Issues (86)

src/Point/GeographicPoint.php (8 issues)

1
<?php
2
3
/**
4
 * PHPCoord.
5
 *
6
 * @author Doug Wright
7
 */
8
declare(strict_types=1);
9
10
namespace PHPCoord\Point;
11
12
use DateTime;
13
use DateTimeImmutable;
14
use DateTimeInterface;
15
use PHPCoord\CoordinateOperation\AutoConversion;
16
use PHPCoord\CoordinateOperation\ComplexNumber;
17
use PHPCoord\CoordinateOperation\ConvertiblePoint;
18
use PHPCoord\CoordinateOperation\GeocentricValue;
19
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
20
use PHPCoord\CoordinateOperation\GeographicGrid;
21
use PHPCoord\CoordinateOperation\GeographicValue;
22
use PHPCoord\CoordinateOperation\NADCON5Grid;
23
use PHPCoord\CoordinateOperation\NADCON5Grids;
24
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
25
use PHPCoord\CoordinateReferenceSystem\Compound;
26
use PHPCoord\CoordinateReferenceSystem\Geocentric;
27
use PHPCoord\CoordinateReferenceSystem\Geographic;
28
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
29
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
30
use PHPCoord\CoordinateReferenceSystem\Projected;
31
use PHPCoord\CoordinateReferenceSystem\Vertical;
32
use PHPCoord\CoordinateSystem\Axis;
33
use PHPCoord\CoordinateSystem\Cartesian;
34
use PHPCoord\Datum\Datum;
35
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
36
use PHPCoord\Exception\UnknownAxisException;
37
use PHPCoord\Geometry\BoundingArea;
38
use PHPCoord\Geometry\Geodesic;
39
use PHPCoord\UnitOfMeasure\Angle\Angle;
40
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
41
use PHPCoord\UnitOfMeasure\Angle\Degree;
42
use PHPCoord\UnitOfMeasure\Angle\Radian;
43
use PHPCoord\UnitOfMeasure\Length\Length;
44
use PHPCoord\UnitOfMeasure\Length\Metre;
45
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
46
use PHPCoord\UnitOfMeasure\Scale\Scale;
47
use PHPCoord\UnitOfMeasure\Scale\Unity;
48
49
use function abs;
50
use function asinh;
51
use function atan;
52
use function atan2;
53
use function atanh;
54
use function cos;
55
use function cosh;
56
use function count;
57
use function hypot;
58
use function implode;
59
use function is_nan;
60
use function log;
61
use function max;
62
use function sin;
63
use function sinh;
64
use function sqrt;
65
use function str_replace;
66
use function tan;
67
use function assert;
68
69
use const M_E;
70
use const M_PI;
71
72
/**
73
 * Coordinate representing a point on an ellipsoid.
74
 */
75
class GeographicPoint extends Point implements ConvertiblePoint
76
{
77
    use AutoConversion;
78
79
    /**
80
     * Latitude.
81
     */
82
    protected Angle $latitude;
83
84
    /**
85
     * Longitude.
86
     */
87
    protected Angle $longitude;
88
89
    /**
90
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
91
     */
92
    protected ?Length $height;
93
94
    /**
95
     * Coordinate reference system.
96
     */
97
    protected Geographic2D|Geographic3D $crs;
98
99
    /**
100
     * Coordinate epoch (date for which the specified coordinates represented this point).
101
     */
102
    protected ?DateTimeImmutable $epoch;
103 1694
104
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
105 1694
    {
106 9
        if ($crs instanceof Geographic2D && $height !== null) {
107
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
108
        }
109 1685
110 9
        if ($crs instanceof Geographic3D && $height === null) {
111
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
112
        }
113 1676
114
        $this->crs = $crs;
115 1676
116 1676
        $latitude = $this->normaliseLatitude($latitude);
117
        $longitude = $this->normaliseLongitude($longitude);
118 1676
119 1676
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
120
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
121 1676
122 214
        if ($height) {
123
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
124 1545
        } else {
125
            $this->height = null;
126
        }
127 1676
128 37
        if ($epoch instanceof DateTime) {
129
            $epoch = DateTimeImmutable::createFromMutable($epoch);
130 1676
        }
131
        $this->epoch = $epoch;
132
    }
133
134
    /**
135
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
136
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
137
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
138 1694
     */
139
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
140 1694
    {
141
        return new self($crs, $latitude, $longitude, $height, $epoch);
142
    }
143 875
144
    public function getLatitude(): Angle
145 875
    {
146
        return $this->latitude;
147
    }
148 839
149
    public function getLongitude(): Angle
150 839
    {
151
        return $this->longitude;
152
    }
153 369
154
    public function getHeight(): ?Length
155 369
    {
156
        return $this->height;
157
    }
158 507
159
    public function getCRS(): Geographic2D|Geographic3D
160 507
    {
161
        return $this->crs;
162
    }
163 50
164
    public function getCoordinateEpoch(): ?DateTimeImmutable
165 50
    {
166
        return $this->epoch;
167
    }
168 1676
169
    protected function normaliseLatitude(Angle $latitude): Angle
170 1676
    {
171
        if ($latitude->asDegrees()->getValue() > 90) {
172
            return new Degree(90);
173 1676
        }
174
        if ($latitude->asDegrees()->getValue() < -90) {
175
            return new Degree(-90);
176
        }
177 1676
178
        return $latitude;
179
    }
180 1676
181
    protected function normaliseLongitude(Angle $longitude): Angle
182 1676
    {
183 9
        while ($longitude->asDegrees()->getValue() > 180) {
184
            $longitude = $longitude->subtract(new Degree(360));
185 1676
        }
186
        while ($longitude->asDegrees()->getValue() <= -180) {
187
            $longitude = $longitude->add(new Degree(360));
188
        }
189 1676
190
        return $longitude;
191
    }
192
193
    /**
194
     * Calculate surface distance between two points.
195 207
     */
196
    public function calculateDistance(Point $to): Length
197
    {
198 207
        try {
199 198
            if ($to instanceof ConvertiblePoint) {
200
                $to = $to->convert($this->crs);
201
            }
202 207
        } finally {
203 9
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
204
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
205
            }
206
207 198
            /** @var GeographicPoint $to */
208
            $geodesic = new Geodesic($this->getCRS()->getDatum()->getEllipsoid());
209 198
210
            return $geodesic->distance($this->asGeographicValue(), $to->asGeographicValue());
211
        }
212
    }
213 36
214
    public function __toString(): string
215 36
    {
216 36
        $values = [];
217 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
218 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
219 36
                $values[] = $this->latitude;
220 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
221 9
                $values[] = $this->longitude;
222 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
223
                $values[] = $this->height;
224
            } else {
225
                throw new UnknownAxisException(); // @codeCoverageIgnore
226
            }
227
        }
228 36
229
        return '(' . implode(', ', $values) . ')';
230
    }
231
232
    /**
233
     * Geographic/geocentric conversions
234
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
235
     * 9636 to form a geographic to geographic transformation.
236 138
     */
237
    public function geographicGeocentric(
238
        Geocentric $to
239 138
    ): GeocentricPoint {
240 138
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
241
        $asGeocentric = $geographicValue->asGeocentricValue();
242 138
243
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
244
    }
245
246
    /**
247
     * Coordinate Frame rotation (geog2D/geog3D domain)
248
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
249
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
250
     * between other CRS types.
251 72
     */
252
    public function coordinateFrameRotation(
253
        Geographic2D|Geographic3D $to,
254
        Length $xAxisTranslation,
255
        Length $yAxisTranslation,
256
        Length $zAxisTranslation,
257
        Angle $xAxisRotation,
258
        Angle $yAxisRotation,
259
        Angle $zAxisRotation,
260
        Scale $scaleDifference
261 72
    ): self {
262 72
        return $this->coordinateFrameMolodenskyBadekas(
263 72
            $to,
264 72
            $xAxisTranslation,
265 72
            $yAxisTranslation,
266 72
            $zAxisTranslation,
267 72
            $xAxisRotation,
268 72
            $yAxisRotation,
269 72
            $zAxisRotation,
270 72
            $scaleDifference,
271 72
            new Metre(0),
272 72
            new Metre(0),
273 72
            new Metre(0)
274
        );
275
    }
276
277
    /**
278
     * Molodensky-Badekas (CF geog2D/geog3D domain)
279
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
280
     * opposite rotation convention in geographic 2D domain.
