||||
| 957 | * This is the ellipsoidal form of the projection. |
||||
| 958 | 9 | */ |
|||
| 959 | public function lambertAzimuthalEqualArea( |
||||
| 960 | Projected $to, |
||||
| 961 | Angle $latitudeOfNaturalOrigin, |
||||
| 962 | Angle $longitudeOfNaturalOrigin, |
||||
| 963 | Length $falseEasting, |
||||
| 964 | Length $falseNorthing |
||||
| 965 | 9 | ): ProjectedPoint { |
|||
| 966 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 967 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 968 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 969 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 970 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 971 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 972 | 9 | ||||
| 973 | 9 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
|||
| 974 | 9 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
|||
| 975 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
|||
| 976 | 9 | $beta = self::asin($q / $qP); |
|||
| 977 | 9 | $betaO = self::asin($qO / $qP); |
|||
| 978 | 9 | $Rq = $a * sqrt($qP / 2); |
|||
| 979 | 9 | $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())))); |
|||
| 980 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
||||
| 981 | 9 | ||||
| 982 | 9 | $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
|||
| 983 | $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||||
| 984 | 9 | ||||
| 985 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 986 | } |
||||
| 987 | |||||
| 988 | /** |
||||
| 989 | * Lambert Azimuthal Equal Area (Spherical) |
||||
| 990 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||||
| 991 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||||
| 992 | * methods. |
||||
| 993 | 9 | */ |
|||
| 994 | public function lambertAzimuthalEqualAreaSpherical( |
||||
| 995 | Projected $to, |
||||
| 996 | Angle $latitudeOfNaturalOrigin, |
||||
| 997 | Angle $longitudeOfNaturalOrigin, |
||||
| 998 | Length $falseEasting, |
||||
| 999 | Length $falseNorthing |
||||
| 1000 | 9 | ): ProjectedPoint { |
|||
| 1001 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1002 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1003 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1004 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1005 | 9 | ||||
| 1006 | $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||||
| 1007 | 9 | ||||
| 1008 | 9 | $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
|||
| 1009 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||||
| 1010 | 9 | ||||
| 1011 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1012 | } |
||||
| 1013 | |||||
| 1014 | /** |
||||
| 1015 | * Lambert Conic Conformal (1SP). |
||||
| 1016 | 9 | */ |
|||
| 1017 | public function lambertConicConformal1SP( |
||||
| 1018 | Projected $to, |
||||
| 1019 | Angle $latitudeOfNaturalOrigin, |
||||
| 1020 | Angle $longitudeOfNaturalOrigin, |
||||
| 1021 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1022 | Length $falseEasting, |
||||
| 1023 | Length $falseNorthing |
||||
| 1024 | 9 | ): ProjectedPoint { |
|||
| 1025 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1026 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1027 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1028 | 9 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||
| 1029 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1030 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1031 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1032 | 9 | ||||
| 1033 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||
| 1034 | 9 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
|||
| 1035 | 9 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1036 | 9 | $n = sin($latitudeOrigin); |
|||
| 1037 | 9 | $F = $mO / ($n * $tO ** $n); |
|||
| 1038 | 9 | $rO = $a * $F * $tO ** $n * $kO; |
|||
| 1039 | 9 | $r = $a * $F * $t ** $n * $kO; |
|||
| 1040 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||||
| 1041 | 9 | ||||
| 1042 | 9 | $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
|||
| 1043 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||||
| 1044 | 9 | ||||
| 1045 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1046 | } |
||||
| 1047 | |||||
| 1048 | /** |
||||
| 1049 | * Lambert Conic Conformal (1SP) Variant B. |
||||
| 1050 | */ |
||||
| 1051 | public function lambertConicConformal1SPVariantB( |
||||
| 1052 | Projected $to, |
||||
| 1053 | Angle $latitudeOfNaturalOrigin, |
||||
| 1054 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1055 | Angle $latitudeOfFalseOrigin, |
||||
| 1056 | Angle $longitudeOfFalseOrigin, |
||||
| 1057 | Length $eastingAtFalseOrigin, |
||||
| 1058 | Length $northingAtFalseOrigin |
||||
| 1059 | ): ProjectedPoint { |
||||
| 1060 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||
| 1061 | $latitude = $this->latitude->asRadians()->getValue(); |
||||
| 1062 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||
| 1063 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||||
| 1064 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||
| 1065 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1066 | $e = $ellipsoid->getEccentricity(); |
||||
| 1067 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1068 | |||||
| 1069 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||||
| 1070 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||||
| 1071 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||||
| 1072 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||||
| 1073 | $n = sin($latitudeNaturalOrigin); |
||||
| 1074 | $F = $mO / ($n * $tO ** $n); |
||||
| 1075 | $rF = $a * $F * $tF ** $n * $kO; |
||||
| 1076 | $r = $a * $F * $t ** $n * $kO; |
||||
| 1077 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||||
| 1078 | |||||
| 1079 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||||
| 1080 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||||
| 1081 | |||||
| 1082 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1083 | } |
||||
| 1084 | |||||
| 1085 | /** |
||||
| 1086 | * Lambert Conic Conformal (2SP Belgium) |
||||
| 1087 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||||
| 1088 | * with appropriately modified parameter values. |
||||
| 1089 | 9 | */ |
|||
| 1090 | public function lambertConicConformal2SPBelgium( |
||||
| 1091 | Projected $to, |
||||
| 1092 | Angle $latitudeOfFalseOrigin, |
||||
| 1093 | Angle $longitudeOfFalseOrigin, |
||||
| 1094 | Angle $latitudeOf1stStandardParallel, |
||||
| 1095 | Angle $latitudeOf2ndStandardParallel, |
||||
| 1096 | Length $eastingAtFalseOrigin, |
||||
| 1097 | Length $northingAtFalseOrigin |
||||
| 1098 | 9 | ): ProjectedPoint { |
|||
| 1099 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1100 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1101 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||
| 1102 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1103 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||
| 1104 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1105 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1106 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1107 | 9 | ||||
| 1108 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||
| 1109 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||
| 1110 | 9 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1111 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||
| 1112 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||
| 1113 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||
| 1114 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||
| 1115 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||
| 1116 | 9 | $r = $a * $F * $t ** $n; |
|||
| 1117 | 9 | $rF = $a * $F * $tF ** $n; |
|||
| 1118 | 9 | if (is_nan($rF)) { |
|||
| 1119 | $rF = 0; |
||||
| 1120 | 9 | } |
|||
| 1121 | $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue(); |
||||
| 1122 | 9 | ||||
| 1123 | 9 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
|||
| 1124 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||||
| 1125 | 9 | ||||
| 1126 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1127 | } |
||||
| 1128 | |||||
| 1129 | /** |
||||
| 1130 | * Lambert Conic Conformal (2SP Michigan). |
||||
| 1131 | 9 | */ |
|||
| 1132 | public function lambertConicConformal2SPMichigan( |
||||
| 1133 | Projected $to, |
||||
| 1134 | Angle $latitudeOfFalseOrigin, |
||||
| 1135 | Angle $longitudeOfFalseOrigin, |
||||
| 1136 | Angle $latitudeOf1stStandardParallel, |
||||
| 1137 | Angle $latitudeOf2ndStandardParallel, |
||||
| 1138 | Length $eastingAtFalseOrigin, |
||||
| 1139 | Length $northingAtFalseOrigin, |
||||
| 1140 | Scale $ellipsoidScalingFactor |
||||
| 1141 | 9 | ): ProjectedPoint { |
|||
| 1142 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1143 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1144 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||
| 1145 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1146 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||
| 1147 | 9 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
|||
| 1148 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1149 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1150 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1151 | 9 | ||||
| 1152 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||
| 1153 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||
| 1154 | 9 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1155 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||
| 1156 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||
