1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/** |
4
|
|
|
* PHPCoord. |
5
|
|
|
* |
6
|
|
|
* @author Doug Wright |
7
|
|
|
*/ |
8
|
|
|
declare(strict_types=1); |
9
|
|
|
|
10
|
|
|
namespace PHPCoord\CoordinateOperation; |
11
|
|
|
|
12
|
|
|
/** |
13
|
|
|
* @internal |
14
|
|
|
*/ |
15
|
|
|
class CoordinateOperationMethods |
16
|
|
|
{ |
17
|
|
|
/** |
18
|
|
|
* Abridged Molodensky |
19
|
|
|
* This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
20
|
|
|
* systems, modelled as a set of geocentric translations. |
21
|
|
|
*/ |
22
|
|
|
public const EPSG_ABRIDGED_MOLODENSKY = 'urn:ogc:def:method:EPSG::9605'; |
23
|
|
|
|
24
|
|
|
/** |
25
|
|
|
* Affine geometric transformation. |
26
|
|
|
*/ |
27
|
|
|
public const EPSG_AFFINE_GEOMETRIC_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9623'; |
28
|
|
|
|
29
|
|
|
/** |
30
|
|
|
* Affine parametric transformation. |
31
|
|
|
*/ |
32
|
|
|
public const EPSG_AFFINE_PARAMETRIC_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9624'; |
33
|
|
|
|
34
|
|
|
/** |
35
|
|
|
* Albers Equal Area. |
36
|
|
|
*/ |
37
|
|
|
public const EPSG_ALBERS_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9822'; |
38
|
|
|
|
39
|
|
|
/** |
40
|
|
|
* American Polyconic. |
41
|
|
|
*/ |
42
|
|
|
public const EPSG_AMERICAN_POLYCONIC = 'urn:ogc:def:method:EPSG::9818'; |
43
|
|
|
|
44
|
|
|
/** |
45
|
|
|
* Axis Order Reversal (2D) |
46
|
|
|
* This is a parameter-less conversion to reverse the order of the axes of a 2D CRS. |
47
|
|
|
*/ |
48
|
|
|
public const EPSG_AXIS_ORDER_REVERSAL_2D = 'urn:ogc:def:method:EPSG::9843'; |
49
|
|
|
|
50
|
|
|
/** |
51
|
|
|
* Axis Order Reversal (Geographic3D horizontal) |
52
|
|
|
* This is a parameter-less conversion to change the order of horizontal coordinates of a geographic 3D CRS. |
53
|
|
|
*/ |
54
|
|
|
public const EPSG_AXIS_ORDER_REVERSAL_GEOGRAPHIC3D_HORIZONTAL = 'urn:ogc:def:method:EPSG::9844'; |
55
|
|
|
|
56
|
|
|
/** |
57
|
|
|
* Bonne. |
58
|
|
|
*/ |
59
|
|
|
public const EPSG_BONNE = 'urn:ogc:def:method:EPSG::9827'; |
60
|
|
|
|
61
|
|
|
/** |
62
|
|
|
* Bonne (South Orientated). |
63
|
|
|
*/ |
64
|
|
|
public const EPSG_BONNE_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9828'; |
65
|
|
|
|
66
|
|
|
/** |
67
|
|
|
* Cartesian Grid Offsets |
68
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
69
|
|
|
* coordinate values of the point in the source system. |
70
|
|
|
*/ |
71
|
|
|
public const EPSG_CARTESIAN_GRID_OFFSETS = 'urn:ogc:def:method:EPSG::9656'; |
72
|
|
|
|
73
|
|
|
/** |
74
|
|
|
* Cassini-Soldner. |
75
|
|
|
*/ |
76
|
|
|
public const EPSG_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9806'; |
77
|
|
|
|
78
|
|
|
/** |
79
|
|
|
* Change of Vertical Unit. |
80
|
|
|
*/ |
81
|
|
|
public const EPSG_CHANGE_OF_VERTICAL_UNIT = 'urn:ogc:def:method:EPSG::1104'; |
82
|
|
|
|
83
|
|
|
/** |
84
|
|
|
* Colombia Urban. |
85
|
|
|
*/ |
86
|
|
|
public const EPSG_COLOMBIA_URBAN = 'urn:ogc:def:method:EPSG::1052'; |
87
|
|
|
|
88
|
|
|
/** |
89
|
|
|
* Complex polynomial of degree 3 |
90
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
91
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 3. |
92
|
|
|
*/ |
93
|
|
|
public const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9652'; |
94
|
|
|
|
95
|
|
|
/** |
96
|
|
|
* Complex polynomial of degree 4 |
97
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
98
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 4. |
99
|
|
|
*/ |
100
|
|
|
public const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9653'; |
101
|
|
|
|
102
|
|
|
/** |
103
|
|
|
* Coordinate Frame rotation (geocentric domain) |
104
|
|
|
* This method is a specific case of the Molodensky-Badekas (CF) method (code 1034) in which the evaluation point |
105
|
|
|
* is at the geocentre with coordinate values of zero. Note the analogy with the Position Vector method (code 1033) |
106
|
|
|
* but beware of the differences! |
107
|
|
|
*/ |
108
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1032'; |
109
|
|
|
|
110
|
|
|
/** |
111
|
|
|
* Coordinate Frame rotation (geog2D domain) |
112
|
|
|
* Note the analogy with the Position Vector tfm (code 9606) but beware of the differences! The Position Vector |
113
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032 and 1038 for similar tfms operating |
114
|
|
|
* between other CRS types. |
115
|
|
|
*/ |
116
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9607'; |
117
|
|
|
|
118
|
|
|
/** |
119
|
|
|
* Coordinate Frame rotation (geog3D domain) |
120
|
|
|
* Note the analogy with the Position Vector tfm (code 1037) but beware of the differences! The Position Vector |
121
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032 and 9607 for similar tfms operating |
122
|
|
|
* between other CRS types. |
123
|
|
|
*/ |
124
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1038'; |
125
|
|
|
|
126
|
|
|
/** |
127
|
|
|
* Equal Earth. |
128
|
|
|
*/ |
129
|
|
|
public const EPSG_EQUAL_EARTH = 'urn:ogc:def:method:EPSG::1078'; |