281 108
     */
282
    public function coordinateFrameMolodenskyBadekas(
283
        Geographic2D|Geographic3D $to,
284
        Length $xAxisTranslation,
285
        Length $yAxisTranslation,
286
        Length $zAxisTranslation,
287
        Angle $xAxisRotation,
288
        Angle $yAxisRotation,
289
        Angle $zAxisRotation,
290
        Scale $scaleDifference,
291
        Length $ordinate1OfEvaluationPoint,
292
        Length $ordinate2OfEvaluationPoint,
293
        Length $ordinate3OfEvaluationPoint
294 108
    ): self {
295 108
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
296
        $asGeocentric = $geographicValue->asGeocentricValue();
297 108
298 108
        $xs = $asGeocentric->getX()->asMetres()->getValue();
299 108
        $ys = $asGeocentric->getY()->asMetres()->getValue();
300 108
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
301 108
        $tx = $xAxisTranslation->asMetres()->getValue();
302 108
        $ty = $yAxisTranslation->asMetres()->getValue();
303 108
        $tz = $zAxisTranslation->asMetres()->getValue();
304 108
        $rx = $xAxisRotation->asRadians()->getValue();
305 108
        $ry = $yAxisRotation->asRadians()->getValue();
306 108
        $rz = $zAxisRotation->asRadians()->getValue();
307 108
        $M = 1 + $scaleDifference->asUnity()->getValue();
308 108
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
309 108
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
310
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
311 108
312 108
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
313 108
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
314 108
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
315 108
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
316
        $newGeographic = $newGeocentric->asGeographicValue();
317 108
318
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
319
    }
320
321
    /**
322
     * Position Vector transformation (geog2D/geog3D domain)
323
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
324
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
325
     * operating between other CRS types.
326 191
     */
327
    public function positionVectorTransformation(
328
        Geographic2D|Geographic3D $to,
329
        Length $xAxisTranslation,
330
        Length $yAxisTranslation,
331
        Length $zAxisTranslation,
332
        Angle $xAxisRotation,
333
        Angle $yAxisRotation,
334
        Angle $zAxisRotation,
335
        Scale $scaleDifference
336 191
    ): self {
337 191
        return $this->positionVectorMolodenskyBadekas(
338 191
            $to,
339 191
            $xAxisTranslation,
340 191
            $yAxisTranslation,
341 191
            $zAxisTranslation,
342 191
            $xAxisRotation,
343 191
            $yAxisRotation,
344 191
            $zAxisRotation,
345 191
            $scaleDifference,
346 191
            new Metre(0),
347 191
            new Metre(0),
348 191
            new Metre(0)
349
        );
350
    }
351
352
    /**
353
     * Molodensky-Badekas (PV geog2D/geog3D domain)
354
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
355
     * rotation in geographic 2D/3D domain.
356 209
     */
357
    public function positionVectorMolodenskyBadekas(
358
        Geographic2D|Geographic3D $to,
359
        Length $xAxisTranslation,
360
        Length $yAxisTranslation,
361
        Length $zAxisTranslation,
362
        Angle $xAxisRotation,
363
        Angle $yAxisRotation,
364
        Angle $zAxisRotation,
365
        Scale $scaleDifference,
366
        Length $ordinate1OfEvaluationPoint,
367
        Length $ordinate2OfEvaluationPoint,
368
        Length $ordinate3OfEvaluationPoint
369 209
    ): self {
370 209
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
371
        $asGeocentric = $geographicValue->asGeocentricValue();
372 209
373 209
        $xs = $asGeocentric->getX()->asMetres()->getValue();
374 209
        $ys = $asGeocentric->getY()->asMetres()->getValue();
375 209
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
376 209
        $tx = $xAxisTranslation->asMetres()->getValue();
377 209
        $ty = $yAxisTranslation->asMetres()->getValue();
378 209
        $tz = $zAxisTranslation->asMetres()->getValue();
379 209
        $rx = $xAxisRotation->asRadians()->getValue();
380 209
        $ry = $yAxisRotation->asRadians()->getValue();
381 209
        $rz = $zAxisRotation->asRadians()->getValue();
382 209
        $M = 1 + $scaleDifference->asUnity()->getValue();
383 209
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
384 209
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
385
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
386 209
387 209
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
388 209
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
389 209
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
390 209
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
391
        $newGeographic = $newGeocentric->asGeographicValue();
392 209
393
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
394
    }
395
396
    /**
397
     * Geocentric translations
398
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
399
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
400
     * operating between other CRSs types.
401 83
     */
402
    public function geocentricTranslation(
403
        Geographic2D|Geographic3D $to,
404
        Length $xAxisTranslation,
405
        Length $yAxisTranslation,
406
        Length $zAxisTranslation
407 83
    ): self {
408 83
        return $this->positionVectorTransformation(
409 83
            $to,
410 83
            $xAxisTranslation,
411 83
            $yAxisTranslation,
412 83
            $zAxisTranslation,
413 83
            new Radian(0),
414 83
            new Radian(0),
415 83
            new Radian(0),
416 83
            new Unity(0)
417
        );
418
    }
419
420
    /**
421
     * Abridged Molodensky
422
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
423
     * systems, modelled as a set of geocentric translations.
424 18
     */
425
    public function abridgedMolodensky(
426
        Geographic2D|Geographic3D $to,
427
        Length $xAxisTranslation,
428
        Length $yAxisTranslation,
429
        Length $zAxisTranslation,
430
        Length $differenceInSemiMajorAxis,
431
        Scale $differenceInFlattening
432 18
    ): self {
433 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
434 18
        $latitude = $this->latitude->asRadians()->getValue();
435 18
        $longitude = $this->longitude->asRadians()->getValue();
436 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
437 18
        $tx = $xAxisTranslation->asMetres()->getValue();
438 18
        $ty = $yAxisTranslation->asMetres()->getValue();
439 18
        $tz = $zAxisTranslation->asMetres()->getValue();
440 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
441
        $df = $differenceInFlattening->asUnity()->getValue();
442 18
443 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
444
        $e2 = $ellipsoid->getEccentricitySquared();
445 18
446 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
447
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
448 18
449
        $f = $ellipsoid->getFlattening();
450 18
451 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
452 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
453
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
454 18
455 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
456 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
457
        $toHeight = $fromHeight + $dHeight;
458 18
459
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
460
    }
461
462
    /**
463
     * Molodensky
464
     * See Abridged Molodensky.
465 18
     */
466
    public function molodensky(
467
        Geographic2D|Geographic3D $to,
468
        Length $xAxisTranslation,
469
        Length $yAxisTranslation,
470
        Length $zAxisTranslation,
471
        Length $differenceInSemiMajorAxis,
472
        Scale $differenceInFlattening
473 18
    ): self {
474 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
475 18
        $latitude = $this->latitude->asRadians()->getValue();
476 18
        $longitude = $this->longitude->asRadians()->getValue();
477 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
478 18
        $tx = $xAxisTranslation->asMetres()->getValue();
479 18
        $ty = $yAxisTranslation->asMetres()->getValue();
480 18
        $tz = $zAxisTranslation->asMetres()->getValue();
481 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
482
        $df = $differenceInFlattening->asUnity()->getValue();
483 18
484 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
485 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
486
        $e2 = $ellipsoid->getEccentricitySquared();
487 18
488 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
489
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
490 18
491
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
The assignment to $f is dead and can be removed.
Loading history...
492 18
493 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
494 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
495
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
496 18
497 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
498 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
499
        $toHeight = $fromHeight + $dHeight;
500 18
501
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
502
    }
503
504
    /**
505
     * Albers Equal Area.
506 18
     */
507
    public function albersEqualArea(
508
        Projected $to,
509
        Angle $latitudeOfFalseOrigin,
510
        Angle $longitudeOfFalseOrigin,
511
        Angle $latitudeOf1stStandardParallel,
512
        Angle $latitudeOf2ndStandardParallel,
513
        Length $eastingAtFalseOrigin,
514
        Length $northingAtFalseOrigin
515 18
    ): ProjectedPoint {
516 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
517 18
        $latitude = $this->latitude->asRadians()->getValue();
518 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
The assignment to $longitude is dead and can be removed.
Loading history...
519 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
520 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
521 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
522 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
523 18
        $e = $ellipsoid->getEccentricity();
524
        $e2 = $ellipsoid->getEccentricitySquared();
525 18
526 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
527
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
528 18
529 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
530 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
531 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
532
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
533 18
534 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
535 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
536 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
537 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
538
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
539 18
540 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
541
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
542 18
543
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
544
    }
545
546
    /**
547
     * American Polyconic.
548 9
     */
549
    public function americanPolyconic(
550
        Projected $to,
551
        Angle $latitudeOfNaturalOrigin,
552
        Angle $longitudeOfNaturalOrigin,
553
        Length $falseEasting,
554
        Length $falseNorthing
555 9
    ): ProjectedPoint {
556 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
557 9
        $latitude = $this->latitude->asRadians()->getValue();
558 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
559 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
560 9
        $e = $ellipsoid->getEccentricity();
561 9
        $e2 = $ellipsoid->getEccentricitySquared();
562 9
        $e4 = $e ** 4;
563
        $e6 = $e ** 6;
564 9
565 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
566
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
567 9
568
        if ($latitude === 0.0) {
0 ignored issues
show
The condition $latitude === 0.0 is always false.