| 1157 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||
| 1158 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||
| 1159 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||
| 1160 | 9 | $r = $a * $K * $F * $t ** $n; |
|||
| 1161 | 9 | $rF = $a * $K * $F * $tF ** $n; |
|||
| 1162 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||||
| 1163 | 9 | ||||
| 1164 | 9 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
|||
| 1165 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||||
| 1166 | 9 | ||||
| 1167 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1168 | } |
||||
| 1169 | |||||
| 1170 | /** |
||||
| 1171 | * Lambert Conic Conformal (2SP). |
||||
| 1172 | 19 | */ |
|||
| 1173 | public function lambertConicConformal2SP( |
||||
| 1174 | Projected $to, |
||||
| 1175 | Angle $latitudeOfFalseOrigin, |
||||
| 1176 | Angle $longitudeOfFalseOrigin, |
||||
| 1177 | Angle $latitudeOf1stStandardParallel, |
||||
| 1178 | Angle $latitudeOf2ndStandardParallel, |
||||
| 1179 | Length $eastingAtFalseOrigin, |
||||
| 1180 | Length $northingAtFalseOrigin |
||||
| 1181 | 19 | ): ProjectedPoint { |
|||
| 1182 | 19 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1183 | 19 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1184 | 19 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||
| 1185 | 19 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1186 | 19 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||
| 1187 | 19 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1188 | 19 | $e = $ellipsoid->getEccentricity(); |
|||
| 1189 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1190 | 19 | ||||
| 1191 | 19 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||
| 1192 | 19 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||
| 1193 | 19 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1194 | 19 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||
| 1195 | 19 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||
| 1196 | 19 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||
| 1197 | 19 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||
| 1198 | 19 | $F = $m1 / ($n * $t1 ** $n); |
|||
| 1199 | 19 | $r = $a * $F * $t ** $n; |
|||
| 1200 | 19 | $rF = $a * $F * $tF ** $n; |
|||
| 1201 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||||
| 1202 | 19 | ||||
| 1203 | 19 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
|||
| 1204 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||||
| 1205 | 19 | ||||
| 1206 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1207 | } |
||||
| 1208 | |||||
| 1209 | /** |
||||
| 1210 | * Lambert Conic Conformal (West Orientated). |
||||
| 1211 | */ |
||||
| 1212 | public function lambertConicConformalWestOrientated( |
||||
| 1213 | Projected $to, |
||||
| 1214 | Angle $latitudeOfNaturalOrigin, |
||||
| 1215 | Angle $longitudeOfNaturalOrigin, |
||||
| 1216 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1217 | Length $falseEasting, |
||||
| 1218 | Length $falseNorthing |
||||
| 1219 | ): ProjectedPoint { |
||||
| 1220 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||
| 1221 | $latitude = $this->latitude->asRadians()->getValue(); |
||||
| 1222 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||
| 1223 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||
| 1224 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1225 | $e = $ellipsoid->getEccentricity(); |
||||
| 1226 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1227 | |||||
| 1228 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||||
| 1229 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||||
| 1230 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||||
| 1231 | $n = sin($latitudeOrigin); |
||||
| 1232 | $F = $mO / ($n * $tO ** $n); |
||||
| 1233 | $rO = $a * $F * $tO ** $n ** $kO; |
||||
| 1234 | $r = $a * $F * $t ** $n ** $kO; |
||||
| 1235 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||||
| 1236 | |||||
| 1237 | $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta); |
||||
| 1238 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||||
| 1239 | |||||
| 1240 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch); |
||||
| 1241 | } |
||||
| 1242 | |||||
| 1243 | /** |
||||
| 1244 | * Lambert Conic Near-Conformal |
||||
| 1245 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||||
| 1246 | * series expansion of the projection formulae. |
||||
| 1247 | 9 | */ |
|||
| 1248 | public function lambertConicNearConformal( |
||||
| 1249 | Projected $to, |
||||
| 1250 | Angle $latitudeOfNaturalOrigin, |
||||
| 1251 | Angle $longitudeOfNaturalOrigin, |
||||
| 1252 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1253 | Length $falseEasting, |
||||
| 1254 | Length $falseNorthing |
||||
| 1255 | 9 | ): ProjectedPoint { |
|||
| 1256 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1257 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1258 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1259 | 9 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||
| 1260 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1261 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 1262 | $f = $ellipsoid->getFlattening(); |
||||
| 1263 | 9 | ||||
| 1264 | 9 | $n = $f / (2 - $f); |
|||
| 1265 | 9 | $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||
| 1266 | 9 | $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||
| 1267 | 9 | $A = 1 / (6 * $rhoO * $nuO); |
|||
| 1268 | 9 | $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
|||
| 1269 | 9 | $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
|||
| 1270 | 9 | $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
|||
| 1271 | 9 | $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
|||
| 1272 | 9 | $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
|||
| 1273 | 9 | $rO = $kO * $nuO / tan($latitudeOrigin); |
|||
| 1274 | 9 | $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
|||
| 1275 | 9 | $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude); |
|||
| 1276 | 9 | $m = $s - $sO; |
|||
| 1277 | 9 | $M = $kO * ($m + $A * $m ** 3); |
|||
| 1278 | 9 | $r = $rO - $M; |
|||
| 1279 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin); |
||||
| 1280 | 9 | ||||
| 1281 | 9 | $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
|||
| 1282 | $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2); |
||||
| 1283 | 9 | ||||
| 1284 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1285 | } |
||||
| 1286 | |||||
| 1287 | /** |
||||
| 1288 | * Lambert Cylindrical Equal Area |
||||
| 1289 | * This is the ellipsoidal form of the projection. |
||||
| 1290 | 9 | */ |
|||
| 1291 | public function lambertCylindricalEqualArea( |
||||
| 1292 | Projected $to, |
||||
| 1293 | Angle $latitudeOf1stStandardParallel, |
||||
| 1294 | Angle $longitudeOfNaturalOrigin, |
||||
| 1295 | Length $falseEasting, |
||||
| 1296 | Length $falseNorthing |
||||
| 1297 | 9 | ): ProjectedPoint { |
|||
| 1298 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1299 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1300 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1301 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1302 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1303 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1304 | 9 | ||||
| 1305 | 9 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
|||
| 1306 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
||||
| 1307 | 9 | ||||
| 1308 | 9 | $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1309 | $y = $a * $q / (2 * $k); |
||||
| 1310 | 9 | ||||
| 1311 | 9 | $easting = $falseEasting->asMetres()->getValue() + $x; |
|||
| 1312 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||||
| 1313 | 9 | ||||
| 1314 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1315 | } |
||||
| 1316 | |||||
| 1317 | /** |
||||
| 1318 | * Lambert Cylindrical Equal Area |
||||
| 1319 | * This is the spherical form of the projection. |
||||
| 1320 | 9 | */ |
|||
| 1321 | public function lambertCylindricalEqualAreaSpherical( |
||||
| 1322 | Projected $to, |
||||
| 1323 | Angle $latitudeOf1stStandardParallel, |
||||
| 1324 | Angle $longitudeOfNaturalOrigin, |
||||
| 1325 | Length $falseEasting, |
||||
| 1326 | Length $falseNorthing |
||||
| 1327 | 9 | ): ProjectedPoint { |
|||
| 1328 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1329 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1330 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1331 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1332 | 9 | ||||
| 1333 | 9 | $x = $a * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1334 | $y = $a * sin($latitude) / cos($latitudeFirstParallel); |
||||
| 1335 | 9 | ||||
| 1336 | 9 | $easting = $falseEasting->asMetres()->getValue() + $x; |
|||
| 1337 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||||
| 1338 | 9 | ||||
| 1339 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1340 | } |
||||
| 1341 | |||||
| 1342 | /** |
||||
| 1343 | * Modified Azimuthal Equidistant |
||||
| 1344 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||||
| 1345 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||||
| 1346 | 9 | */ |
|||
| 1347 | public function modifiedAzimuthalEquidistant( |
||||
| 1348 | Projected $to, |
||||
| 1349 | Angle $latitudeOfNaturalOrigin, |
||||
| 1350 | Angle $longitudeOfNaturalOrigin, |
||||
| 1351 | Length $falseEasting, |
||||
| 1352 | Length $falseNorthing |
||||
| 1353 | 9 | ): ProjectedPoint { |
|||
| 1354 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1355 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1356 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1357 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1358 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1359 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1360 | 9 | ||||