130
|
|
|
|
131
|
|
|
/** |
132
|
|
|
* Equidistant Cylindrical |
133
|
|
|
* See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
134
|
|
|
*/ |
135
|
|
|
public const EPSG_EQUIDISTANT_CYLINDRICAL = 'urn:ogc:def:method:EPSG::1028'; |
136
|
|
|
|
137
|
|
|
/** |
138
|
|
|
* Equidistant Cylindrical (Spherical) |
139
|
|
|
* See method code 1028 for ellipsoidal development. If the latitude of natural origin is at the equator, also |
140
|
|
|
* known as Plate Carrée. See also Pseudo Plate Carree, method code 9825. |
141
|
|
|
*/ |
142
|
|
|
public const EPSG_EQUIDISTANT_CYLINDRICAL_SPHERICAL = 'urn:ogc:def:method:EPSG::1029'; |
143
|
|
|
|
144
|
|
|
/** |
145
|
|
|
* General polynomial of degree 2. |
146
|
|
|
*/ |
147
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 = 'urn:ogc:def:method:EPSG::9645'; |
148
|
|
|
|
149
|
|
|
/** |
150
|
|
|
* General polynomial of degree 3. |
151
|
|
|
*/ |
152
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9646'; |
153
|
|
|
|
154
|
|
|
/** |
155
|
|
|
* General polynomial of degree 4. |
156
|
|
|
*/ |
157
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9647'; |
158
|
|
|
|
159
|
|
|
/** |
160
|
|
|
* General polynomial of degree 6. |
161
|
|
|
*/ |
162
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 = 'urn:ogc:def:method:EPSG::9648'; |
163
|
|
|
|
164
|
|
|
/** |
165
|
|
|
* Geocentric translation by Grid Interpolation (IGN). |
166
|
|
|
*/ |
167
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATION_BY_GRID_INTERPOLATION_IGN = 'urn:ogc:def:method:EPSG::1087'; |
168
|
|
|
|
169
|
|
|
/** |
170
|
|
|
* Geocentric translations (geocentric domain) |
171
|
|
|
* This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
172
|
|
|
* corresponding coordinates of the point in the source system. See methods 1035 and 9603 for similar tfms |
173
|
|
|
* operating between other CRSs types. |
174
|
|
|
*/ |
175
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1031'; |
176
|
|
|
|
177
|
|
|
/** |
178
|
|
|
* Geocentric translations (geog2D domain) |
179
|
|
|
* See methods 1031 and 1035 for similar tfms operating between other CRSs types. |
180
|
|
|
*/ |
181
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9603'; |
182
|
|
|
|
183
|
|
|
/** |
184
|
|
|
* Geocentric translations (geog3D domain) |
185
|
|
|
* See methods 1031 and 9603 for similar tfms operating between other CRSs types. |
186
|
|
|
*/ |
187
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1035'; |
188
|
|
|
|
189
|
|
|
/** |
190
|
|
|
* Geocentric/topocentric conversions. |
191
|
|
|
*/ |
192
|
|
|
public const EPSG_GEOCENTRIC_TOPOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9836'; |
193
|
|
|
|
194
|
|
|
/** |
195
|
|
|
* Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB). |
196
|
|
|
*/ |
197
|
|
|
public const EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_OSGM_GB = 'urn:ogc:def:method:EPSG::1097'; |
198
|
|
|
|
199
|
|
|
/** |
200
|
|
|
* Geog3D to Geog2D+GravityRelatedHeight (gtx). |
201
|
|
|
*/ |
202
|
|
|
public const EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_GTX = 'urn:ogc:def:method:EPSG::1088'; |
203
|
|
|
|
204
|
|
|
/** |
205
|
|
|
* Geographic/geocentric conversions |
206
|
|
|
* In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
207
|
|
|
* 9636 to form a geographic to geographic transformation. |
208
|
|
|
*/ |
209
|
|
|
public const EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9602'; |
210
|
|
|
|
211
|
|
|
/** |
212
|
|
|
* Geographic/topocentric conversions. |
213
|
|
|
*/ |
214
|
|
|
public const EPSG_GEOGRAPHIC_TOPOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9837'; |
215
|
|
|
|
216
|
|
|
/** |
217
|
|
|
* Geographic2D offsets |
218
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
219
|
|
|
* coordinate values of the point in the source system. |
220
|
|
|
*/ |
221
|
|
|
public const EPSG_GEOGRAPHIC2D_OFFSETS = 'urn:ogc:def:method:EPSG::9619'; |
222
|
|
|
|
223
|
|
|
/** |
224
|
|
|
* Geographic2D with Height Offsets |
225
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
226
|
|
|
* coordinate values of the point in the source system. |
227
|
|
|
*/ |
228
|
|
|
public const EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS = 'urn:ogc:def:method:EPSG::9618'; |
229
|
|
|
|
230
|
|
|
/** |
231
|
|
|
* Geographic3D offsets |
232
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
233
|
|
|
* coordinate values of the point in the source system. |
234
|
|
|
*/ |
235
|
|
|
public const EPSG_GEOGRAPHIC3D_OFFSETS = 'urn:ogc:def:method:EPSG::9660'; |
236
|
|
|
|
237
|
|
|
/** |
238
|
|
|
* Geographic3D to 2D conversion. |
239
|
|
|
*/ |
240
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION = 'urn:ogc:def:method:EPSG::9659'; |
241
|
|
|
|
242
|
|
|
/** |
243
|
|
|
* Geographic3D to GravityRelatedHeight (NZgeoid) |
244
|
|
|
* EPSG initially gave this method the name "Geographic3D to GravityRelatedHeight (NZgeoid2009)". As the same file |
245
|
|
|