Loading history...
569
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
570
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
571 9
        } else {
572 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
573
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
574 9
575 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
576
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
577
        }
578 9
579
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
580
    }
581
582
    /**
583
     * Bonne.
584 9
     */
585
    public function bonne(
586
        Projected $to,
587
        Angle $latitudeOfNaturalOrigin,
588
        Angle $longitudeOfNaturalOrigin,
589
        Length $falseEasting,
590
        Length $falseNorthing
591 9
    ): ProjectedPoint {
592 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
593 9
        $latitude = $this->latitude->asRadians()->getValue();
594 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
595 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
596 9
        $e = $ellipsoid->getEccentricity();
597 9
        $e2 = $ellipsoid->getEccentricitySquared();
598 9
        $e4 = $e ** 4;
599
        $e6 = $e ** 6;
600 9
601 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
602
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
603 9
604 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
605
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
606 9
607 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
608
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
609 9
610 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
611
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
612 9
613
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
614
    }
615
616
    /**
617
     * Bonne South Orientated.
618 9
     */
619
    public function bonneSouthOrientated(
620
        Projected $to,
621
        Angle $latitudeOfNaturalOrigin,
622
        Angle $longitudeOfNaturalOrigin,
623
        Length $falseEasting,
624
        Length $falseNorthing
625 9
    ): ProjectedPoint {
626 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
627 9
        $latitude = $this->latitude->asRadians()->getValue();
628 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
629 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
630 9
        $e = $ellipsoid->getEccentricity();
631 9
        $e2 = $ellipsoid->getEccentricitySquared();
632 9
        $e4 = $e ** 4;
633
        $e6 = $e ** 6;
634 9
635 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
636
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
637 9
638 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
639
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
640 9
641 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
642
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
643 9
644 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
645
        $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
646 9
647
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
648
    }
649
650
    /**
651
     * Cassini-Soldner.
652 9
     */
653
    public function cassiniSoldner(
654
        Projected $to,
655
        Angle $latitudeOfNaturalOrigin,
656
        Angle $longitudeOfNaturalOrigin,
657
        Length $falseEasting,
658
        Length $falseNorthing
659 9
    ): ProjectedPoint {
660 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
661 9
        $latitude = $this->latitude->asRadians()->getValue();
662 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
663 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
664 9
        $e = $ellipsoid->getEccentricity();
665 9
        $e2 = $ellipsoid->getEccentricitySquared();
666 9
        $e4 = $e ** 4;
667
        $e6 = $e ** 6;
668 9
669 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
670
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
671 9
672 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
673 9
        $T = tan($latitude) ** 2;
674 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
675 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
676
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
677 9
678 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
679
        $northing = $falseNorthing->asMetres()->getValue() + $X;
680 9
681
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
682
    }
683
684
    /**
685
     * Hyperbolic Cassini-Soldner.
686 18
     */
687
    public function hyperbolicCassiniSoldner(
688
        Projected $to,
689
        Angle $latitudeOfNaturalOrigin,
690
        Angle $longitudeOfNaturalOrigin,
691
        Length $falseEasting,
692
        Length $falseNorthing
693 18
    ): ProjectedPoint {
694 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
695 18
        $latitude = $this->latitude->asRadians()->getValue();
696 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
697 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
698 18
        $e = $ellipsoid->getEccentricity();
699 18
        $e2 = $ellipsoid->getEccentricitySquared();
700 18
        $e4 = $e ** 4;
701
        $e6 = $e ** 6;
702 18
703 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
704
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
705 18
706 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
707 18
        $T = tan($latitude) ** 2;
708 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
709 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
710 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
711
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
712 18
713 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
714
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
715 18
716
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
717
    }
718
719
    /**
720
     * Colombia Urban.
721 9
     */
722
    public function columbiaUrban(
723
        Projected $to,
724
        Angle $latitudeOfNaturalOrigin,
725
        Angle $longitudeOfNaturalOrigin,
726
        Length $falseEasting,
727
        Length $falseNorthing,
728
        Length $projectionPlaneOriginHeight
729 9
    ): ProjectedPoint {
730 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
731 9
        $latitude = $this->latitude->asRadians()->getValue();
732 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
733 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
734 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
735
        $e2 = $ellipsoid->getEccentricitySquared();
736 9
737 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
738
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
739 9
740 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
741
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
742 9
743 9
        $A = 1 + $heightOrigin / $nuOrigin;
744 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
745
        $G = 1 + $heightOrigin / $rhoMid;
746 9
747 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
748
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
749 9
750
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
751
    }
752
753
    /**
754
     * Equal Earth.
755 9
     */
756
    public function equalEarth(
757
        Projected $to,
758
        Angle $longitudeOfNaturalOrigin,
759
        Length $falseEasting,
760
        Length $falseNorthing
761 9
    ): ProjectedPoint {
762 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
763 9
        $latitude = $this->latitude->asRadians()->getValue();
764 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
765 9
        $e = $ellipsoid->getEccentricity();
766
        $e2 = $ellipsoid->getEccentricitySquared();
767 9
768 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
769 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
770 9
        $beta = self::asin($q / $qP);
771 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
772
        $Rq = $a * sqrt($qP / 2);
773 9
774 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
775
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
776 9
777
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
778
    }
779
780
    /**
781
     * Equidistant Cylindrical
782
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
783 9
     */
784
    public function equidistantCylindrical(
785
        Projected $to,
786
        Angle $latitudeOf1stStandardParallel,
787
        Angle $longitudeOfNaturalOrigin,
788
        Length $falseEasting,
789
        Length $falseNorthing
790 9
    ): ProjectedPoint {
791 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
792 9
        $latitude = $this->latitude->asRadians()->getValue();
793 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
794 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
795 9
        $e = $ellipsoid->getEccentricity();
796 9
        $e2 = $ellipsoid->getEccentricitySquared();
797 9
        $e4 = $e ** 4;
798 9
        $e6 = $e ** 6;
799 9
        $e8 = $e ** 8;
800 9
        $e10 = $e ** 10;
801 9
        $e12 = $e ** 12;
802
        $e14 = $e ** 14;
803 9
804
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
805 9
806 9
        $M = $a * (
807 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
808 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
809 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
810 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
811 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
812 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
813 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
814 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
815
        );
816 9
817 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
818
        $northing = $falseNorthing->asMetres()->getValue() + $M;
819 9
820
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
821
    }
822
823
    /**
824
     * Guam Projection
825
     * Simplified form of Oblique Azimuthal Equidistant projection method.
826 9
     */
827
    public function guamProjection(
828
        Projected $to,
829
        Angle $latitudeOfNaturalOrigin,
830
        Angle $longitudeOfNaturalOrigin,
831
        Length $falseEasting,
832
        Length $falseNorthing
833 9
    ): ProjectedPoint {
834 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
835 9
        $latitude = $this->latitude->asRadians()->getValue();
836 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
837 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
838 9
        $e = $ellipsoid->getEccentricity();
839 9
        $e2 = $ellipsoid->getEccentricitySquared();
840 9
        $e4 = $e ** 4;
841
        $e6 = $e ** 6;
842 9
843 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
844 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
845
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
846 9
847 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
848
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
849 9
850
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
851
    }
852
853
    /**
854
     * Krovak.
855 36
     */
856
    public function krovak(
857
        Projected $to,
858
        Angle $latitudeOfProjectionCentre,
859
        Angle $longitudeOfOrigin,
860
        Angle $coLatitudeOfConeAxis,
861
        Angle $latitudeOfPseudoStandardParallel,
862
        Scale $scaleFactorOnPseudoStandardParallel,
863
        Length $falseEasting,
864
        Length $falseNorthing
865 36
    ): ProjectedPoint {
866 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
867 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
868 36
        $latitude = $this->latitude->asRadians()->getValue();
869 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
870 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
871 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
872 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
873 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
874 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
875 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
876 36
        $e = $ellipsoid->getEccentricity();
877
        $e2 = $ellipsoid->getEccentricitySquared();
878 36
879 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
880 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
881 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
882 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
883 36
        $n = sin($latitudeP);
884
        $rO = $kP * $A / tan($latitudeP);
885 36
886 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
887 36
        $V = $B * ($longitudeO - $longitude);
888 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
889 36
        $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T)));
890 36
        $theta = $n * $D;
891 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
892 36
        $X = $r * cos($theta);
893
        $Y = $r * sin($theta);
894 36
895 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
896
        $southing = $X + $falseNorthing->asMetres()->getValue();
897 36
898
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
899
    }
900
901
    /**
902
     * Krovak Modified
903
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
904
     * to be a map projection.