| 1361 | 9 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||
| 1362 | 9 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
|||
| 1363 | 9 | $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude))); |
|||
| 1364 | 9 | $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
|||
| 1365 | 9 | $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2); |
|||
| 1366 | $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2); |
||||
| 1367 | 9 | ||||
| 1368 | if (sin($alpha) === 0.0) { |
||||
| 1369 | $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha)); |
||||
| 1370 | 9 | } else { |
|||
| 1371 | $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha)); |
||||
| 1372 | } |
||||
| 1373 | 9 | ||||
| 1374 | $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H)); |
||||
| 1375 | 9 | ||||
| 1376 | 9 | $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha); |
|||
| 1377 | $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha); |
||||
| 1378 | 9 | ||||
| 1379 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1380 | } |
||||
| 1381 | |||||
| 1382 | /** |
||||
| 1383 | * Oblique Stereographic |
||||
| 1384 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||||
| 1385 | * Projections - A Working Manual" by John P. Snyder. |
||||
| 1386 | 9 | */ |
|||
| 1387 | public function obliqueStereographic( |
||||
| 1388 | Projected $to, |
||||
| 1389 | Angle $latitudeOfNaturalOrigin, |
||||
| 1390 | Angle $longitudeOfNaturalOrigin, |
||||
| 1391 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1392 | Length $falseEasting, |
||||
| 1393 | Length $falseNorthing |
||||
| 1394 | 9 | ): ProjectedPoint { |
|||
| 1395 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1396 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1397 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1398 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1399 | 9 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||
| 1400 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1401 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1402 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1403 | 9 | ||||
| 1404 | 9 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||
| 1405 | 9 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||
| 1406 | $R = sqrt($rhoOrigin * $nuOrigin); |
||||
| 1407 | 9 | ||||
| 1408 | 9 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
|||
| 1409 | 9 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
|||
| 1410 | 9 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
|||
| 1411 | 9 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
|||
| 1412 | 9 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
|||
| 1413 | 9 | $w2 = $c * $w1; |
|||
| 1414 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||||
| 1415 | 9 | ||||
| 1416 | $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin; |
||||
| 1417 | 9 | ||||
| 1418 | 9 | $Sa = (1 + sin($latitude)) / (1 - sin($latitude)); |
|||
| 1419 | 9 | $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude)); |
|||
| 1420 | 9 | $w = $c * ($Sa * ($Sb ** $e)) ** $n; |
|||
| 1421 | $chi = self::asin(($w - 1) / ($w + 1)); |
||||
| 1422 | 9 | ||||
| 1423 | $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin)); |
||||
| 1424 | 9 | ||||
| 1425 | 9 | $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B; |
|||
| 1426 | $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B; |
||||
| 1427 | 9 | ||||
| 1428 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1429 | } |
||||
| 1430 | |||||
| 1431 | /** |
||||
| 1432 | * Polar Stereographic (variant A) |
||||
| 1433 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||||
| 1434 | 9 | */ |
|||
| 1435 | public function polarStereographicVariantA( |
||||
| 1436 | Projected $to, |
||||
| 1437 | Angle $latitudeOfNaturalOrigin, |
||||
| 1438 | Angle $longitudeOfNaturalOrigin, |
||||
| 1439 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1440 | Length $falseEasting, |
||||
| 1441 | Length $falseNorthing |
||||
| 1442 | 9 | ): ProjectedPoint { |
|||
| 1443 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1444 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1445 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1446 | 9 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||
| 1447 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1448 | $e = $ellipsoid->getEccentricity(); |
||||
| 1449 | 9 | ||||
| 1450 | if ($latitudeOrigin < 0) { |
||||
| 1451 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1452 | 9 | } else { |
|||
| 1453 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1454 | 9 | } |
|||
| 1455 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||||
| 1456 | 9 | ||||
| 1457 | 9 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1458 | 9 | $dE = $rho * sin($theta); |
|||
| 1459 | $dN = $rho * cos($theta); |
||||
| 1460 | 9 | ||||
| 1461 | 9 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
|||
| 1462 | if ($latitudeOrigin < 0) { |
||||
| 1463 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||||
| 1464 | 9 | } else { |
|||
| 1465 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||||
| 1466 | } |
||||
| 1467 | 9 | ||||
| 1468 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1469 | } |
||||
| 1470 | |||||
| 1471 | /** |
||||
| 1472 | * Polar Stereographic (variant B). |
||||
| 1473 | 9 | */ |
|||
| 1474 | public function polarStereographicVariantB( |
||||
| 1475 | Projected $to, |
||||
| 1476 | Angle $latitudeOfStandardParallel, |
||||
| 1477 | Angle $longitudeOfOrigin, |
||||
| 1478 | Length $falseEasting, |
||||
| 1479 | Length $falseNorthing |
||||
| 1480 | 9 | ): ProjectedPoint { |
|||
| 1481 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1482 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1483 | 9 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||
| 1484 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1485 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1486 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1487 | 9 | ||||
| 1488 | 9 | if ($firstStandardParallel < 0) { |
|||
| 1489 | 9 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
|||
| 1490 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1491 | } else { |
||||
| 1492 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||||
| 1493 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1494 | 9 | } |
|||
| 1495 | 9 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
|||
| 1496 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
||||
| 1497 | 9 | ||||
| 1498 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||||
| 1499 | 9 | ||||
| 1500 | 9 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
|||
| 1501 | 9 | $dE = $rho * sin($theta); |
|||
| 1502 | $dN = $rho * cos($theta); |
||||
| 1503 | 9 | ||||
| 1504 | 9 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
|||
| 1505 | 9 | if ($firstStandardParallel < 0) { |
|||
| 1506 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||||
| 1507 | } else { |
||||
| 1508 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||||
| 1509 | } |
||||
| 1510 | 9 | ||||
| 1511 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1512 | } |
||||
| 1513 | |||||
| 1514 | /** |
||||
| 1515 | * Polar Stereographic (variant C). |
||||
| 1516 | 9 | */ |
|||
| 1517 | public function polarStereographicVariantC( |
||||
| 1518 | Projected $to, |
||||
| 1519 | Angle $latitudeOfStandardParallel, |
||||
| 1520 | Angle $longitudeOfOrigin, |
||||
| 1521 | Length $eastingAtFalseOrigin, |
||||
| 1522 | Length $northingAtFalseOrigin |
||||
| 1523 | 9 | ): ProjectedPoint { |
|||
| 1524 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1525 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1526 | 9 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||
| 1527 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1528 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1529 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1530 | 9 | ||||
| 1531 | 9 | if ($firstStandardParallel < 0) { |
|||
| 1532 | 9 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
|||
| 1533 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1534 | } else { |
||||
| 1535 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||||
| 1536 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||||
| 1537 | 9 | } |
|||
| 1538 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||||
| 1539 | 9 | ||||
| 1540 | 9 | $rhoF = $a * $mF; |
|||
| 1541 | $rho = $rhoF * $t / $tF; |
||||
| 1542 | 9 | ||||
| 1543 | 9 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
|||
| 1544 | 9 | $dE = $rho * sin($theta); |
|||
| 1545 | $dN = $rho * cos($theta); |
||||
| 1546 | 9 | ||||
| 1547 | 9 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE; |
|||
| 1548 | 9 | if ($firstStandardParallel < 0) { |
|||
| 1549 | $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN; |
||||
| 1550 | } else { |
||||
| 1551 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN; |
||||
| 1552 | } |
||||
| 1553 | 9 | ||||
| 1554 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1555 | } |
||||
| 1556 | |||||
| 1557 | /** |
||||
| 1558 | * Popular Visualisation Pseudo Mercator |
||||
| 1559 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||||
| 1560 | 9 | */ |
|||
| 1561 | public function popularVisualisationPseudoMercator( |
||||
| 1562 | Projected $to, |
||||
| 1563 | Angle $latitudeOfNaturalOrigin, |
||||
|
0 ignored issues
–
show
The parameter
$latitudeOfNaturalOrigin is not used and could be removed.
