|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
/** |
|
4
|
|
|
* PHPCoord. |
|
5
|
|
|
* |
|
6
|
|
|
* @author Doug Wright |
|
7
|
|
|
*/ |
|
8
|
|
|
declare(strict_types=1); |
|
9
|
|
|
|
|
10
|
|
|
namespace PHPCoord\CoordinateOperation; |
|
11
|
|
|
|
|
12
|
|
|
/** |
|
13
|
|
|
* @internal |
|
14
|
|
|
*/ |
|
15
|
|
|
class CoordinateOperationMethods |
|
16
|
|
|
{ |
|
17
|
|
|
/** |
|
18
|
|
|
* Abridged Molodensky |
|
19
|
|
|
* This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
|
20
|
|
|
* systems, modelled as a set of geocentric translations. |
|
21
|
|
|
*/ |
|
22
|
|
|
public const EPSG_ABRIDGED_MOLODENSKY = 'urn:ogc:def:method:EPSG::9605'; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* Affine geometric transformation. |
|
26
|
|
|
*/ |
|
27
|
|
|
public const EPSG_AFFINE_GEOMETRIC_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9623'; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* Affine parametric transformation. |
|
31
|
|
|
*/ |
|
32
|
|
|
public const EPSG_AFFINE_PARAMETRIC_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9624'; |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* Albers Equal Area. |
|
36
|
|
|
*/ |
|
37
|
|
|
public const EPSG_ALBERS_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9822'; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* American Polyconic. |
|
41
|
|
|
*/ |
|
42
|
|
|
public const EPSG_AMERICAN_POLYCONIC = 'urn:ogc:def:method:EPSG::9818'; |
|
43
|
|
|
|
|
44
|
|
|
/** |
|
45
|
|
|
* Axis Order Reversal (2D) |
|
46
|
|
|
* This is a parameter-less conversion to reverse the order of the axes of a 2D CRS. |
|
47
|
|
|
*/ |
|
48
|
|
|
public const EPSG_AXIS_ORDER_REVERSAL_2D = 'urn:ogc:def:method:EPSG::9843'; |
|
49
|
|
|
|
|
50
|
|
|
/** |
|
51
|
|
|
* Axis Order Reversal (Geographic3D horizontal) |
|
52
|
|
|
* This is a parameter-less conversion to change the order of horizontal coordinates of a geographic 3D CRS. |
|
53
|
|
|
*/ |
|
54
|
|
|
public const EPSG_AXIS_ORDER_REVERSAL_GEOGRAPHIC3D_HORIZONTAL = 'urn:ogc:def:method:EPSG::9844'; |
|
55
|
|
|
|
|
56
|
|
|
/** |
|
57
|
|
|
* Bonne. |
|
58
|
|
|
*/ |
|
59
|
|
|
public const EPSG_BONNE = 'urn:ogc:def:method:EPSG::9827'; |
|
60
|
|
|
|
|
61
|
|
|
/** |
|
62
|
|
|
* Bonne (South Orientated). |
|
63
|
|
|
*/ |
|
64
|
|
|
public const EPSG_BONNE_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9828'; |
|
65
|
|
|
|
|
66
|
|
|
/** |
|
67
|
|
|
* Cartesian Grid Offsets |
|
68
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
69
|
|
|
* coordinate values of the point in the source system. |
|
70
|
|
|
*/ |
|
71
|
|
|
public const EPSG_CARTESIAN_GRID_OFFSETS = 'urn:ogc:def:method:EPSG::9656'; |
|
72
|
|
|
|
|
73
|
|
|
/** |
|
74
|
|
|
* Cassini-Soldner. |
|
75
|
|
|
*/ |
|
76
|
|
|
public const EPSG_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9806'; |
|
77
|
|
|
|
|
78
|
|
|
/** |
|
79
|
|
|
* Change of Vertical Unit. |
|
80
|
|
|
*/ |
|
81
|
|
|
public const EPSG_CHANGE_OF_VERTICAL_UNIT = 'urn:ogc:def:method:EPSG::1104'; |
|
82
|
|
|
|
|
83
|
|
|
/** |
|
84
|
|
|
* Colombia Urban. |
|
85
|
|
|
*/ |
|
86
|
|
|
public const EPSG_COLOMBIA_URBAN = 'urn:ogc:def:method:EPSG::1052'; |
|
87
|
|
|
|
|
88
|
|
|
/** |
|
89
|
|
|
* Complex polynomial of degree 3 |
|
90
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
|
91
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 3. |
|
92
|
|
|
*/ |
|
93
|
|
|
public const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9652'; |
|
94
|
|
|
|
|
95
|
|
|
/** |
|
96
|
|
|
* Complex polynomial of degree 4 |
|
97
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
|
98
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 4. |
|
99
|
|
|
*/ |
|
100
|
|
|
public const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9653'; |
|
101
|
|
|
|
|
102
|
|
|
/** |
|
103
|
|
|
* Coordinate Frame rotation (geocentric domain) |
|
104
|
|
|
* This method is a specific case of the Molodensky-Badekas (CF) method (code 1034) in which the evaluation point |
|
105
|
|
|
* is at the geocentre with coordinate values of zero. Note the analogy with the Position Vector method (code 1033) |
|
106
|
|
|
* but beware of the differences! |
|
107
|
|
|
*/ |
|
108
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1032'; |
|
109
|
|
|
|
|
110
|
|
|
/** |
|
111
|
|
|
* Coordinate Frame rotation (geog2D domain) |
|
112
|
|
|
* Note the analogy with the Position Vector tfm (code 9606) but beware of the differences! The Position Vector |
|
113
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032 and 1038 for similar tfms operating |
|
114
|
|
|
* between other CRS types. |
|
115
|
|
|
*/ |
|
116
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9607'; |
|
117
|
|
|
|
|
118
|