905 18
     */
906
    public function krovakModified(
907
        Projected $to,
908
        Angle $latitudeOfProjectionCentre,
909
        Angle $longitudeOfOrigin,
910
        Angle $coLatitudeOfConeAxis,
911
        Angle $latitudeOfPseudoStandardParallel,
912
        Scale $scaleFactorOnPseudoStandardParallel,
913
        Length $falseEasting,
914
        Length $falseNorthing,
915
        Length $ordinate1OfEvaluationPoint,
916
        Length $ordinate2OfEvaluationPoint,
917
        Coefficient $C1,
918
        Coefficient $C2,
919
        Coefficient $C3,
920
        Coefficient $C4,
921
        Coefficient $C5,
922
        Coefficient $C6,
923
        Coefficient $C7,
924
        Coefficient $C8,
925
        Coefficient $C9,
926
        Coefficient $C10
927 18
    ): ProjectedPoint {
928
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
929 18
930 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
931 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
932 18
        $c1 = $C1->asUnity()->getValue();
933 18
        $c2 = $C2->asUnity()->getValue();
934 18
        $c3 = $C3->asUnity()->getValue();
935 18
        $c4 = $C4->asUnity()->getValue();
936 18
        $c5 = $C5->asUnity()->getValue();
937 18
        $c6 = $C6->asUnity()->getValue();
938 18
        $c7 = $C7->asUnity()->getValue();
939 18
        $c8 = $C8->asUnity()->getValue();
940 18
        $c9 = $C9->asUnity()->getValue();
941
        $c10 = $C10->asUnity()->getValue();
942 18
943 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
944
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
945 18
946 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
947
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
948 18
949 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
950
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
951 18
952
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
953
    }
954
955
    /**
956
     * Lambert Azimuthal Equal Area
957
     * This is the ellipsoidal form of the projection.
958 9
     */
959
    public function lambertAzimuthalEqualArea(
960
        Projected $to,
961
        Angle $latitudeOfNaturalOrigin,
962
        Angle $longitudeOfNaturalOrigin,
963
        Length $falseEasting,
964
        Length $falseNorthing
965 9
    ): ProjectedPoint {
966 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
967 9
        $latitude = $this->latitude->asRadians()->getValue();
968 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
969 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
970 9
        $e = $ellipsoid->getEccentricity();
971
        $e2 = $ellipsoid->getEccentricitySquared();
972 9
973 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
974 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
975 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
976 9
        $beta = self::asin($q / $qP);
977 9
        $betaO = self::asin($qO / $qP);
978 9
        $Rq = $a * sqrt($qP / 2);
979 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
980
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
981 9
982 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
983
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
984 9
985
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
986
    }
987
988
    /**
989
     * Lambert Azimuthal Equal Area (Spherical)
990
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
991
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
992
     * methods.
993 9
     */
994
    public function lambertAzimuthalEqualAreaSpherical(
995
        Projected $to,
996
        Angle $latitudeOfNaturalOrigin,
997
        Angle $longitudeOfNaturalOrigin,
998
        Length $falseEasting,
999
        Length $falseNorthing
1000 9
    ): ProjectedPoint {
1001 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1002 9
        $latitude = $this->latitude->asRadians()->getValue();
1003 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1004
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1005 9
1006
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1007 9
1008 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1009
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1010 9
1011
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1012
    }
1013
1014
    /**
1015
     * Lambert Conic Conformal (1SP).
1016 9
     */
1017
    public function lambertConicConformal1SP(
1018
        Projected $to,
1019
        Angle $latitudeOfNaturalOrigin,
1020
        Angle $longitudeOfNaturalOrigin,
1021
        Scale $scaleFactorAtNaturalOrigin,
1022
        Length $falseEasting,
1023
        Length $falseNorthing
1024 9
    ): ProjectedPoint {
1025 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1026 9
        $latitude = $this->latitude->asRadians()->getValue();
1027 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1028 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1029 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1030 9
        $e = $ellipsoid->getEccentricity();
1031
        $e2 = $ellipsoid->getEccentricitySquared();
1032 9
1033 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1034 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1035 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1036 9
        $n = sin($latitudeOrigin);
1037 9
        $F = $mO / ($n * $tO ** $n);
1038 9
        $rO = $a * $F * $tO ** $n * $kO;
1039 9
        $r = $a * $F * $t ** $n * $kO;
1040
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1041 9
1042 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1043
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1044 9
1045
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1046
    }
1047
1048
    /**
1049
     * Lambert Conic Conformal (1SP) Variant B.
1050
     */
1051
    public function lambertConicConformal1SPVariantB(
1052
        Projected $to,
1053
        Angle $latitudeOfNaturalOrigin,
1054
        Scale $scaleFactorAtNaturalOrigin,
1055
        Angle $latitudeOfFalseOrigin,
1056
        Angle $longitudeOfFalseOrigin,
1057
        Length $eastingAtFalseOrigin,
1058
        Length $northingAtFalseOrigin
1059
    ): ProjectedPoint {
1060
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1061
        $latitude = $this->latitude->asRadians()->getValue();
1062
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1063
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1064
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1065
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1066
        $e = $ellipsoid->getEccentricity();
1067
        $e2 = $ellipsoid->getEccentricitySquared();
1068
1069
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1070
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1071
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1072
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1073
        $n = sin($latitudeNaturalOrigin);
1074
        $F = $mO / ($n * $tO ** $n);
1075
        $rF = $a * $F * $tF ** $n * $kO;
1076
        $r = $a * $F * $t ** $n * $kO;
1077
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1078
1079
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1080
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1081
1082
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1083
    }
1084
1085
    /**
1086
     * Lambert Conic Conformal (2SP Belgium)
1087
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1088
     * with appropriately modified parameter values.
1089 9
     */
1090
    public function lambertConicConformal2SPBelgium(
1091
        Projected $to,
1092
        Angle $latitudeOfFalseOrigin,
1093
        Angle $longitudeOfFalseOrigin,
1094
        Angle $latitudeOf1stStandardParallel,
1095
        Angle $latitudeOf2ndStandardParallel,
1096
        Length $eastingAtFalseOrigin,
1097
        Length $northingAtFalseOrigin
1098 9
    ): ProjectedPoint {
1099 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1100 9
        $latitude = $this->latitude->asRadians()->getValue();
1101 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1102 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1103 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1104 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1105 9
        $e = $ellipsoid->getEccentricity();
1106
        $e2 = $ellipsoid->getEccentricitySquared();
1107 9
1108 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1109 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1110 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1111 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1112 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1113 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1114 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1115 9
        $F = $m1 / ($n * $t1 ** $n);
1116 9
        $r = $a * $F * $t ** $n;
1117 9
        $rF = $a * $F * $tF ** $n;
1118 9
        if (is_nan($rF)) {
1119
            $rF = 0;
1120 9
        }
1121
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1122 9
1123 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1124
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1125 9
1126
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1127
    }
1128
1129
    /**
1130
     * Lambert Conic Conformal (2SP Michigan).
1131 9
     */
1132
    public function lambertConicConformal2SPMichigan(
1133
        Projected $to,
1134
        Angle $latitudeOfFalseOrigin,
1135
        Angle $longitudeOfFalseOrigin,
1136
        Angle $latitudeOf1stStandardParallel,
1137
        Angle $latitudeOf2ndStandardParallel,
1138
        Length $eastingAtFalseOrigin,
1139
        Length $northingAtFalseOrigin,
1140
        Scale $ellipsoidScalingFactor
1141 9
    ): ProjectedPoint {
1142 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1143 9
        $latitude = $this->latitude->asRadians()->getValue();
1144 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1145 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1146 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1147 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1148 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1149 9
        $e = $ellipsoid->getEccentricity();
1150
        $e2 = $ellipsoid->getEccentricitySquared();
1151 9
1152 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1153 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1154 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1155 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1156 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1157 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1158 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1159 9
        $F = $m1 / ($n * $t1 ** $n);
1160 9
        $r = $a * $K * $F * $t ** $n;
1161 9
        $rF = $a * $K * $F * $tF ** $n;
1162
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1163 9
1164 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1165
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1166 9
1167
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1168
    }
1169
1170
    /**
1171
     * Lambert Conic Conformal (2SP).