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
This check looks for parameters that have been defined for a function or method, but which are not used in the method body. Loading history...
|
|||||
| 1564 | Angle $longitudeOfNaturalOrigin, |
||||
| 1565 | Length $falseEasting, |
||||
| 1566 | Length $falseNorthing |
||||
| 1567 | 9 | ): ProjectedPoint { |
|||
| 1568 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1569 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1570 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1571 | 9 | ||||
| 1572 | 9 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1573 | $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2)); |
||||
| 1574 | 9 | ||||
| 1575 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1576 | } |
||||
| 1577 | |||||
| 1578 | /** |
||||
| 1579 | * Mercator (variant A) |
||||
| 1580 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||||
| 1581 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||||
| 1582 | * completeness in CRS labelling. |
||||
| 1583 | 18 | */ |
|||
| 1584 | public function mercatorVariantA( |
||||
| 1585 | Projected $to, |
||||
| 1586 | Angle $latitudeOfNaturalOrigin, |
||||
|
0 ignored issues
–
show
The parameter
$latitudeOfNaturalOrigin is not used and could be removed.
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
This check looks for parameters that have been defined for a function or method, but which are not used in the method body. Loading history...
|
|||||
| 1587 | Angle $longitudeOfNaturalOrigin, |
||||
| 1588 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1589 | Length $falseEasting, |
||||
| 1590 | Length $falseNorthing |
||||
| 1591 | 18 | ): ProjectedPoint { |
|||
| 1592 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1593 | 18 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1594 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||
| 1595 | 18 | ||||
| 1596 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1597 | $e = $ellipsoid->getEccentricity(); |
||||
| 1598 | 18 | ||||
| 1599 | 18 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1600 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||
| 1601 | 18 | ||||
| 1602 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1603 | } |
||||
| 1604 | |||||
| 1605 | /** |
||||
| 1606 | * Mercator (variant B) |
||||
| 1607 | * Used for most nautical charts. |
||||
| 1608 | 9 | */ |
|||
| 1609 | public function mercatorVariantB( |
||||
| 1610 | Projected $to, |
||||
| 1611 | Angle $latitudeOf1stStandardParallel, |
||||
| 1612 | Angle $longitudeOfNaturalOrigin, |
||||
| 1613 | Length $falseEasting, |
||||
| 1614 | Length $falseNorthing |
||||
| 1615 | 9 | ): ProjectedPoint { |
|||
| 1616 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1617 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1618 | 9 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||
| 1619 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1620 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1621 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1622 | 9 | ||||
| 1623 | $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||||
| 1624 | 9 | ||||
| 1625 | 9 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
|||
| 1626 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||
| 1627 | 9 | ||||
| 1628 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1629 | } |
||||
| 1630 | |||||
| 1631 | /** |
||||
| 1632 | * Longitude rotation |
||||
| 1633 | * This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
||||
| 1634 | * value to the longitude value of the point in the source system. |
||||
| 1635 | 27 | */ |
|||
| 1636 | public function longitudeRotation( |
||||
| 1637 | Geographic2D|Geographic3D $to, |
||||
| 1638 | Angle $longitudeOffset |
||||
| 1639 | 27 | ): self { |
|||
| 1640 | $newLongitude = $this->longitude->add($longitudeOffset); |
||||
| 1641 | 27 | ||||
| 1642 | return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch); |
||||
| 1643 | } |
||||
| 1644 | |||||
| 1645 | /** |
||||
| 1646 | * Hotine Oblique Mercator (variant A). |
||||
| 1647 | 9 | */ |
|||
| 1648 | public function obliqueMercatorHotineVariantA( |
||||
| 1649 | Projected $to, |
||||
| 1650 | Angle $latitudeOfProjectionCentre, |
||||
| 1651 | Angle $longitudeOfProjectionCentre, |
||||
| 1652 | Angle $azimuthAtProjectionCentre, |
||||
| 1653 | Angle $angleFromRectifiedToSkewGrid, |
||||
| 1654 | Scale $scaleFactorAtProjectionCentre, |
||||
| 1655 | Length $falseEasting, |
||||
| 1656 | Length $falseNorthing |
||||
| 1657 | 9 | ): ProjectedPoint { |
|||
| 1658 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1659 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1660 | 9 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
| 1661 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 1662 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 1663 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||
| 1664 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||
| 1665 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||
| 1666 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1667 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1668 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1669 | 9 | ||||
| 1670 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||
| 1671 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||
| 1672 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||
| 1673 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||
| 1674 | 9 | $DD = max(1, $D ** 2); |
|||
| 1675 | 9 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
|||
| 1676 | 9 | $H = $F * $tO ** $B; |
|||
| 1677 | 9 | $G = ($F - 1 / $F) / 2; |
|||
| 1678 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||
| 1679 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||||
| 1680 | 9 | ||||
| 1681 | 9 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1682 | 9 | $Q = $H / $t ** $B; |
|||
| 1683 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||
| 1684 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||
| 1685 | 9 | $V = sin($B * ($longitude - $lonO)); |
|||
| 1686 | 9 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||
| 1687 | 9 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
|||
| 1688 | $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B; |
||||
| 1689 | 9 | ||||
| 1690 | 9 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue(); |
|||
| 1691 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue(); |
||||
| 1692 | 9 | ||||
| 1693 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1694 | } |
||||
| 1695 | |||||
| 1696 | /** |
||||
| 1697 | * Hotine Oblique Mercator (variant B). |
||||
| 1698 | 9 | */ |
|||
| 1699 | public function obliqueMercatorHotineVariantB( |
||||
| 1700 | Projected $to, |
||||
| 1701 | Angle $latitudeOfProjectionCentre, |
||||
| 1702 | Angle $longitudeOfProjectionCentre, |
||||
| 1703 | Angle $azimuthAtProjectionCentre, |
||||
| 1704 | Angle $angleFromRectifiedToSkewGrid, |
||||
| 1705 | Scale $scaleFactorAtProjectionCentre, |
||||
| 1706 | Length $eastingAtProjectionCentre, |
||||
| 1707 | Length $northingAtProjectionCentre |
||||
| 1708 | 9 | ): ProjectedPoint { |
|||
| 1709 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1710 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1711 | 9 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
| 1712 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 1713 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 1714 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||