* format was retained for the 2016 geoid, date removed from the method name. |
246
|
|
|
*/ |
247
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_NZGEOID = 'urn:ogc:def:method:EPSG::1030'; |
248
|
|
|
|
249
|
|
|
/** |
250
|
|
|
* Geographic3D to GravityRelatedHeight (OSGM-GB) |
251
|
|
|
* Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS. |
252
|
|
|
*/ |
253
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_OSGM_GB = 'urn:ogc:def:method:EPSG::9663'; |
254
|
|
|
|
255
|
|
|
/** |
256
|
|
|
* Geographic3D to GravityRelatedHeight (gtx) |
257
|
|
|
* Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS. Grid file format: US NGS .gtx |
258
|
|
|
* (in US sometimes also referred to as 'vdatum format'). |
259
|
|
|
*/ |
260
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_GTX = 'urn:ogc:def:method:EPSG::9665'; |
261
|
|
|
|
262
|
|
|
/** |
263
|
|
|
* Guam Projection |
264
|
|
|
* Simplified form of Oblique Azimuthal Equidistant projection method. |
265
|
|
|
*/ |
266
|
|
|
public const EPSG_GUAM_PROJECTION = 'urn:ogc:def:method:EPSG::9831'; |
267
|
|
|
|
268
|
|
|
/** |
269
|
|
|
* Height Depth Reversal. |
270
|
|
|
*/ |
271
|
|
|
public const EPSG_HEIGHT_DEPTH_REVERSAL = 'urn:ogc:def:method:EPSG::1068'; |
272
|
|
|
|
273
|
|
|
/** |
274
|
|
|
* Hotine Oblique Mercator (variant A). |
275
|
|
|
*/ |
276
|
|
|
public const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9812'; |
277
|
|
|
|
278
|
|
|
/** |
279
|
|
|
* Hotine Oblique Mercator (variant B). |
280
|
|
|
*/ |
281
|
|
|
public const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9815'; |
282
|
|
|
|
283
|
|
|
/** |
284
|
|
|
* Hyperbolic Cassini-Soldner. |
285
|
|
|
*/ |
286
|
|
|
public const EPSG_HYPERBOLIC_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9833'; |
287
|
|
|
|
288
|
|
|
/** |
289
|
|
|
* Krovak. |
290
|
|
|
*/ |
291
|
|
|
public const EPSG_KROVAK = 'urn:ogc:def:method:EPSG::9819'; |
292
|
|
|
|
293
|
|
|
/** |
294
|
|
|
* Krovak (North Orientated). |
295
|
|
|
*/ |
296
|
|
|
public const EPSG_KROVAK_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1041'; |
297
|
|
|
|
298
|
|
|
/** |
299
|
|
|
* Krovak Modified |
300
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
301
|
|
|
* to be a map projection. |
302
|
|
|
*/ |
303
|
|
|
public const EPSG_KROVAK_MODIFIED = 'urn:ogc:def:method:EPSG::1042'; |
304
|
|
|
|
305
|
|
|
/** |
306
|
|
|
* Krovak Modified (North Orientated) |
307
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
308
|
|
|
* to be a map projection. |
309
|
|
|
*/ |
310
|
|
|
public const EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1043'; |
311
|
|
|
|
312
|
|
|
/** |
313
|
|
|
* Laborde Oblique Mercator. |
314
|
|
|
*/ |
315
|
|
|
public const EPSG_LABORDE_OBLIQUE_MERCATOR = 'urn:ogc:def:method:EPSG::9813'; |
316
|
|
|
|
317
|
|
|
/** |
318
|
|
|
* Lambert Azimuthal Equal Area |
319
|
|
|
* This is the ellipsoidal form of the projection. |
320
|
|
|
*/ |
321
|
|
|
public const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9820'; |
322
|
|
|
|
323
|
|
|
/** |
324
|
|
|
* Lambert Azimuthal Equal Area (Spherical) |
325
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
326
|
|
|
* (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
327
|
|
|
* methods. |
328
|
|
|
*/ |
329
|
|
|
public const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL = 'urn:ogc:def:method:EPSG::1027'; |
330
|
|
|
|
331
|
|
|
/** |
332
|
|
|
* Lambert Conic Conformal (1SP variant B). |
333
|
|
|
*/ |
334
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_1SP_VARIANT_B = 'urn:ogc:def:method:EPSG::1102'; |
335
|
|
|
|
336
|
|
|
/** |
337
|
|
|
* Lambert Conic Conformal (1SP). |
338
|
|
|
*/ |
339
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_1SP = 'urn:ogc:def:method:EPSG::9801'; |
340
|
|
|
|
341
|
|
|
/** |
342
|
|
|
* Lambert Conic Conformal (2SP Belgium) |
343
|
|
|
* In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
344
|
|
|
* with appropriately modified parameter values. |
345
|
|
|
*/ |
346
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM = 'urn:ogc:def:method:EPSG::9803'; |
347
|
|
|
|
348
|
|
|
/** |
349
|
|
|
* Lambert Conic Conformal (2SP Michigan). |
350
|
|
|
*/ |
351
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN = 'urn:ogc:def:method:EPSG::1051'; |
352
|
|
|
|
353
|
|
|
/** |
354
|
|
|
* Lambert Conic Conformal (2SP). |
355
|
|
|
*/ |
356
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP = 'urn:ogc:def:method:EPSG::9802'; |
357
|
|
|
|
358
|
|
|
/** |
359
|
|
|
* Lambert Conic Conformal (West Orientated). |
360
|
|
|
*/ |
361
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED = 'urn:ogc:def:method:EPSG::9826'; |
362
|
|
|
|
363
|
|
|
/** |
364
|
|
|
* Lambert Conic Near-Conformal |
365
|
|
|
* The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
366
|
|
|
* series expansion of the projection formulae. |
367
|
|
|
*/ |
368
|
|
|
public const EPSG_LAMBERT_CONIC_NEAR_CONFORMAL = 'urn:ogc:def:method:EPSG::9817'; |
369
|
|
|
|
370
|
|
|
/** |
371
|
|
|