1172 19
     */
1173
    public function lambertConicConformal2SP(
1174
        Projected $to,
1175
        Angle $latitudeOfFalseOrigin,
1176
        Angle $longitudeOfFalseOrigin,
1177
        Angle $latitudeOf1stStandardParallel,
1178
        Angle $latitudeOf2ndStandardParallel,
1179
        Length $eastingAtFalseOrigin,
1180
        Length $northingAtFalseOrigin
1181 19
    ): ProjectedPoint {
1182 19
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1183 19
        $latitude = $this->latitude->asRadians()->getValue();
1184 19
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1185 19
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1186 19
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1187 19
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1188 19
        $e = $ellipsoid->getEccentricity();
1189
        $e2 = $ellipsoid->getEccentricitySquared();
1190 19
1191 19
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1192 19
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1193 19
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1194 19
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1195 19
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1196 19
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1197 19
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1198 19
        $F = $m1 / ($n * $t1 ** $n);
1199 19
        $r = $a * $F * $t ** $n;
1200 19
        $rF = $a * $F * $tF ** $n;
1201
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1202 19
1203 19
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1204
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1205 19
1206
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1207
    }
1208
1209
    /**
1210
     * Lambert Conic Conformal (West Orientated).
1211
     */
1212
    public function lambertConicConformalWestOrientated(
1213
        Projected $to,
1214
        Angle $latitudeOfNaturalOrigin,
1215
        Angle $longitudeOfNaturalOrigin,
1216
        Scale $scaleFactorAtNaturalOrigin,
1217
        Length $falseEasting,
1218
        Length $falseNorthing
1219
    ): ProjectedPoint {
1220
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1221
        $latitude = $this->latitude->asRadians()->getValue();
1222
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1223
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1224
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1225
        $e = $ellipsoid->getEccentricity();
1226
        $e2 = $ellipsoid->getEccentricitySquared();
1227
1228
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1229
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1230
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1231
        $n = sin($latitudeOrigin);
1232
        $F = $mO / ($n * $tO ** $n);
1233
        $rO = $a * $F * $tO ** $n ** $kO;
1234
        $r = $a * $F * $t ** $n ** $kO;
1235
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1236
1237
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1238
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1239
1240
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1241
    }
1242
1243
    /**
1244
     * Lambert Conic Near-Conformal
1245
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1246
     * series expansion of the projection formulae.
1247 9
     */
1248
    public function lambertConicNearConformal(
1249
        Projected $to,
1250
        Angle $latitudeOfNaturalOrigin,
1251
        Angle $longitudeOfNaturalOrigin,
1252
        Scale $scaleFactorAtNaturalOrigin,
1253
        Length $falseEasting,
1254
        Length $falseNorthing
1255 9
    ): ProjectedPoint {
1256 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1257 9
        $latitude = $this->latitude->asRadians()->getValue();
1258 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1259 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1260 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1261 9
        $e2 = $ellipsoid->getEccentricitySquared();
1262
        $f = $ellipsoid->getFlattening();
1263 9
1264 9
        $n = $f / (2 - $f);
1265 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1266 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1267 9
        $A = 1 / (6 * $rhoO * $nuO);
1268 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1269 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1270 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1271 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1272 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1273 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1274 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1275 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1276 9
        $m = $s - $sO;
1277 9
        $M = $kO * ($m + $A * $m ** 3);
1278 9
        $r = $rO - $M;
1279
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1280 9
1281 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1282
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1283 9
1284
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1285
    }
1286
1287
    /**
1288
     * Lambert Cylindrical Equal Area
1289
     * This is the ellipsoidal form of the projection.
1290 9
     */
1291
    public function lambertCylindricalEqualArea(
1292
        Projected $to,
1293
        Angle $latitudeOf1stStandardParallel,
1294
        Angle $longitudeOfNaturalOrigin,
1295
        Length $falseEasting,
1296
        Length $falseNorthing
1297 9
    ): ProjectedPoint {
1298 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1299 9
        $latitude = $this->latitude->asRadians()->getValue();
1300 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1301 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1302 9
        $e = $ellipsoid->getEccentricity();
1303
        $e2 = $ellipsoid->getEccentricitySquared();
1304 9
1305 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1306
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1307 9
1308 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1309
        $y = $a * $q / (2 * $k);
1310 9
1311 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1312
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1313 9
1314
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1315
    }
1316
1317
    /**
1318
     * Lambert Cylindrical Equal Area
1319
     * This is the spherical form of the projection.
1320 9
     */
1321
    public function lambertCylindricalEqualAreaSpherical(
1322
        Projected $to,
1323
        Angle $latitudeOf1stStandardParallel,
1324
        Angle $longitudeOfNaturalOrigin,
1325
        Length $falseEasting,
1326
        Length $falseNorthing
1327 9
    ): ProjectedPoint {
1328 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1329 9
        $latitude = $this->latitude->asRadians()->getValue();
1330 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1331
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1332 9
1333 9
        $x = $a * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1334
        $y = $a * sin($latitude) / cos($latitudeFirstParallel);
1335 9
1336 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1337
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1338 9
1339
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1340
    }
1341
1342
    /**
1343
     * Modified Azimuthal Equidistant
1344
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1345
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1346 9
     */
1347
    public function modifiedAzimuthalEquidistant(
1348
        Projected $to,
1349
        Angle $latitudeOfNaturalOrigin,
1350
        Angle $longitudeOfNaturalOrigin,
1351
        Length $falseEasting,
1352
        Length $falseNorthing
1353 9
    ): ProjectedPoint {
1354 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1355 9
        $latitude = $this->latitude->asRadians()->getValue();
1356 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1357 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1358 9
        $e = $ellipsoid->getEccentricity();
1359
        $e2 = $ellipsoid->getEccentricitySquared();
1360 9
1361 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1362 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1363 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1364 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1365 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1366
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1367 9
1368
        if (sin($alpha) === 0.0) {
1369
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1370 9
        } else {
1371
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1372
        }
1373 9
1374
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1375 9
1376 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1377
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1378 9
1379
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1380
    }
1381
1382
    /**
1383
     * Oblique Stereographic
1384
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1385
     * Projections - A Working Manual" by John P. Snyder.
1386 9
     */
1387
    public function obliqueStereographic(
1388
        Projected $to,
1389
        Angle $latitudeOfNaturalOrigin,
1390
        Angle $longitudeOfNaturalOrigin,
1391
        Scale $scaleFactorAtNaturalOrigin,
1392
        Length $falseEasting,
1393
        Length $falseNorthing
1394 9
    ): ProjectedPoint {
1395 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1396 9
        $latitude = $this->latitude->asRadians()->getValue();
1397 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1398 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1399 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1400 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1401 9
        $e = $ellipsoid->getEccentricity();
1402
        $e2 = $ellipsoid->getEccentricitySquared();
1403 9
1404 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1405 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1406
        $R = sqrt($rhoOrigin * $nuOrigin);
1407 9
1408 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1409 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1410 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1411 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1412 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1413 9
        $w2 = $c * $w1;
1414
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1415 9
1416
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1417 9
1418 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1419 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1420 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1421
        $chi = self::asin(($w - 1) / ($w + 1));
1422 9
1423
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1424 9
1425 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1426
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1427 9
1428
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1429
    }
1430
1431
    /**
1432
     * Polar Stereographic (variant A)
1433
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1434 9
     */
1435
    public function polarStereographicVariantA(
1436
        Projected $to,
1437
        Angle $latitudeOfNaturalOrigin,
1438
        Angle $longitudeOfNaturalOrigin,
1439
        Scale $scaleFactorAtNaturalOrigin,
1440
        Length $falseEasting,
1441
        Length $falseNorthing
1442 9
    ): ProjectedPoint {
1443 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1444 9
        $latitude = $this->latitude->asRadians()->getValue();
1445 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1446 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1447 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1448
        $e = $ellipsoid->getEccentricity();
1449 9
1450
        if ($latitudeOrigin < 0) {
1451
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1452 9
        } else {
1453
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1454 9
        }
1455
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1456 9
1457 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1458 9
        $dE = $rho * sin($theta);
1459
        $dN = $rho * cos($theta);
1460 9
1461 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1462
        if ($latitudeOrigin < 0) {
1463
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1464 9
        } else {
1465
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1466
        }
1467 9
1468
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1469
    }
1470
1471
    /**
1472
     * Polar Stereographic (variant B).