| 1715 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||
| 1716 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||
| 1717 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1718 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1719 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1720 | 9 | ||||
| 1721 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||
| 1722 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||
| 1723 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||
| 1724 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||
| 1725 | 9 | $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC); |
|||
| 1726 | 9 | $H = $F * $tO ** $B; |
|||
| 1727 | 9 | $G = ($F - 1 / $F) / 2; |
|||
| 1728 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||
| 1729 | 9 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
|||
| 1730 | 9 | $vC = 0; |
|||
|
0 ignored issues
–
show
|
|||||
| 1731 | if ($alphaC === M_PI / 2) { |
||||
| 1732 | $uC = $A * ($lonC - $lonO); |
||||
| 1733 | 9 | } else { |
|||
| 1734 | $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC); |
||||
| 1735 | } |
||||
| 1736 | 9 | ||||
| 1737 | 9 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
|||
| 1738 | 9 | $Q = $H / $t ** $B; |
|||
| 1739 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||
| 1740 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||
| 1741 | 9 | $V = sin($B * ($longitude - $lonO)); |
|||
| 1742 | 9 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||
| 1743 | 9 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
|||
| 1744 | $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC)); |
||||
| 1745 | 9 | ||||
| 1746 | 9 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue(); |
|||
| 1747 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue(); |
||||
| 1748 | 9 | ||||
| 1749 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1750 | } |
||||
| 1751 | |||||
| 1752 | /** |
||||
| 1753 | * Laborde Oblique Mercator. |
||||
| 1754 | 9 | */ |
|||
| 1755 | public function obliqueMercatorLaborde( |
||||
| 1756 | Projected $to, |
||||
| 1757 | Angle $latitudeOfProjectionCentre, |
||||
| 1758 | Angle $longitudeOfProjectionCentre, |
||||
| 1759 | Angle $azimuthAtProjectionCentre, |
||||
| 1760 | Scale $scaleFactorAtProjectionCentre, |
||||
| 1761 | Length $falseEasting, |
||||
| 1762 | Length $falseNorthing |
||||
| 1763 | 9 | ): ProjectedPoint { |
|||
| 1764 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1765 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1766 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 1767 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||
| 1768 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||
| 1769 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1770 | 9 | $e = $ellipsoid->getEccentricity(); |
|||
| 1771 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||
| 1772 | 9 | ||||
| 1773 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||
| 1774 | 9 | $latS = self::asin(sin($latC) / $B); |
|||
| 1775 | 9 | $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
|||
| 1776 | $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
||||
| 1777 | 9 | ||||
| 1778 | 9 | $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue(); |
|||
| 1779 | 9 | $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||
| 1780 | 9 | $P = 2 * atan(M_E ** $q) - M_PI / 2; |
|||
| 1781 | 9 | $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS); |
|||
| 1782 | 9 | $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS); |
|||
| 1783 | 9 | $W = cos($P) * sin($L); |
|||
| 1784 | 9 | $d = hypot($U, $V); |
|||
| 1785 | if ($d === 0.0) { |
||||
| 1786 | $LPrime = 0; |
||||
| 1787 | $PPrime = static::sign($W) * M_PI / 2; |
||||
| 1788 | 9 | } else { |
|||
| 1789 | 9 | $LPrime = 2 * atan($V / ($U + $d)); |
|||
| 1790 | $PPrime = atan($W / $d); |
||||
| 1791 | 9 | } |
|||
| 1792 | 9 | $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2))); |
|||
| 1793 | $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
||||
| 1794 | 9 | ||||
| 1795 | 9 | $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary(); |
|||
| 1796 | $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal(); |
||||
| 1797 | 9 | ||||
| 1798 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1799 | } |
||||
| 1800 | |||||
| 1801 | /** |
||||
| 1802 | * Transverse Mercator. |
||||
| 1803 | 144 | */ |
|||
| 1804 | public function transverseMercator( |
||||
| 1805 | Projected $to, |
||||
| 1806 | Angle $latitudeOfNaturalOrigin, |
||||
| 1807 | Angle $longitudeOfNaturalOrigin, |
||||
| 1808 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1809 | Length $falseEasting, |
||||
| 1810 | Length $falseNorthing |
||||
| 1811 | 144 | ): ProjectedPoint { |
|||
| 1812 | 144 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1813 | 144 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 1814 | 144 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||
| 1815 | 144 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||
| 1816 | 144 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 1817 | 144 | $e = $ellipsoid->getEccentricity(); |
|||
| 1818 | $f = $ellipsoid->getFlattening(); |
||||
| 1819 | 144 | ||||
| 1820 | 144 | $n = $f / (2 - $f); |
|||
| 1821 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||||
| 1822 | 144 | ||||
| 1823 | 144 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
|||
| 1824 | 144 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
|||
| 1825 | 144 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
|||
| 1826 | 144 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
|||
| 1827 | 144 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
|||
| 1828 | 144 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
|||
| 1829 | 144 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
|||
| 1830 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||||
| 1831 | 144 | ||||
| 1832 | 81 | if ($latitudeOrigin === 0.0) { |
|||
|
0 ignored issues
–
show
|
|||||
| 1833 | 63 | $mO = 0; |
|||
| 1834 | } elseif ($latitudeOrigin === M_PI / 2) { |
||||
| 1835 | 63 | $mO = $B * M_PI / 2; |
|||
| 1836 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||||
| 1837 | $mO = $B * -M_PI / 2; |
||||
| 1838 | 63 | } else { |
|||
| 1839 | 63 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
|||
| 1840 | 63 | $betaO = atan(sinh($qO)); |
|||
| 1841 | 63 | $xiO0 = self::asin(sin($betaO)); |
|||
| 1842 | 63 | $xiO1 = $h1 * sin(2 * $xiO0); |
|||
| 1843 | 63 | $xiO2 = $h2 * sin(4 * $xiO0); |
|||
| 1844 | 63 | $xiO3 = $h3 * sin(6 * $xiO0); |
|||
| 1845 | 63 | $xiO4 = $h4 * sin(8 * $xiO0); |
|||
| 1846 | 63 | $xiO5 = $h5 * sin(10 * $xiO0); |
|||
| 1847 | 63 | $xiO6 = $h6 * sin(12 * $xiO0); |
|||
| 1848 | 63 | $xiO7 = $h7 * sin(14 * $xiO0); |
|||
| 1849 | 63 | $xiO8 = $h8 * sin(16 * $xiO0); |
|||
| 1850 | 63 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
|||
| 1851 | $mO = $B * $xiO; |
||||
| 1852 | } |
||||
| 1853 | 144 | ||||
| 1854 | 144 | $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude))); |
|||
| 1855 | 144 | $beta = atan(sinh($Q)); |
|||
| 1856 | 144 | $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
|||
| 1857 | 144 | $xi0 = self::asin(sin($beta) * cosh($eta0)); |
|||
| 1858 | 144 | $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0); |
|||
| 1859 | 144 | $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0); |
|||
| 1860 | 144 | $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0); |
|||
| 1861 | 144 | $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0); |
|||
| 1862 | 144 | $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0); |