* Lambert Cylindrical Equal Area |
372
|
|
|
* This is the ellipsoidal form of the projection. |
373
|
|
|
*/ |
374
|
|
|
public const EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9835'; |
375
|
|
|
|
376
|
|
|
/** |
377
|
|
|
* Lambert Cylindrical Equal Area (Spherical) |
378
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Cylindrical Equal Area |
379
|
|
|
* (code 9835) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
380
|
|
|
* methods. |
381
|
|
|
*/ |
382
|
|
|
public const EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA_SPHERICAL = 'urn:ogc:def:method:EPSG::9834'; |
383
|
|
|
|
384
|
|
|
/** |
385
|
|
|
* Longitude rotation |
386
|
|
|
* This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
387
|
|
|
* value to the longitude value of the point in the source system. |
388
|
|
|
*/ |
389
|
|
|
public const EPSG_LONGITUDE_ROTATION = 'urn:ogc:def:method:EPSG::9601'; |
390
|
|
|
|
391
|
|
|
/** |
392
|
|
|
* Madrid to ED50 polynomial. |
393
|
|
|
*/ |
394
|
|
|
public const EPSG_MADRID_TO_ED50_POLYNOMIAL = 'urn:ogc:def:method:EPSG::9617'; |
395
|
|
|
|
396
|
|
|
/** |
397
|
|
|
* Mercator (Spherical). |
398
|
|
|
*/ |
399
|
|
|
public const EPSG_MERCATOR_SPHERICAL = 'urn:ogc:def:method:EPSG::1026'; |
400
|
|
|
|
401
|
|
|
/** |
402
|
|
|
* Mercator (variant A) |
403
|
|
|
* Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
404
|
|
|
* Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
405
|
|
|
* completeness in CRS labelling. |
406
|
|
|
*/ |
407
|
|
|
public const EPSG_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9804'; |
408
|
|
|
|
409
|
|
|
/** |
410
|
|
|
* Mercator (variant B) |
411
|
|
|
* Used for most nautical charts. |
412
|
|
|
*/ |
413
|
|
|
public const EPSG_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9805'; |
414
|
|
|
|
415
|
|
|
/** |
416
|
|
|
* Mercator (variant C). |
417
|
|
|
*/ |
418
|
|
|
public const EPSG_MERCATOR_VARIANT_C = 'urn:ogc:def:method:EPSG::1044'; |
419
|
|
|
|
420
|
|
|
/** |
421
|
|
|
* Modified Azimuthal Equidistant |
422
|
|
|
* Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
423
|
|
|
* distances over which these projections are used (under 800km) this modification introduces no significant error. |
424
|
|
|
*/ |
425
|
|
|
public const EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT = 'urn:ogc:def:method:EPSG::9832'; |
426
|
|
|
|
427
|
|
|
/** |
428
|
|
|
* Molodensky |
429
|
|
|
* See Abridged Molodensky. |
430
|
|
|
*/ |
431
|
|
|
public const EPSG_MOLODENSKY = 'urn:ogc:def:method:EPSG::9604'; |
432
|
|
|
|
433
|
|
|
/** |
434
|
|
|
* Molodensky-Badekas (CF geocentric domain) |
435
|
|
|
* See method codes 1039 and 9636 for this operation in other coordinate domains and method code 1061 for opposite |
436
|
|
|
* rotation convention in geocentric domain. |
437
|
|
|
*/ |
438
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1034'; |
439
|
|
|
|
440
|
|
|
/** |
441
|
|
|
* Molodensky-Badekas (CF geog2D domain) |
442
|
|
|
* See method codes 1034 and 1039 for this operation in other coordinate domains and method code 1063 for the |
443
|
|
|
* opposite rotation convention in geographic 2D domain. |
444
|
|
|
*/ |
445
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9636'; |
446
|
|
|
|
447
|
|
|
/** |
448
|
|
|
* Molodensky-Badekas (CF geog3D domain) |
449
|
|
|
* See method codes 1034 and 9636 for this operation in other coordinate domains and method code 1062 for opposite |
450
|
|
|
* rotation convention in geographic 3D domain. |
451
|
|
|
*/ |
452
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1039'; |
453
|
|
|
|
454
|
|
|
/** |
455
|
|
|
* Molodensky-Badekas (PV geocentric domain) |
456
|
|
|
* See method codes 1062 and 1063 for this operation in other coordinate domains and method code 1034 for opposite |
457
|
|
|
* rotation convention in geocentric domain. |
458
|
|
|
*/ |
459
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1061'; |
460
|
|
|
|
461
|
|
|
/** |
462
|
|
|
* Molodensky-Badekas (PV geog2D domain) |
463
|
|
|
* See method codes 1061 and 1062 for this operation in other coordinate domains and method code 9636 for opposite |
464
|
|
|
* rotation in geographic 2D domain. |
465
|
|
|
*/ |
466
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::1063'; |
467
|
|
|
|
468
|
|
|
/** |
469
|
|
|
* Molodensky-Badekas (PV geog3D domain) |
470
|
|
|
* See method codes 1061 and 1063 for this operation in other coordinate domains and method code 1039 for opposite |
471
|
|
|
* rotation convention in geographic 3D domain. |
472
|
|
|
*/ |
473
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1062'; |
474
|
|
|
|
475
|
|
|
/** |
476
|
|
|
* NADCON5 (2D) |
477
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation. Input |
478
|
|
|
* expects longitudes to be positive east in range 0-360° (0° = Greenwich). |
479
|
|
|
*/ |
480
|
|
|
public const EPSG_NADCON5_2D = 'urn:ogc:def:method:EPSG::1074'; |
481
|
|
|
|
482
|
|
|
/** |
483
|
|
|
* NADCON5 (3D) |
484