1473 9
     */
1474
    public function polarStereographicVariantB(
1475
        Projected $to,
1476
        Angle $latitudeOfStandardParallel,
1477
        Angle $longitudeOfOrigin,
1478
        Length $falseEasting,
1479
        Length $falseNorthing
1480 9
    ): ProjectedPoint {
1481 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1482 9
        $latitude = $this->latitude->asRadians()->getValue();
1483 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1484 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1485 9
        $e = $ellipsoid->getEccentricity();
1486
        $e2 = $ellipsoid->getEccentricitySquared();
1487 9
1488 9
        if ($firstStandardParallel < 0) {
1489 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1490
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1491
        } else {
1492
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1493
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1494 9
        }
1495 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1496
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1497 9
1498
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1499 9
1500 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1501 9
        $dE = $rho * sin($theta);
1502
        $dN = $rho * cos($theta);
1503 9
1504 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1505 9
        if ($firstStandardParallel < 0) {
1506
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1507
        } else {
1508
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1509
        }
1510 9
1511
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1512
    }
1513
1514
    /**
1515
     * Polar Stereographic (variant C).
1516 9
     */
1517
    public function polarStereographicVariantC(
1518
        Projected $to,
1519
        Angle $latitudeOfStandardParallel,
1520
        Angle $longitudeOfOrigin,
1521
        Length $eastingAtFalseOrigin,
1522
        Length $northingAtFalseOrigin
1523 9
    ): ProjectedPoint {
1524 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1525 9
        $latitude = $this->latitude->asRadians()->getValue();
1526 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1527 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1528 9
        $e = $ellipsoid->getEccentricity();
1529
        $e2 = $ellipsoid->getEccentricitySquared();
1530 9
1531 9
        if ($firstStandardParallel < 0) {
1532 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1533
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1534
        } else {
1535
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1536
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1537 9
        }
1538
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1539 9
1540 9
        $rhoF = $a * $mF;
1541
        $rho = $rhoF * $t / $tF;
1542 9
1543 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1544 9
        $dE = $rho * sin($theta);
1545
        $dN = $rho * cos($theta);
1546 9
1547 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1548 9
        if ($firstStandardParallel < 0) {
1549
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1550
        } else {
1551
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1552
        }
1553 9
1554
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1555
    }
1556
1557
    /**
1558
     * Popular Visualisation Pseudo Mercator
1559
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1560 9
     */
1561
    public function popularVisualisationPseudoMercator(
1562
        Projected $to,
1563
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1563
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1564
        Angle $longitudeOfNaturalOrigin,
1565
        Length $falseEasting,
1566
        Length $falseNorthing
1567 9
    ): ProjectedPoint {
1568 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1569 9
        $latitude = $this->latitude->asRadians()->getValue();
1570
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1571 9
1572 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1573
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1574 9
1575
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1576
    }
1577
1578
    /**
1579
     * Mercator (variant A)
1580
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1581
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1582
     * completeness in CRS labelling.
1583 18
     */
1584
    public function mercatorVariantA(
1585
        Projected $to,
1586
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1586
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1587
        Angle $longitudeOfNaturalOrigin,
1588
        Scale $scaleFactorAtNaturalOrigin,
1589
        Length $falseEasting,
1590
        Length $falseNorthing
1591 18
    ): ProjectedPoint {
1592 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1593 18
        $latitude = $this->latitude->asRadians()->getValue();
1594
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1595 18
1596 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1597
        $e = $ellipsoid->getEccentricity();
1598 18
1599 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1600
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1601 18
1602
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1603
    }
1604
1605
    /**
1606
     * Mercator (variant B)
1607
     * Used for most nautical charts.
1608 9
     */
1609
    public function mercatorVariantB(
1610
        Projected $to,
1611
        Angle $latitudeOf1stStandardParallel,
1612
        Angle $longitudeOfNaturalOrigin,
1613
        Length $falseEasting,
1614
        Length $falseNorthing
1615 9
    ): ProjectedPoint {
1616 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1617 9
        $latitude = $this->latitude->asRadians()->getValue();
1618 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1619 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1620 9
        $e = $ellipsoid->getEccentricity();
1621
        $e2 = $ellipsoid->getEccentricitySquared();
1622 9
1623
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1624 9
1625 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1626
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1627 9
1628
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1629
    }
1630
1631
    /**
1632
     * Longitude rotation
1633
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1634
     * value to the longitude value of the point in the source system.
1635 27
     */
1636
    public function longitudeRotation(
1637
        Geographic2D|Geographic3D $to,
1638
        Angle $longitudeOffset
1639 27
    ): self {
1640
        $newLongitude = $this->longitude->add($longitudeOffset);
1641 27
1642
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1643
    }
1644
1645
    /**
1646
     * Hotine Oblique Mercator (variant A).
1647 9
     */
1648
    public function obliqueMercatorHotineVariantA(
1649
        Projected $to,
1650
        Angle $latitudeOfProjectionCentre,
1651
        Angle $longitudeOfProjectionCentre,
1652
        Angle $azimuthAtProjectionCentre,
1653
        Angle $angleFromRectifiedToSkewGrid,
1654
        Scale $scaleFactorAtProjectionCentre,
1655
        Length $falseEasting,
1656
        Length $falseNorthing
1657 9
    ): ProjectedPoint {
1658 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1659 9
        $latitude = $this->latitude->asRadians()->getValue();
1660 9
        $longitude = $this->longitude->asRadians()->getValue();
1661 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1662 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1663 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1664 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1665 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1666 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1667 9
        $e = $ellipsoid->getEccentricity();
1668
        $e2 = $ellipsoid->getEccentricitySquared();
1669 9
1670 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1671 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1672 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1673 9
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1674 9
        $DD = max(1, $D ** 2);
1675 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1676 9
        $H = $F * $tO ** $B;
1677 9
        $G = ($F - 1 / $F) / 2;
1678 9
        $gammaO = self::asin(sin($alphaC) / $D);
1679
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1680 9
1681 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1682 9
        $Q = $H / $t ** $B;
1683 9
        $S = ($Q - 1 / $Q) / 2;
1684 9
        $T = ($Q + 1 / $Q) / 2;
1685 9
        $V = sin($B * ($longitude - $lonO));
1686 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1687 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1688
        $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B;
1689 9
1690 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1691
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1692 9
1693
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1694
    }
1695
1696
    /**
1697
     * Hotine Oblique Mercator (variant B).
1698 9
     */
1699
    public function obliqueMercatorHotineVariantB(
1700
        Projected $to,
1701
        Angle $latitudeOfProjectionCentre,
1702
        Angle $longitudeOfProjectionCentre,
1703
        Angle $azimuthAtProjectionCentre,
1704
        Angle $angleFromRectifiedToSkewGrid,
1705
        Scale $scaleFactorAtProjectionCentre,
1706
        Length $eastingAtProjectionCentre,
1707
        Length $northingAtProjectionCentre
1708 9
    ): ProjectedPoint {
1709 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1710 9
        $latitude = $this->latitude->asRadians()->getValue();
1711 9
        $longitude = $this->longitude->asRadians()->getValue();
1712 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1713 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1714 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1715 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1716 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1717 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1718 9
        $e = $ellipsoid->getEccentricity();
1719
        $e2 = $ellipsoid->getEccentricitySquared();
1720 9
1721 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1722 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1723 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1724 9
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1725 9
        $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC);
1726 9
        $H = $F * $tO ** $B;
1727 9
        $G = ($F - 1 / $F) / 2;
1728 9
        $gammaO = self::asin(sin($alphaC) / $D);
1729 9
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1730 9
        $vC = 0;
0 ignored issues
show
The assignment to $vC is dead and can be removed.
Loading history...
1731
        if ($alphaC === M_PI / 2) {
1732
            $uC = $A * ($lonC - $lonO);
1733 9
        } else {
1734
            $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC);
1735
        }
1736 9
1737 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1738 9
        $Q = $H / $t ** $B;
1739 9
        $S = ($Q - 1 / $Q) / 2;
1740 9
        $T = ($Q + 1 / $Q) / 2;
1741 9
        $V = sin($B * ($longitude - $lonO));
1742 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1743 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1744
        $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1745 9
1746 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1747
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1748 9
1749
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1750
    }
1751
1752
    /**
1753
     * Laborde Oblique Mercator.
1754 9
     */
1755
    public function obliqueMercatorLaborde(
1756
        Projected $to,
1757
        Angle $latitudeOfProjectionCentre,
1758
        Angle $longitudeOfProjectionCentre,
1759
        Angle $azimuthAtProjectionCentre,
1760
        Scale $scaleFactorAtProjectionCentre,
1761
        Length $falseEasting,
1762
        Length $falseNorthing
1763 9
    ): ProjectedPoint {
1764 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1765 9
        $latitude = $this->latitude->asRadians()->getValue();
1766 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1767 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1768 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1769 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1770 9
        $e = $ellipsoid->getEccentricity();
1771
        $e2 = $ellipsoid->getEccentricitySquared();
1772 9
1773 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1774 9
        $latS = self::asin(sin($latC) / $B);
1775 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1776
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1777 9
1778 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1779 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1780 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1781 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1782 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1783 9
        $W = cos($P) * sin($L);
1784 9
        $d = hypot($U, $V);
1785
        if ($d === 0.0) {
1786
            $LPrime = 0;
1787
            $PPrime = static::sign($W) * M_PI / 2;
1788 9
        } else {
1789 9
            $LPrime = 2 * atan($V / ($U + $d));
1790
            $PPrime = atan($W / $d);
1791 9
        }
1792 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1793
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1794 9
1795 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1796
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1797 9
1798
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1799
    }
1800
1801
    /**
1802
     * Transverse Mercator.