|||
| 1863 | 144 | $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0); |
|||
| 1864 | 144 | $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0); |
|||
| 1865 | 144 | $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0); |
|||
| 1866 | 144 | $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0); |
|||
| 1867 | 144 | $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0); |
|||
| 1868 | 144 | $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0); |
|||
| 1869 | 144 | $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0); |
|||
| 1870 | 144 | $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0); |
|||
| 1871 | 144 | $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0); |
|||
| 1872 | 144 | $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0); |
|||
| 1873 | 144 | $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0); |
|||
| 1874 | 144 | $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8; |
|||
| 1875 | $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8; |
||||
| 1876 | 144 | ||||
| 1877 | 144 | $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta; |
|||
| 1878 | $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO); |
||||
| 1879 | 144 | ||||
| 1880 | $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null; |
||||
| 1881 | 144 | ||||
| 1882 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height); |
||||
| 1883 | } |
||||
| 1884 | |||||
| 1885 | /** |
||||
| 1886 | * Transverse Mercator Zoned Grid System |
||||
| 1887 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||||
| 1888 | * each zone. |
||||
| 1889 | 36 | */ |
|||
| 1890 | public function transverseMercatorZonedGrid( |
||||
| 1891 | Projected $to, |
||||
| 1892 | Angle $latitudeOfNaturalOrigin, |
||||
| 1893 | Angle $initialLongitude, |
||||
| 1894 | Angle $zoneWidth, |
||||
| 1895 | Scale $scaleFactorAtNaturalOrigin, |
||||
| 1896 | Length $falseEasting, |
||||
| 1897 | Length $falseNorthing |
||||
| 1898 | 36 | ): ProjectedPoint { |
|||
| 1899 | 36 | $W = $zoneWidth->asDegrees()->getValue(); |
|||
| 1900 | $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1; |
||||
| 1901 | 36 | ||||
| 1902 | 36 | $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
|||
| 1903 | $falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
||||
| 1904 | 36 | ||||
| 1905 | return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
||||
| 1906 | } |
||||
| 1907 | |||||
| 1908 | /** |
||||
| 1909 | * New Zealand Map Grid. |
||||
| 1910 | 27 | */ |
|||
| 1911 | public function newZealandMapGrid( |
||||
| 1912 | Projected $to, |
||||
| 1913 | Angle $latitudeOfNaturalOrigin, |
||||
| 1914 | Angle $longitudeOfNaturalOrigin, |
||||
| 1915 | Length $falseEasting, |
||||
| 1916 | Length $falseNorthing |
||||
| 1917 | 27 | ): ProjectedPoint { |
|||
| 1918 | 27 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 1919 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||
| 1920 | 27 | ||||
| 1921 | 27 | $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue(); |
|||
| 1922 | $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians(); |
||||
| 1923 | 27 | ||||
| 1924 | 27 | $deltaPsi = 0; |
|||
| 1925 | 27 | $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1; |
|||
| 1926 | 27 | $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2; |
|||
| 1927 | 27 | $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3; |
|||
| 1928 | 27 | $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4; |
|||
| 1929 | 27 | $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5; |
|||
| 1930 | 27 | $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6; |
|||
| 1931 | 27 | $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7; |
|||
| 1932 | 27 | $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8; |
|||
| 1933 | 27 | $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9; |
|||
| 1934 | $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10; |
||||
| 1935 | 27 | ||||
| 1936 | $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue()); |
||||
| 1937 | 27 | ||||
| 1938 | 27 | $B1 = new ComplexNumber(0.7557853228, 0.0); |
|||
| 1939 | 27 | $B2 = new ComplexNumber(0.249204646, 0.003371507); |
|||
| 1940 | 27 | $B3 = new ComplexNumber(-0.001541739, 0.041058560); |
|||
| 1941 | 27 | $B4 = new ComplexNumber(-0.10162907, 0.01727609); |
|||
| 1942 | 27 | $B5 = new ComplexNumber(-0.26623489, -0.36249218); |
|||
| 1943 | 27 | $B6 = new ComplexNumber(-0.6870983, -1.1651967); |
|||
| 1944 | 27 | $z = new ComplexNumber(0, 0); |
|||
| 1945 | 27 | $z = $z->add($B1->multiply($zeta->pow(1))); |
|||
| 1946 | 27 | $z = $z->add($B2->multiply($zeta->pow(2))); |
|||
| 1947 | 27 | $z = $z->add($B3->multiply($zeta->pow(3))); |
|||
| 1948 | 27 | $z = $z->add($B4->multiply($zeta->pow(4))); |
|||
| 1949 | 27 | $z = $z->add($B5->multiply($zeta->pow(5))); |
|||
| 1950 | $z = $z->add($B6->multiply($zeta->pow(6))); |
||||
| 1951 | 27 | ||||
| 1952 | 27 | $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a; |
|||
| 1953 | $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a; |
||||
| 1954 | 27 | ||||
| 1955 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 1956 | } |
||||
| 1957 | |||||
| 1958 | /** |
||||
| 1959 | * Madrid to ED50 polynomial. |
||||
| 1960 | 9 | */ |
|||
| 1961 | public function madridToED50Polynomial( |
||||
| 1962 | Geographic2D $to, |
||||
| 1963 | Scale $A0, |
||||
| 1964 | Scale $A1, |
||||
| 1965 | Scale $A2, |
||||
| 1966 | Scale $A3, |
||||
| 1967 | Angle $B00, |
||||
| 1968 | Scale $B0, |
||||
| 1969 | Scale $B1, |
||||
| 1970 | Scale $B2, |
||||
| 1971 | Scale $B3 |
||||
| 1972 | 9 | ): self { |
|||
| 1973 | 9 | $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue()); |
|||
| 1974 | $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue())); |
||||
| 1975 | 9 | ||||
| 1976 | return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch); |
||||
| 1977 | } |
||||
| 1978 | |||||
| 1979 | /** |
||||
| 1980 | * Geographic3D to 2D conversion. |
||||
| 1981 | 47 | */ |
|||
| 1982 | public function threeDToTwoD( |
||||
| 1983 | Geographic2D|Geographic3D $to |
||||
| 1984 | 47 | ): self { |
|||
| 1985 | 37 | if ($to instanceof Geographic2D) { |
|||
| 1986 | return static::create($to, $this->latitude, $this->longitude, null, $this->epoch); |
||||
| 1987 | } |
||||
| 1988 | 10 | ||||
| 1989 | return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch); |
||||
| 1990 | } |
||||
| 1991 | |||||
| 1992 | /** |
||||
| 1993 | * Geographic2D offsets. |
||||
| 1994 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||||
| 1995 | * coordinate values of the point in the source system. |
||||
| 1996 | 9 | */ |
|||
| 1997 | public function geographic2DOffsets( |
||||
| 1998 | Geographic2D|Geographic3D $to, |
||||
| 1999 | Angle $latitudeOffset, |
||||
| 2000 | Angle $longitudeOffset |
||||
| 2001 | 9 | ): self { |
|||
| 2002 | 9 | $toLatitude = $this->latitude->add($latitudeOffset); |
|||
| 2003 | $toLongitude = $this->longitude->add($longitudeOffset); |
||||
| 2004 | 9 | ||||
| 2005 | return static::create($to, $toLatitude, $toLongitude, null, $this->epoch); |
||||
| 2006 | } |
||||
| 2007 | |||||
| 2008 | /* |
||||
| 2009 | * Geographic2D with Height Offsets. |
||||
| 2010 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||||
| 2011 | * coordinate values of the point in the source system. |
||||
| 2012 | */ |
||||
| 2013 | public function geographic2DWithHeightOffsets( |
||||
| 2014 | Compound $to, |
||||
| 2015 | Angle $latitudeOffset, |
||||
| 2016 | Angle $longitudeOffset, |
||||
| 2017 | Length $geoidUndulation |
||||
| 2018 | ): CompoundPoint { |