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation. Input |
485
|
|
|
* expects longitudes to be positive east in range 0-360° (0° = Greenwich). |
486
|
|
|
*/ |
487
|
|
|
public const EPSG_NADCON5_3D = 'urn:ogc:def:method:EPSG::1075'; |
488
|
|
|
|
489
|
|
|
/** |
490
|
|
|
* NTv2 |
491
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation. Supersedes |
492
|
|
|
* NTv1 (transformation method code 9614). Input expects longitudes to be positive west. |
493
|
|
|
*/ |
494
|
|
|
public const EPSG_NTV2 = 'urn:ogc:def:method:EPSG::9615'; |
495
|
|
|
|
496
|
|
|
/** |
497
|
|
|
* New Zealand Map Grid. |
498
|
|
|
*/ |
499
|
|
|
public const EPSG_NEW_ZEALAND_MAP_GRID = 'urn:ogc:def:method:EPSG::9811'; |
500
|
|
|
|
501
|
|
|
/** |
502
|
|
|
* Oblique Stereographic |
503
|
|
|
* This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
504
|
|
|
* Projections - A Working Manual" by John P. Snyder. |
505
|
|
|
*/ |
506
|
|
|
public const EPSG_OBLIQUE_STEREOGRAPHIC = 'urn:ogc:def:method:EPSG::9809'; |
507
|
|
|
|
508
|
|
|
/** |
509
|
|
|
* Ordnance Survey National Transformation |
510
|
|
|
* Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
511
|
|
|
* an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
512
|
|
|
*/ |
513
|
|
|
public const EPSG_ORDNANCE_SURVEY_NATIONAL_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9633'; |
514
|
|
|
|
515
|
|
|
/** |
516
|
|
|
* Orthographic |
517
|
|
|
* If the natural origin of the projection is at the topocentric origin, this is a special case of the Vertical |
518
|
|
|
* Perspective (orthographic case) (method code 9839) in which the ellipsoid height of all mapped points is zero (h |
519
|
|
|
* = 0). |
520
|
|
|
*/ |
521
|
|
|
public const EPSG_ORTHOGRAPHIC = 'urn:ogc:def:method:EPSG::9840'; |
522
|
|
|
|
523
|
|
|
/** |
524
|
|
|
* Point motion (ellipsoidal). |
525
|
|
|
*/ |
526
|
|
|
public const EPSG_POINT_MOTION_ELLIPSOIDAL = 'urn:ogc:def:method:EPSG::1067'; |
527
|
|
|
|
528
|
|
|
/** |
529
|
|
|
* Point motion (geocentric Cartesian). |
530
|
|
|
*/ |
531
|
|
|
public const EPSG_POINT_MOTION_GEOCENTRIC_CARTESIAN = 'urn:ogc:def:method:EPSG::1064'; |
532
|
|
|
|
533
|
|
|
/** |
534
|
|
|
* Polar Stereographic (variant A) |
535
|
|
|
* Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
536
|
|
|
*/ |
537
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_A = 'urn:ogc:def:method:EPSG::9810'; |
538
|
|
|
|
539
|
|
|
/** |
540
|
|
|
* Polar Stereographic (variant B). |
541
|
|
|
*/ |
542
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_B = 'urn:ogc:def:method:EPSG::9829'; |
543
|
|
|
|
544
|
|
|
/** |
545
|
|
|
* Polar Stereographic (variant C). |
546
|
|
|
*/ |
547
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_C = 'urn:ogc:def:method:EPSG::9830'; |
548
|
|
|
|
549
|
|
|
/** |
550
|
|
|
* Popular Visualisation Pseudo Mercator |
551
|
|
|
* Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
552
|
|
|
*/ |
553
|
|
|
public const EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR = 'urn:ogc:def:method:EPSG::1024'; |
554
|
|
|
|
555
|
|
|
/** |
556
|
|
|
* Position Vector transformation (geocentric domain) |
557
|
|
|
* This method is a specific case of the Molodensky-Badekas (PV) method (code 1061) in which the evaluation point |
558
|
|
|
* is the geocentre with coordinate values of zero. Note the analogy with the Coordinate Frame method (code 1032) |
559
|
|
|
* but beware of the differences! |
560
|
|
|
*/ |
561
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1033'; |
562
|
|
|
|
563
|
|
|
/** |
564
|
|
|
* Position Vector transformation (geog2D domain) |
565
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 9607) but beware of the differences! The Position |
566
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033 and 1037 for similar tfms |
567
|
|
|
* operating between other CRS types. |
568
|
|
|
*/ |
569
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9606'; |
570
|
|
|
|
571
|
|
|
/** |
572
|
|
|
* Position Vector transformation (geog3D domain) |
573
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 1038) but beware of the differences! The Position |
574
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033 and 9606 for similar tfms |
575
|
|
|
* operating between other CRS types. |
576
|
|
|
*/ |
577
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1037'; |
578
|
|
|
|
579
|
|
|
/** |
580
|
|
|
* Pseudo Plate Carree |
581
|
|
|
* Used only for depiction of graticule (latitude/longitude) coordinates on a computer display. The axes units are |
582
|
|
|
* decimal degrees and of variable scale. The origin is at Lat = 0, Long = 0. See Equidistant Cylindrical, code |
583
|
|
|
* 1029, for proper Plate Carrée. |
584
|
|
|
*/ |
585
|
|
|
public const EPSG_PSEUDO_PLATE_CARREE = 'urn:ogc:def:method:EPSG::9825'; |
586
|
|
|
|
587
|
|
|
/** |
588
|
|
|
* Reversible polynomial of degree 13. |
589
|
|
|
*/ |
590
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 = 'urn:ogc:def:method:EPSG::9654'; |
591
|
|
|
|
592
|
|
|
/** |