1803 144
     */
1804
    public function transverseMercator(
1805
        Projected $to,
1806
        Angle $latitudeOfNaturalOrigin,
1807
        Angle $longitudeOfNaturalOrigin,
1808
        Scale $scaleFactorAtNaturalOrigin,
1809
        Length $falseEasting,
1810
        Length $falseNorthing
1811 144
    ): ProjectedPoint {
1812 144
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1813 144
        $latitude = $this->latitude->asRadians()->getValue();
1814 144
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1815 144
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1816 144
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1817 144
        $e = $ellipsoid->getEccentricity();
1818
        $f = $ellipsoid->getFlattening();
1819 144
1820 144
        $n = $f / (2 - $f);
1821
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1822 144
1823 144
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1824 144
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1825 144
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1826 144
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1827 144
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1828 144
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1829 144
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1830
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1831 144
1832 81
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1833 63
            $mO = 0;
1834
        } elseif ($latitudeOrigin === M_PI / 2) {
1835 63
            $mO = $B * M_PI / 2;
1836
        } elseif ($latitudeOrigin === -M_PI / 2) {
1837
            $mO = $B * -M_PI / 2;
1838 63
        } else {
1839 63
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1840 63
            $betaO = atan(sinh($qO));
1841 63
            $xiO0 = self::asin(sin($betaO));
1842 63
            $xiO1 = $h1 * sin(2 * $xiO0);
1843 63
            $xiO2 = $h2 * sin(4 * $xiO0);
1844 63
            $xiO3 = $h3 * sin(6 * $xiO0);
1845 63
            $xiO4 = $h4 * sin(8 * $xiO0);
1846 63
            $xiO5 = $h5 * sin(10 * $xiO0);
1847 63
            $xiO6 = $h6 * sin(12 * $xiO0);
1848 63
            $xiO7 = $h7 * sin(14 * $xiO0);
1849 63
            $xiO8 = $h8 * sin(16 * $xiO0);
1850 63
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1851
            $mO = $B * $xiO;
1852
        }
1853 144
1854 144
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1855 144
        $beta = atan(sinh($Q));
1856 144
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1857 144
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1858 144
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1859 144
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1860 144
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1861 144
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1862 144
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1863 144
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1864 144
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1865 144
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1866 144
        $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0);
1867 144
        $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0);
1868 144
        $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0);
1869 144
        $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0);
1870 144
        $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0);
1871 144
        $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0);
1872 144
        $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0);
1873 144
        $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0);
1874 144
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8;
1875
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8;
1876 144
1877 144
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1878
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1879 144
1880
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1881 144
1882
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1883
    }
1884
1885
    /**
1886
     * Transverse Mercator Zoned Grid System
1887
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1888
     * each zone.
1889 36
     */
1890
    public function transverseMercatorZonedGrid(
1891
        Projected $to,
1892
        Angle $latitudeOfNaturalOrigin,
1893
        Angle $initialLongitude,
1894
        Angle $zoneWidth,
1895
        Scale $scaleFactorAtNaturalOrigin,
1896
        Length $falseEasting,
1897
        Length $falseNorthing
1898 36
    ): ProjectedPoint {
1899 36
        $W = $zoneWidth->asDegrees()->getValue();
1900
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1901 36
1902 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1903
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1904 36
1905
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1906
    }
1907
1908
    /**
1909
     * New Zealand Map Grid.
1910 27
     */
1911
    public function newZealandMapGrid(
1912
        Projected $to,
1913
        Angle $latitudeOfNaturalOrigin,
1914
        Angle $longitudeOfNaturalOrigin,
1915
        Length $falseEasting,
1916
        Length $falseNorthing
1917 27
    ): ProjectedPoint {
1918 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1919
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1920 27
1921 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1922
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1923 27
1924 27
        $deltaPsi = 0;
1925 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1926 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1927 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1928 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1929 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1930 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1931 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1932 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1933 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1934
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1935 27
1936
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1937 27
1938 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1939 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1940 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1941 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1942 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1943 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1944 27
        $z = new ComplexNumber(0, 0);
1945 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1946 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1947 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1948 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1949 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1950
        $z = $z->add($B6->multiply($zeta->pow(6)));
1951 27
1952 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1953
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1954 27
1955
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1956
    }
1957
1958
    /**
1959
     * Madrid to ED50 polynomial.
1960 9
     */
1961
    public function madridToED50Polynomial(
1962
        Geographic2D $to,
1963
        Scale $A0,
1964
        Scale $A1,
1965
        Scale $A2,
1966
        Scale $A3,
1967
        Angle $B00,
1968
        Scale $B0,
1969
        Scale $B1,
1970
        Scale $B2,
1971
        Scale $B3
1972 9
    ): self {
1973 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1974
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1975 9
1976
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1977
    }
1978
1979
    /**
1980
     * Geographic3D to 2D conversion.
1981 47
     */
1982
    public function threeDToTwoD(
1983
        Geographic2D|Geographic3D $to
1984 47
    ): self {
1985 37
        if ($to instanceof Geographic2D) {
1986
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1987
        }
1988 10
1989
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1990
    }
1991
1992
    /**
1993
     * Geographic2D offsets.
1994
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1995
     * coordinate values of the point in the source system.
1996 9
     */
1997
    public function geographic2DOffsets(
1998
        Geographic2D|Geographic3D $to,
1999
        Angle $latitudeOffset,
2000
        Angle $longitudeOffset
2001 9
    ): self {
2002 9
        $toLatitude = $this->latitude->add($latitudeOffset);
2003
        $toLongitude = $this->longitude->add($longitudeOffset);
2004 9
2005
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
2006
    }
2007
2008
    /*
2009
     * Geographic2D with Height Offsets.
2010
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
2011
     * coordinate values of the point in the source system.
2012
     */
2013
    public function geographic2DWithHeightOffsets(
2014
        Compound $to,
2015
        Angle $latitudeOffset,
2016
        Angle $longitudeOffset,
2017
        Length $geoidUndulation
2018
    ): CompoundPoint {
2019
        assert($this->height instanceof Length);
2020
        $toLatitude = $this->latitude->add($latitudeOffset);
2021
        $toLongitude = $this->longitude->add($longitudeOffset);
2022
        $toHeight = $this->height->add($geoidUndulation);
2023
2024
        assert($to->getHorizontal() instanceof Geographic2D);
2025
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
2026
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
2027
2028
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
2029
    }
2030
2031
    /**
2032
     * General polynomial.
2033
     * @param Coefficient[] $powerCoefficients
2034 45
     */
2035
    public function generalPolynomial(
2036
        Geographic2D|Geographic3D $to,
2037
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2038
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2039
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2040
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2041
        Scale $scalingFactorForSourceCRSCoordDifferences,
2042
        Scale $scalingFactorForTargetCRSCoordDifferences,
2043
        Scale $A0,
2044
        Scale $B0,
2045
        array $powerCoefficients,
2046
        bool $inReverse
2047 45
    ): self {
2048 45
        $xs = $this->latitude->getValue();
2049
        $ys = $this->longitude->getValue();
2050 45
2051 45
        $t = $this->generalPolynomialUnitless(
2052 45
            $xs,
2053 45
            $ys,
2054 45
            $ordinate1OfEvaluationPointInSourceCRS,
2055 45
            $ordinate2OfEvaluationPointInSourceCRS,
2056 45
            $ordinate1OfEvaluationPointInTargetCRS,
2057 45
            $ordinate2OfEvaluationPointInTargetCRS,
2058 45
            $scalingFactorForSourceCRSCoordDifferences,
2059 45
            $scalingFactorForTargetCRSCoordDifferences,
2060 45
            $A0,
2061 45
            $B0,
2062 45
            $powerCoefficients,
2063 45
            $inReverse
2064
        );
2065 45
2066 45
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2067
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2068 45
2069 45
        return static::create(
2070 45
            $to,
2071 45
            Angle::makeUnit($t['xt'], $xtUnit),
2072 45
            Angle::makeUnit($t['yt'], $ytUnit),
2073 45
            $this->height,
2074 45
            $this->epoch
2075
        );
2076
    }
2077
2078
    /**
2079
     * Reversible polynomial.