||||
| 2019 | assert($this->height instanceof Length); |
||||
| 2020 | $toLatitude = $this->latitude->add($latitudeOffset); |
||||
| 2021 | $toLongitude = $this->longitude->add($longitudeOffset); |
||||
| 2022 | $toHeight = $this->height->add($geoidUndulation); |
||||
| 2023 | |||||
| 2024 | assert($to->getHorizontal() instanceof Geographic2D); |
||||
| 2025 | $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch); |
||||
| 2026 | $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch); |
||||
| 2027 | |||||
| 2028 | return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch); |
||||
| 2029 | } |
||||
| 2030 | |||||
| 2031 | /** |
||||
| 2032 | * General polynomial. |
||||
| 2033 | * @param Coefficient[] $powerCoefficients |
||||
| 2034 | 45 | */ |
|||
| 2035 | public function generalPolynomial( |
||||
| 2036 | Geographic2D|Geographic3D $to, |
||||
| 2037 | Angle $ordinate1OfEvaluationPointInSourceCRS, |
||||
| 2038 | Angle $ordinate2OfEvaluationPointInSourceCRS, |
||||
| 2039 | Angle $ordinate1OfEvaluationPointInTargetCRS, |
||||
| 2040 | Angle $ordinate2OfEvaluationPointInTargetCRS, |
||||
| 2041 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||||
| 2042 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||||
| 2043 | Scale $A0, |
||||
| 2044 | Scale $B0, |
||||
| 2045 | array $powerCoefficients, |
||||
| 2046 | bool $inReverse |
||||
| 2047 | 45 | ): self { |
|||
| 2048 | 45 | $xs = $this->latitude->getValue(); |
|||
| 2049 | $ys = $this->longitude->getValue(); |
||||
| 2050 | 45 | ||||
| 2051 | 45 | $t = $this->generalPolynomialUnitless( |
|||
| 2052 | 45 | $xs, |
|||
| 2053 | 45 | $ys, |
|||
| 2054 | 45 | $ordinate1OfEvaluationPointInSourceCRS, |
|||
| 2055 | 45 | $ordinate2OfEvaluationPointInSourceCRS, |
|||
| 2056 | 45 | $ordinate1OfEvaluationPointInTargetCRS, |
|||
| 2057 | 45 | $ordinate2OfEvaluationPointInTargetCRS, |
|||
| 2058 | 45 | $scalingFactorForSourceCRSCoordDifferences, |
|||
| 2059 | 45 | $scalingFactorForTargetCRSCoordDifferences, |
|||
| 2060 | 45 | $A0, |
|||
| 2061 | 45 | $B0, |
|||
| 2062 | 45 | $powerCoefficients, |
|||
| 2063 | 45 | $inReverse |
|||
| 2064 | ); |
||||
| 2065 | 45 | ||||
| 2066 | 45 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
|||
| 2067 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||
| 2068 | 45 | ||||
| 2069 | 45 | return static::create( |
|||
| 2070 | 45 | $to, |
|||
| 2071 | 45 | Angle::makeUnit($t['xt'], $xtUnit), |
|||
| 2072 | 45 | Angle::makeUnit($t['yt'], $ytUnit), |
|||
| 2073 | 45 | $this->height, |
|||
| 2074 | 45 | $this->epoch |
|||
| 2075 | ); |
||||
| 2076 | } |
||||
| 2077 | |||||
| 2078 | /** |
||||
| 2079 | * Reversible polynomial. |
||||
| 2080 | * @param Coefficient[] $powerCoefficients |
||||
| 2081 | 36 | */ |
|||
| 2082 | public function reversiblePolynomial( |
||||
| 2083 | Geographic2D|Geographic3D $to, |
||||
| 2084 | Angle $ordinate1OfEvaluationPoint, |
||||
| 2085 | Angle $ordinate2OfEvaluationPoint, |
||||
| 2086 | Scale $scalingFactorForCoordDifferences, |
||||
| 2087 | Scale $A0, |
||||
| 2088 | Scale $B0, |
||||
| 2089 | $powerCoefficients |
||||
| 2090 | 36 | ): self { |
|||
| 2091 | 36 | $xs = $this->latitude->getValue(); |
|||
| 2092 | $ys = $this->longitude->getValue(); |
||||
| 2093 | 36 | ||||
| 2094 | 36 | $t = $this->reversiblePolynomialUnitless( |
|||
| 2095 | 36 | $xs, |
|||
| 2096 | 36 | $ys, |
|||
| 2097 | 36 | $ordinate1OfEvaluationPoint, |
|||
| 2098 | 36 | $ordinate2OfEvaluationPoint, |
|||
| 2099 | 36 | $scalingFactorForCoordDifferences, |
|||
| 2100 | 36 | $A0, |
|||
| 2101 | 36 | $B0, |
|||
| 2102 | 36 | $powerCoefficients |
|||
| 2103 | ); |
||||
| 2104 | 36 | ||||
| 2105 | 36 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
|||
| 2106 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||
| 2107 | 36 | ||||
| 2108 | 36 | return static::create( |
|||
| 2109 | 36 | $to, |
|||
| 2110 | 36 | Angle::makeUnit($t['xt'], $xtUnit), |
|||
| 2111 | 36 | Angle::makeUnit($t['yt'], $ytUnit), |
|||
| 2112 | 36 | $this->height, |
|||
| 2113 | 36 | $this->epoch |
|||
| 2114 | ); |
||||
| 2115 | } |
||||
| 2116 | |||||
| 2117 | /** |
||||
| 2118 | * Axis Order Reversal. |
||||
| 2119 | */ |
||||
| 2120 | public function axisReversal( |
||||
| 2121 | Geographic2D|Geographic3D $to |
||||
| 2122 | ): self { |
||||
| 2123 | // axes are read in from the CRS, this is a book-keeping adjustment only |
||||
| 2124 | return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch); |
||||
| 2125 | } |
||||
| 2126 | |||||
| 2127 | /** |
||||
| 2128 | * Ordnance Survey National Transformation |
||||
| 2129 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||||
| 2130 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||||
| 2131 | */ |
||||
| 2132 | public function OSTN15( |
||||
| 2133 | Projected $to, |
||||
|
0 ignored issues
–
show
The parameter
$to is not used and could be removed.
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
This check looks for parameters that have been defined for a function or method, but which are not used in the method body. Loading history...
|
|||||
| 2134 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||||
| 2135 | ): ProjectedPoint { |
||||
| 2136 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||||
| 2137 | $etrs89NationalGrid = new Projected( |
||||
| 2138 | 'ETRS89 / National Grid', |
||||
| 2139 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||||
| 2140 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||||
| 2141 | $osgb36NationalGrid->getBoundingArea() |
||||
| 2142 | ); |
||||
| 2143 | |||||
| 2144 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||||
| 2145 | |||||
| 2146 | return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected); |
||||
| 2147 | } |
||||
| 2148 | |||||
| 2149 | /** |
||||
| 2150 | * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB). |
||||
| 2151 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||||
| 2152 | * coordinate differences. |
||||
| 2153 | */ |
||||
| 2154 | public function geographic3DTo2DPlusGravityHeightOSGM15( |
||||
| 2155 | Compound $to, |
||||
| 2156 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||||
| 2157 | ): CompoundPoint { |
||||
| 2158 | assert($this->height instanceof Length); |
||||
| 2159 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||||
| 2160 | $etrs89NationalGrid = new Projected( |
||||
| 2161 | 'ETRS89 / National Grid', |
||||
| 2162 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||||
| 2163 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||||
| 2164 | $osgb36NationalGrid->getBoundingArea() |
||||
| 2165 | ); |
||||
| 2166 | |||||
| 2167 | /** @var ProjectedPoint $projected */ |
||||
| 2168 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||||
| 2169 | |||||
| 2170 | assert($to->getHorizontal() instanceof Geographic2D); |
||||
| 2171 | $horizontalPoint = self::create( |
||||
| 2172 | $to->getHorizontal(), |
||||
| 2173 | $this->latitude, |
||||
| 2174 | $this->longitude, |
||||
| 2175 | null, |
||||
| 2176 | $this->getCoordinateEpoch() |
||||
| 2177 | ); |
||||
| 2178 | |||||
| 2179 | $verticalPoint = VerticalPoint::create( |
||||
| 2180 | $to->getVertical(), |
||||
| 2181 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||||
| 2182 | $this->getCoordinateEpoch() |
||||
| 2183 | ); |
||||
| 2184 | |||||
| 2185 | return CompoundPoint::create( |
||||
| 2186 | $to, |
||||
| 2187 | $horizontalPoint, |
||||
| 2188 | $verticalPoint, |
||||
| 2189 | $this->getCoordinateEpoch() |
||||
| 2190 | ); |
||||
| 2191 | } |
||||
| 2192 | |||||
| 2193 | /** |
||||
| 2194 | * Geographic3D to GravityRelatedHeight (OSGM-GB). |