593
|
|
|
* Reversible polynomial of degree 2 |
594
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
595
|
|
|
*/ |
596
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_2 = 'urn:ogc:def:method:EPSG::9649'; |
597
|
|
|
|
598
|
|
|
/** |
599
|
|
|
* Reversible polynomial of degree 3 |
600
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
601
|
|
|
*/ |
602
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9650'; |
603
|
|
|
|
604
|
|
|
/** |
605
|
|
|
* Reversible polynomial of degree 4 |
606
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
607
|
|
|
*/ |
608
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9651'; |
609
|
|
|
|
610
|
|
|
/** |
611
|
|
|
* Similarity transformation |
612
|
|
|
* Defined for two-dimensional coordinate systems. |
613
|
|
|
*/ |
614
|
|
|
public const EPSG_SIMILARITY_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9621'; |
615
|
|
|
|
616
|
|
|
/** |
617
|
|
|
* Swiss Oblique Cylindrical |
618
|
|
|
* Can be accommodated by Oblique Mercator method (code 9815), for which this method is an approximation (see BfL |
619
|
|
|
* document swissprojectionen.pdf at www.swisstopo.com). |
620
|
|
|
*/ |
621
|
|
|
public const EPSG_SWISS_OBLIQUE_CYLINDRICAL = 'urn:ogc:def:method:EPSG::9814'; |
622
|
|
|
|
623
|
|
|
/** |
624
|
|
|
* Time-dependent Coordinate Frame rotation (geocen) |
625
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1053) but beware of the |
626
|
|
|
* differences! The Position Vector convention is used by IAG. See method codes 1057 and 1058 for similar methods |
627
|
|
|
* operating between other CRS types. |
628
|
|
|
*/ |
629
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1056'; |
630
|
|
|
|
631
|
|
|
/** |
632
|
|
|
* Time-dependent Coordinate Frame rotation (geog2D) |
633
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1054) but beware of the |
634
|
|
|
* differences! The Position Vector convention is used by IAG. See methods 1056 and 1058 for similar tfms |
635
|
|
|
* operating between other CRS types. |
636
|
|
|
*/ |
637
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOG2D = 'urn:ogc:def:method:EPSG::1057'; |
638
|
|
|
|
639
|
|
|
/** |
640
|
|
|
* Time-dependent Coordinate Frame rotation (geog3D) |
641
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1055) but beware of the |
642
|
|
|
* differences! The Position Vector convention is used by IAG. See method codes 1056 and 1057 for similar methods |
643
|
|
|
* operating between other CRS types. |
644
|
|
|
*/ |
645
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOG3D = 'urn:ogc:def:method:EPSG::1058'; |
646
|
|
|
|
647
|
|
|
/** |
648
|
|
|
* Time-dependent Position Vector tfm (geocentric) |
649
|
|
|
* Note the analogy with the Time-dependent Coordinate Frame rotation (code 1056) but beware of the differences! |
650
|
|
|
* The Position Vector convention is used by IAG. See method codes 1054 and 1055 for similar methods operating |
651
|
|
|
* between other CRS types. |
652
|
|
|
*/ |
653
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC = 'urn:ogc:def:method:EPSG::1053'; |
654
|
|
|
|
655
|
|
|
/** |
656
|
|
|
* Time-dependent Position Vector tfm (geog2D) |
657
|
|
|
* Note the analogy with the Time-dependent Coordinate Frame rotation (code 1057) but beware of the differences! |
658
|
|
|
* The Position Vector convention is used by IAG. See method codes 1053 and 1055 for similar methods operating |
659
|
|
|
* between other CRS types. |
660
|
|
|
*/ |
661
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOG2D = 'urn:ogc:def:method:EPSG::1054'; |
662
|
|
|
|
663
|
|
|
/** |
664
|
|
|
* Time-dependent Position Vector tfm (geog3D) |
665
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 1058) but beware of the differences! The Position |
666
|
|
|
* Vector convention is used by IAG. See method codes 1053 and 1054 for similar methods operating between other CRS |
667
|
|
|
* types. |
668
|
|
|
*/ |
669
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOG3D = 'urn:ogc:def:method:EPSG::1055'; |
670
|
|
|
|
671
|
|
|
/** |
672
|
|
|
* Time-specific Coordinate Frame rotation (geocen) |
673
|
|
|
* Note the analogy with the Time-specific Position Vector method (code 1065) but beware of the differences! |
674
|
|
|
*/ |
675
|
|
|
public const EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1066'; |
676
|
|
|
|
677
|
|
|
/** |
678
|
|
|
* Time-specific Position Vector transform (geocen) |
679
|
|
|
* Note the analogy with the Time-specifc Coordinate Frame method (code 1066) but beware of the differences! |
680
|
|
|
*/ |
681
|
|
|
public const EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN = 'urn:ogc:def:method:EPSG::1065'; |
682
|
|
|
|
683
|
|
|
/** |
684
|
|
|
* Transverse Mercator. |
685
|
|
|
*/ |
686
|
|
|
public const EPSG_TRANSVERSE_MERCATOR = 'urn:ogc:def:method:EPSG::9807'; |
687
|
|
|
|
688
|
|
|
/** |
689
|
|
|
* Transverse Mercator (South Orientated). |
690
|
|
|
*/ |
691
|
|
|
public const EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9808'; |