2080
     * @param Coefficient[] $powerCoefficients
2081 36
     */
2082
    public function reversiblePolynomial(
2083
        Geographic2D|Geographic3D $to,
2084
        Angle $ordinate1OfEvaluationPoint,
2085
        Angle $ordinate2OfEvaluationPoint,
2086
        Scale $scalingFactorForCoordDifferences,
2087
        Scale $A0,
2088
        Scale $B0,
2089
        $powerCoefficients
2090 36
    ): self {
2091 36
        $xs = $this->latitude->getValue();
2092
        $ys = $this->longitude->getValue();
2093 36
2094 36
        $t = $this->reversiblePolynomialUnitless(
2095 36
            $xs,
2096 36
            $ys,
2097 36
            $ordinate1OfEvaluationPoint,
2098 36
            $ordinate2OfEvaluationPoint,
2099 36
            $scalingFactorForCoordDifferences,
2100 36
            $A0,
2101 36
            $B0,
2102 36
            $powerCoefficients
2103
        );
2104 36
2105 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2106
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2107 36
2108 36
        return static::create(
2109 36
            $to,
2110 36
            Angle::makeUnit($t['xt'], $xtUnit),
2111 36
            Angle::makeUnit($t['yt'], $ytUnit),
2112 36
            $this->height,
2113 36
            $this->epoch
2114
        );
2115
    }
2116
2117
    /**
2118
     * Axis Order Reversal.
2119
     */
2120
    public function axisReversal(
2121
        Geographic2D|Geographic3D $to
2122
    ): self {
2123
        // axes are read in from the CRS, this is a book-keeping adjustment only
2124
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2125
    }
2126
2127
    /**
2128
     * Ordnance Survey National Transformation
2129
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2130
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2131
     */
2132
    public function OSTN15(
2133
        Projected $to,
0 ignored issues
show
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2133
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2134
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2135
    ): ProjectedPoint {
2136
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2137
        $etrs89NationalGrid = new Projected(
2138
            'ETRS89 / National Grid',
2139
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2140
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2141
            $osgb36NationalGrid->getBoundingArea()
2142
        );
2143
2144
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2145
2146
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2147
    }
2148
2149
    /**
2150
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2151
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2152
     * coordinate differences.
2153
     */
2154
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2155
        Compound $to,
2156
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2157
    ): CompoundPoint {
2158
        assert($this->height instanceof Length);
2159
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2160
        $etrs89NationalGrid = new Projected(
2161
            'ETRS89 / National Grid',
2162
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2163
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2164
            $osgb36NationalGrid->getBoundingArea()
2165
        );
2166
2167
        /** @var ProjectedPoint $projected */
2168
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2169
2170
        assert($to->getHorizontal() instanceof Geographic2D);
2171
        $horizontalPoint = self::create(
2172
            $to->getHorizontal(),
2173
            $this->latitude,
2174
            $this->longitude,
2175
            null,
2176
            $this->getCoordinateEpoch()
2177
        );
2178
2179
        $verticalPoint = VerticalPoint::create(
2180
            $to->getVertical(),
2181
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
2182
            $this->getCoordinateEpoch()
2183
        );
2184
2185
        return CompoundPoint::create(
2186
            $to,
2187
            $horizontalPoint,
2188
            $verticalPoint,
2189
            $this->getCoordinateEpoch()
2190
        );
2191
    }
2192
2193
    /**
2194
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2195
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2196
     * coordinate differences.
2197
     */
2198
    public function geographic3DToGravityHeightOSGM15(
2199
        Vertical $to,
2200
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2201
    ): VerticalPoint {
2202
        assert($this->height instanceof Length);
2203
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2204
        $etrs89NationalGrid = new Projected(
2205
            'ETRS89 / National Grid',
2206
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2207
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2208
            $osgb36NationalGrid->getBoundingArea()
2209
        );
2210
2211
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2212
2213
        return VerticalPoint::create(
2214
            $to,
2215
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
2216
            $this->getCoordinateEpoch()
2217
        );
2218
    }
2219
2220
    /**
2221
     * Geog3D to Geog2D+GravityRelatedHeight.
2222 6
     */
2223
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2224
        Compound $to,
2225
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2226 6
    ): CompoundPoint {
2227 6
        assert($this->height instanceof Length);
2228 6
        assert($to->getHorizontal() instanceof Geographic);
2229 6
        $horizontalPoint = self::create(
2230 6
            $to->getHorizontal(),
2231 6
            $this->latitude,
2232 6
            $this->longitude,
2233 6
            null,
2234 6
            $this->getCoordinateEpoch()
2235
        );
2236 6
2237 6
        $verticalPoint = VerticalPoint::create(
2238 6
            $to->getVertical(),
2239 6
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
2240 6
            $this->getCoordinateEpoch()
2241
        );
2242 6
2243 6
        return CompoundPoint::create(
2244 6
            $to,
2245 6
            $horizontalPoint,
2246 6
            $verticalPoint,
2247 6
            $this->getCoordinateEpoch()
2248
        );
2249
    }
2250
2251
    /**
2252
     * Geographic3D to GravityRelatedHeight.
2253 4
     */
2254
    public function geographic3DToGravityHeightFromGrid(
2255
        Vertical $to,
2256
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2257 4
    ): VerticalPoint {
2258
        assert($this->height instanceof Length);
2259 4
2260 4
        return VerticalPoint::create(
2261 4
            $to,
2262 4
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
2263 4
            $this->getCoordinateEpoch()
2264
        );
2265
    }
2266
2267
    /**
2268
     * NADCON5.
2269
     * @internal just a wrapper
2270 8
     */
2271
    public function offsetsFromGridNADCON5(
2272
        Geographic2D|Geographic3D $to,
2273
        NADCON5Grid $latitudeDifferenceFile,
2274
        NADCON5Grid $longitudeDifferenceFile,
2275
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2276
        bool $inReverse
2277 8
    ): self {
2278
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2279 8
2280
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2281
    }
2282
2283
    /**
2284
     * Geographic offsets from grid.
2285 15
     */
2286
    public function offsetsFromGrid(
2287
        Geographic2D|Geographic3D $to,
2288
        GeographicGrid $offsetsFile,
2289
        bool $inReverse
2290 15
    ): self {
2291 9
        if (!$inReverse) {
2292
            return $offsetsFile->applyForwardAdjustment($this, $to);
2293
        }
2294 7
2295
        return $offsetsFile->applyReverseAdjustment($this, $to);
2296
    }
2297 9
2298
    public function localOrthographic(
2299
        Projected $to,
2300
        Angle $latitudeOfProjectionCentre,
2301
        Angle $longitudeOfProjectionCentre,
2302
        Angle $azimuthAtProjectionCentre,
2303
        Scale $scaleFactorAtProjectionCentre,
2304
        Length $eastingAtProjectionCentre,
2305
        Length $northingAtProjectionCentre
2306 9
    ): ProjectedPoint {
2307 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2308 9
        $latitude = $this->latitude->asRadians()->getValue();
2309 9
        $longitude = $this->longitude->asRadians()->getValue();
2310 9
        $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue();
2311 9
        $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue();
2312 9
        $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue();
2313
        $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue();
2314 9
2315 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2316 9
        $e2 = $ellipsoid->getEccentricitySquared();
2317 9
        $v = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
2318
        $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2);
2319 9
2320 9
        $xp = $v * cos($latitude) * sin($longitude - $longitudeCentre);
2321
        $yp = -sin($latitudeCentre) * ($v * cos($latitude) * cos($longitude - $longitudeCentre) - $vc * cos($latitudeCentre)) + cos($latitudeCentre) * ($v * (1 - $e2) * sin($latitude) - $vc * (1 - $e2) * sin($latitudeCentre));
2322 9
2323 9
        $easting = $eastingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (cos($azimuthCentre) * $xp - sin($azimuthCentre) * $yp);
2324
        $northing = $northingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (sin($azimuthCentre) * $xp + cos($azimuthCentre) * $yp);
2325 9
2326
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
2327
    }
2328 481
2329
    public function asGeographicValue(): GeographicValue
2330 481
    {
2331
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2332
    }
2333 18
2334
    public function asUTMPoint(): UTMPoint
2335 18
    {
2336
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2337 18
2338 18
        $initialLongitude = new Degree(-180);
2339
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2340 18
2341 9
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2342
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2343 9
        } else {
2344
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2345
        }
2346 18
2347
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2348 18
2349 18
        $projectedCRS = new Projected(
2350 18
            $srid,
2351 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2352 18
            $this->crs->getDatum(),
2353 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2354
        );
2355
2356 18
        /** @var ProjectedPoint $asProjected */
2357
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2358 18
2359
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
2360
    }
2361
}
2362