||||
| 2195 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||||
| 2196 | * coordinate differences. |
||||
| 2197 | */ |
||||
| 2198 | public function geographic3DToGravityHeightOSGM15( |
||||
| 2199 | Vertical $to, |
||||
| 2200 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||||
| 2201 | ): VerticalPoint { |
||||
| 2202 | assert($this->height instanceof Length); |
||||
| 2203 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||||
| 2204 | $etrs89NationalGrid = new Projected( |
||||
| 2205 | 'ETRS89 / National Grid', |
||||
| 2206 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||||
| 2207 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||||
| 2208 | $osgb36NationalGrid->getBoundingArea() |
||||
| 2209 | ); |
||||
| 2210 | |||||
| 2211 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||||
| 2212 | |||||
| 2213 | return VerticalPoint::create( |
||||
| 2214 | $to, |
||||
| 2215 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||||
| 2216 | $this->getCoordinateEpoch() |
||||
| 2217 | ); |
||||
| 2218 | } |
||||
| 2219 | |||||
| 2220 | /** |
||||
| 2221 | * Geog3D to Geog2D+GravityRelatedHeight. |
||||
| 2222 | 6 | */ |
|||
| 2223 | public function geographic3DTo2DPlusGravityHeightFromGrid( |
||||
| 2224 | Compound $to, |
||||
| 2225 | GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile |
||||
| 2226 | 6 | ): CompoundPoint { |
|||
| 2227 | 6 | assert($this->height instanceof Length); |
|||
| 2228 | 6 | assert($to->getHorizontal() instanceof Geographic); |
|||
| 2229 | 6 | $horizontalPoint = self::create( |
|||
| 2230 | 6 | $to->getHorizontal(), |
|||
| 2231 | 6 | $this->latitude, |
|||
| 2232 | 6 | $this->longitude, |
|||
| 2233 | 6 | null, |
|||
| 2234 | 6 | $this->getCoordinateEpoch() |
|||
| 2235 | ); |
||||
| 2236 | 6 | ||||
| 2237 | 6 | $verticalPoint = VerticalPoint::create( |
|||
| 2238 | 6 | $to->getVertical(), |
|||
| 2239 | 6 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)), |
|||
| 2240 | 6 | $this->getCoordinateEpoch() |
|||
| 2241 | ); |
||||
| 2242 | 6 | ||||
| 2243 | 6 | return CompoundPoint::create( |
|||
| 2244 | 6 | $to, |
|||
| 2245 | 6 | $horizontalPoint, |
|||
| 2246 | 6 | $verticalPoint, |
|||
| 2247 | 6 | $this->getCoordinateEpoch() |
|||
| 2248 | ); |
||||
| 2249 | } |
||||
| 2250 | |||||
| 2251 | /** |
||||
| 2252 | * Geographic3D to GravityRelatedHeight. |
||||
| 2253 | 4 | */ |
|||
| 2254 | public function geographic3DToGravityHeightFromGrid( |
||||
| 2255 | Vertical $to, |
||||
| 2256 | GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile |
||||
| 2257 | 4 | ): VerticalPoint { |
|||
| 2258 | assert($this->height instanceof Length); |
||||
| 2259 | 4 | ||||
| 2260 | 4 | return VerticalPoint::create( |
|||
| 2261 | 4 | $to, |
|||
| 2262 | 4 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)), |
|||
| 2263 | 4 | $this->getCoordinateEpoch() |
|||
| 2264 | ); |
||||
| 2265 | } |
||||
| 2266 | |||||
| 2267 | /** |
||||
| 2268 | * NADCON5. |
||||
| 2269 | * @internal just a wrapper |
||||
| 2270 | 8 | */ |
|||
| 2271 | public function offsetsFromGridNADCON5( |
||||
| 2272 | Geographic2D|Geographic3D $to, |
||||
| 2273 | NADCON5Grid $latitudeDifferenceFile, |
||||
| 2274 | NADCON5Grid $longitudeDifferenceFile, |
||||
| 2275 | ?NADCON5Grid $ellipsoidalHeightDifferenceFile, |
||||
| 2276 | bool $inReverse |
||||
| 2277 | 8 | ): self { |
|||
| 2278 | $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile); |
||||
| 2279 | 8 | ||||
| 2280 | return $this->offsetsFromGrid($to, $aggregation, $inReverse); |
||||
| 2281 | } |
||||
| 2282 | |||||
| 2283 | /** |
||||
| 2284 | * Geographic offsets from grid. |
||||
| 2285 | 15 | */ |
|||
| 2286 | public function offsetsFromGrid( |
||||
| 2287 | Geographic2D|Geographic3D $to, |
||||
| 2288 | GeographicGrid $offsetsFile, |
||||
| 2289 | bool $inReverse |
||||
| 2290 | 15 | ): self { |
|||
| 2291 | 9 | if (!$inReverse) { |
|||
| 2292 | return $offsetsFile->applyForwardAdjustment($this, $to); |
||||
| 2293 | } |
||||
| 2294 | 7 | ||||
| 2295 | return $offsetsFile->applyReverseAdjustment($this, $to); |
||||
| 2296 | } |
||||
| 2297 | 9 | ||||
| 2298 | public function localOrthographic( |
||||
| 2299 | Projected $to, |
||||
| 2300 | Angle $latitudeOfProjectionCentre, |
||||
| 2301 | Angle $longitudeOfProjectionCentre, |
||||
| 2302 | Angle $azimuthAtProjectionCentre, |
||||
| 2303 | Scale $scaleFactorAtProjectionCentre, |
||||
| 2304 | Length $eastingAtProjectionCentre, |
||||
| 2305 | Length $northingAtProjectionCentre |
||||
| 2306 | 9 | ): ProjectedPoint { |
|||
| 2307 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||
| 2308 | 9 | $latitude = $this->latitude->asRadians()->getValue(); |
|||
| 2309 | 9 | $longitude = $this->longitude->asRadians()->getValue(); |
|||
| 2310 | 9 | $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 2311 | 9 | $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||
| 2312 | 9 | $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||
| 2313 | $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||||
| 2314 | 9 | ||||
| 2315 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||
| 2316 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||
| 2317 | 9 | $v = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
|||
| 2318 | $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2); |
||||
| 2319 | 9 | ||||
| 2320 | 9 | $xp = $v * cos($latitude) * sin($longitude - $longitudeCentre); |
|||
| 2321 | $yp = -sin($latitudeCentre) * ($v * cos($latitude) * cos($longitude - $longitudeCentre) - $vc * cos($latitudeCentre)) + cos($latitudeCentre) * ($v * (1 - $e2) * sin($latitude) - $vc * (1 - $e2) * sin($latitudeCentre)); |
||||
| 2322 | 9 | ||||
| 2323 | 9 | $easting = $eastingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (cos($azimuthCentre) * $xp - sin($azimuthCentre) * $yp); |
|||
| 2324 | $northing = $northingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (sin($azimuthCentre) * $xp + cos($azimuthCentre) * $yp); |
||||
| 2325 | 9 | ||||
| 2326 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||
| 2327 | } |
||||
| 2328 | 481 | ||||
| 2329 | public function asGeographicValue(): GeographicValue |
||||
| 2330 | 481 | { |
|||
| 2331 | return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||||
| 2332 | } |
||||
| 2333 | 18 | ||||
| 2334 | public function asUTMPoint(): UTMPoint |
||||
| 2335 | 18 | { |
|||
| 2336 | $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH; |
||||
| 2337 | 18 | ||||
| 2338 | 18 | $initialLongitude = new Degree(-180); |
|||
| 2339 | $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1; |
||||
| 2340 | 18 | ||||
| 2341 | 9 | if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) { |
|||
| 2342 | $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000); |
||||
| 2343 | 9 | } else { |
|||
| 2344 | $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100); |
||||
| 2345 | } |
||||
| 2346 | 18 | ||||
| 2347 | $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion); |
||||
| 2348 | 18 | ||||
| 2349 | 18 | $projectedCRS = new Projected( |
|||
| 2350 | 18 | $srid, |
|||
| 2351 | 18 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
|||
| 2352 | 18 | $this->crs->getDatum(), |
|||
| 2353 | 18 | BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own) |
|||
| 2354 | ); |
||||
| 2355 | |||||
| 2356 | 18 | /** @var ProjectedPoint $asProjected */ |
|||
| 2357 | $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false); |
||||
| 2358 | 18 | ||||
| 2359 | return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch); |
||||
| 2360 | } |
||||
| 2361 | } |
||||
| 2362 |