692
|
|
|
|
693
|
|
|
/** |
694
|
|
|
* Transverse Mercator Zoned Grid System |
695
|
|
|
* If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
696
|
|
|
* each zone. |
697
|
|
|
*/ |
698
|
|
|
public const EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM = 'urn:ogc:def:method:EPSG::9824'; |
699
|
|
|
|
700
|
|
|
/** |
701
|
|
|
* Vertical Offset |
702
|
|
|
* This transformation allows calculation of height (or depth) in the target system by adding the parameter value |
703
|
|
|
* to the height (or depth)-value of the point in the source system. |
704
|
|
|
*/ |
705
|
|
|
public const EPSG_VERTICAL_OFFSET = 'urn:ogc:def:method:EPSG::9616'; |
706
|
|
|
|
707
|
|
|
/** |
708
|
|
|
* Vertical Offset and Slope |
709
|
|
|
* This transformation allows calculation of height in the target system by applying the parameter values to the |
710
|
|
|
* height value of the point in the source system. |
711
|
|
|
*/ |
712
|
|
|
public const EPSG_VERTICAL_OFFSET_AND_SLOPE = 'urn:ogc:def:method:EPSG::1046'; |
713
|
|
|
|
714
|
|
|
/** |
715
|
|
|
* Vertical Offset by Grid Interpolation (NZLVD). |
716
|
|
|
*/ |
717
|
|
|
public const EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_NZLVD = 'urn:ogc:def:method:EPSG::1071'; |
718
|
|
|
|
719
|
|
|
/** |
720
|
|
|
* Vertical Offset by Grid Interpolation (gtx). |
721
|
|
|
*/ |
722
|
|
|
public const EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_GTX = 'urn:ogc:def:method:EPSG::1084'; |
723
|
|
|
|
724
|
|
|
/** |
725
|
|
|
* Vertical Perspective |
726
|
|
|
* For a viewing point height approaching or at infinity, see the Vertical Perspective (orthographic case) (method |
727
|
|
|
* code 9839). |
728
|
|
|
*/ |
729
|
|
|
public const EPSG_VERTICAL_PERSPECTIVE = 'urn:ogc:def:method:EPSG::9838'; |
730
|
|
|
|
731
|
|
|
/** |
732
|
|
|
* Vertical Perspective (Orthographic case) |
733
|
|
|
* This is a special case of the general Vertical Perspective (method code 9838) in which the viewing point at |
734
|
|
|
* infinity. |
735
|
|
|
*/ |
736
|
|
|
public const EPSG_VERTICAL_PERSPECTIVE_ORTHOGRAPHIC_CASE = 'urn:ogc:def:method:EPSG::9839'; |
737
|
|
|
|
738
|
|
|
/** |
739
|
|
|
* zero-tide height to mean-tide height (EVRF2019) |
740
|
|
|
* The offset of -0.08593 is applied to force EVRF2019 mean-tide height to be equal to EVRF2019 height at the |
741
|
|
|
* EVRF2019 nominal origin at Amsterdams Peil. |
742
|
|
|
*/ |
743
|
|
|
public const EPSG_ZERO_TIDE_HEIGHT_TO_MEAN_TIDE_HEIGHT_EVRF2019 = 'urn:ogc:def:method:EPSG::1107'; |
744
|
|
|
|
745
|
|
|
private const METHOD_CODE_TO_IMPLEMENTATION_LOOKUP = [ |
746
|
|
|
self::EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS => 'geographicGeocentric', |
747
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN => 'geocentricTranslation', |
748
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN => 'geocentricTranslation', |
749
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN => 'coordinateFrameRotation', |
750
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN => 'coordinateFrameRotation', |
751
|
|
|
self::EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeDependentCoordinateFrameRotation', |
752
|
|
|
self::EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeSpecificCoordinateFrameRotation', |
753
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN => 'positionVectorTransformation', |
754
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN => 'positionVectorTransformation', |
755
|
|
|
self::EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC => 'timeDependentPositionVectorTransformation', |
756
|
|
|
self::EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN => 'timeSpecificPositionVectorTransformation', |
757
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN => 'coordinateFrameMolodenskyBadekas', |
758
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN => 'positionVectorMolodenskyBadekas', |
759
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN => 'positionVectorMolodenskyBadekas', |
760
|
|
|
self::EPSG_AFFINE_PARAMETRIC_TRANSFORMATION => 'affineParametricTransform', |
761
|
|
|
self::EPSG_ALBERS_EQUAL_AREA => 'albersEqualArea', |
762
|
|
|
self::EPSG_AMERICAN_POLYCONIC => 'americanPolyconic', |
763
|
|
|
self::EPSG_BONNE_SOUTH_ORIENTATED => 'bonneSouthOrientated', |
764
|
|
|
self::EPSG_CARTESIAN_GRID_OFFSETS => 'offsets', |
765
|
|
|
self::EPSG_CASSINI_SOLDNER => 'cassiniSoldner', |
766
|
|
|
self::EPSG_HYPERBOLIC_CASSINI_SOLDNER => 'hyperbolicCassiniSoldner', |
767
|
|
|
self::EPSG_COLOMBIA_URBAN => 'columbiaUrban', |
768
|
|
|
self::EPSG_EQUAL_EARTH => 'equalEarth', |
769
|
|
|
self::EPSG_EQUIDISTANT_CYLINDRICAL => 'equidistantCylindrical', |
770
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION => 'threeDToTwoD', |
771
|
|
|
self::EPSG_GUAM_PROJECTION => 'guamProjection', |
772
|
|
|
self::EPSG_KROVAK => 'krovak', |
773
|
|
|
self::EPSG_KROVAK_NORTH_ORIENTATED => 'krovak', |
774
|
|
|
self::EPSG_KROVAK_MODIFIED => 'krovakModified', |
775
|
|
|
self::EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED => 'krovakModified', |
776
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA => 'lambertAzimuthalEqualArea', |
777
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL => 'lambertAzimuthalEqualAreaSpherical', |
778
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_1SP => 'lambertConicConformal1SP', |
779
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_1SP_VARIANT_B => 'lambertConicConformal1SPVariantB', |
780
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM => 'lambertConicConformal2SPBelgium', |
781
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN => 'lambertConicConformal2SPMichigan', |
782
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP => 'lambertConicConformal2SP', |
783
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED => 'lambertConicConformalWestOrientated', |
784
|
|
|
self::EPSG_LAMBERT_CONIC_NEAR_CONFORMAL => 'lambertConicNearConformal', |
785
|
|
|
self::EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA => 'lambertCylindricalEqualArea', |
786
|
|
|
self::EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT => 'modifiedAzimuthalEquidistant', |
787
|
|
|
self::EPSG_OBLIQUE_STEREOGRAPHIC => 'obliqueStereographic', |
788
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_A => 'polarStereographicVariantA', |
789
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_B => 'polarStereographicVariantB', |
790
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_C => 'polarStereographicVariantC', |
791
|
|
|
self::EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR => 'popularVisualisationPseudoMercator', |
792
|
|
|
self::EPSG_SIMILARITY_TRANSFORMATION => 'similarityTransformation', |
793
|
|
|
self::EPSG_MERCATOR_VARIANT_A => 'mercatorVariantA', |
794
|
|
|
self::EPSG_MERCATOR_VARIANT_B => 'mercatorVariantB', |
795
|
|
|
self::EPSG_GEOGRAPHIC2D_OFFSETS => 'geographic2DOffsets', |
796
|
|
|
self::EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS => 'geographic2DWithHeightOffsets', |
797
|
|
|
self::EPSG_LONGITUDE_ROTATION => 'longitudeRotation', |
798
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A => 'obliqueMercatorHotineVariantA', |
799
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B => 'obliqueMercatorHotineVariantB', |
800
|
|
|
self::EPSG_TRANSVERSE_MERCATOR => 'transverseMercator', |
801
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED => 'transverseMercator', |
802
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM => 'transverseMercatorZonedGrid', |
803
|
|
|
self::EPSG_VERTICAL_OFFSET => 'verticalOffset', |
804
|
|
|
self::EPSG_VERTICAL_OFFSET_AND_SLOPE => 'verticalOffsetAndSlope', |
805
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 => 'generalPolynomial', |
806
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 => 'generalPolynomial', |
807
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 => 'reversiblePolynomial', |
808
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 => 'reversiblePolynomial', |
809
|
|
|
self::EPSG_NEW_ZEALAND_MAP_GRID => 'newZealandMapGrid', |
810
|
|
|
self::EPSG_LABORDE_OBLIQUE_MERCATOR => 'obliqueMercatorLaborde', |
811
|
|
|
self::EPSG_MADRID_TO_ED50_POLYNOMIAL => 'madridToED50Polynomial', |
812
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 => 'complexPolynomial', |
813
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 => 'complexPolynomial', |
814
|
|
|
self::EPSG_AXIS_ORDER_REVERSAL_2D => 'axisReversal', |
815
|
|
|
self::EPSG_AXIS_ORDER_REVERSAL_GEOGRAPHIC3D_HORIZONTAL => 'axisReversal', |
816
|
|
|
self::EPSG_HEIGHT_DEPTH_REVERSAL => 'heightDepthReversal', |
817
|
|
|
self::EPSG_CHANGE_OF_VERTICAL_UNIT => 'changeOfVerticalUnit', |
818
|
|
|
self::EPSG_ORDNANCE_SURVEY_NATIONAL_TRANSFORMATION => 'OSTN15', |
819
|
|
|
self::EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_OSGM_GB => 'geographic3DTo2DPlusGravityHeightOSGM15', |
820
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_OSGM_GB => 'geographic3DToGravityHeightOSGM15', |
821
|
|
|
self::EPSG_NADCON5_2D => 'NADCON5', |
822
|
|
|
self::EPSG_NADCON5_3D => 'NADCON5', |
823
|
|
|
self::EPSG_NTV2 => 'NTv2', |
824
|
|
|
self::EPSG_ZERO_TIDE_HEIGHT_TO_MEAN_TIDE_HEIGHT_EVRF2019 => 'zeroTideHeightToMeanTideHeightEVRF2019', |
825
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATION_BY_GRID_INTERPOLATION_IGN => 'geocentricTranslationByGridInterpolationIGNF', |
826
|
|
|
self::EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_GTX => 'geographic3DTo2DPlusGravityHeightGTX', |
827
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_GTX => 'geographic3DToGravityHeightGTX', |
828
|
|
|
self::EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_GTX => 'verticalOffsetGTX', |
829
|
|
|
]; |
830
|
|
|
|
831
|
|
|
public static function getFunctionName(string $srid): string |
832
|
|
|
{ |
833
|
|
|
return self::METHOD_CODE_TO_IMPLEMENTATION_LOOKUP[$srid]; |
834
|
|
|
} |
835
|
|
|
} |
836
|
|
|
|