|
|
/** |
|
119
|
|
|
* Coordinate Frame rotation (geog3D domain) |
|
120
|
|
|
* Note the analogy with the Position Vector tfm (code 1037) but beware of the differences! The Position Vector |
|
121
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032 and 9607 for similar tfms operating |
|
122
|
|
|
* between other CRS types. |
|
123
|
|
|
*/ |
|
124
|
|
|
public const EPSG_COORDINATE_FRAME_ROTATION_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1038'; |
|
125
|
|
|
|
|
126
|
|
|
/** |
|
127
|
|
|
* Equal Earth. |
|
128
|
|
|
*/ |
|
129
|
|
|
public const EPSG_EQUAL_EARTH = 'urn:ogc:def:method:EPSG::1078'; |
|
130
|
|
|
|
|
131
|
|
|
/** |
|
132
|
|
|
* Equidistant Cylindrical |
|
133
|
|
|
* See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
|
134
|
|
|
*/ |
|
135
|
|
|
public const EPSG_EQUIDISTANT_CYLINDRICAL = 'urn:ogc:def:method:EPSG::1028'; |
|
136
|
|
|
|
|
137
|
|
|
/** |
|
138
|
|
|
* Equidistant Cylindrical (Spherical) |
|
139
|
|
|
* See method code 1028 for ellipsoidal development. If the latitude of natural origin is at the equator, also |
|
140
|
|
|
* known as Plate Carrée. See also Pseudo Plate Carree, method code 9825. |
|
141
|
|
|
*/ |
|
142
|
|
|
public const EPSG_EQUIDISTANT_CYLINDRICAL_SPHERICAL = 'urn:ogc:def:method:EPSG::1029'; |
|
143
|
|
|
|
|
144
|
|
|
/** |
|
145
|
|
|
* General polynomial of degree 2. |
|
146
|
|
|
*/ |
|
147
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 = 'urn:ogc:def:method:EPSG::9645'; |
|
148
|
|
|
|
|
149
|
|
|
/** |
|
150
|
|
|
* General polynomial of degree 3. |
|
151
|
|
|
*/ |
|
152
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9646'; |
|
153
|
|
|
|
|
154
|
|
|
/** |
|
155
|
|
|
* General polynomial of degree 4. |
|
156
|
|
|
*/ |
|
157
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9647'; |
|
158
|
|
|
|
|
159
|
|
|
/** |
|
160
|
|
|
* General polynomial of degree 6. |
|
161
|
|
|
*/ |
|
162
|
|
|
public const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 = 'urn:ogc:def:method:EPSG::9648'; |
|
163
|
|
|
|
|
164
|
|
|
/** |
|
165
|
|
|
* Geocentric translation by Grid Interpolation (IGN). |
|
166
|
|
|
*/ |
|
167
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATION_BY_GRID_INTERPOLATION_IGN = 'urn:ogc:def:method:EPSG::1087'; |
|
168
|
|
|
|
|
169
|
|
|
/** |
|
170
|
|
|
* Geocentric translations (geocentric domain) |
|
171
|
|
|
* This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
|
172
|
|
|
* corresponding coordinates of the point in the source system. See methods 1035 and 9603 for similar tfms |
|
173
|
|
|
* operating between other CRSs types. |
|
174
|
|
|
*/ |
|
175
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1031'; |
|
176
|
|
|
|
|
177
|
|
|
/** |
|
178
|
|
|
* Geocentric translations (geog2D domain) |
|
179
|
|
|
* See methods 1031 and 1035 for similar tfms operating between other CRSs types. |
|
180
|
|
|
*/ |
|
181
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9603'; |
|
182
|
|
|
|
|
183
|
|
|
/** |
|
184
|
|
|
* Geocentric translations (geog3D domain) |
|
185
|
|
|
* See methods 1031 and 9603 for similar tfms operating between other CRSs types. |
|
186
|
|
|
*/ |
|
187
|
|
|
public const EPSG_GEOCENTRIC_TRANSLATIONS_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1035'; |
|
188
|
|
|
|
|
189
|
|
|
/** |
|
190
|
|
|
* Geocentric/topocentric conversions. |
|
191
|
|
|
*/ |
|
192
|
|
|
public const EPSG_GEOCENTRIC_TOPOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9836'; |
|
193
|
|
|
|
|
194
|
|
|
/** |
|
195
|
|
|
* Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB). |
|
196
|
|
|
*/ |
|
197
|
|
|
public const EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_OSGM_GB = 'urn:ogc:def:method:EPSG::1097'; |
|
198
|
|
|
|
|
199
|
|
|
/** |
|
200
|
|
|
* Geog3D to Geog2D+GravityRelatedHeight (gtx). |
|
201
|
|
|
*/ |
|
202
|
|
|
public const EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_GTX = 'urn:ogc:def:method:EPSG::1088'; |
|
203
|
|
|
|
|
204
|
|
|
/** |
|
205
|
|
|
* Geographic/geocentric conversions |
|
206
|
|
|
* In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
|
207
|
|
|
* 9636 to form a geographic to geographic transformation. |
|
208
|
|
|
*/ |
|
209
|
|
|
public const EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9602'; |
|
210
|
|
|
|
|
211
|
|
|
/** |
|
212
|
|
|
* Geographic/topocentric conversions. |
|
213
|
|
|
*/ |
|
214
|
|
|
public const EPSG_GEOGRAPHIC_TOPOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9837'; |
|
215
|
|
|
|
|
216
|
|
|
/** |
|
217
|
|
|
* Geographic2D offsets |
|
218
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
219
|
|
|
* coordinate values of the point in the source system. |
|
220
|
|
|
*/ |
|
221
|
|
|
public const EPSG_GEOGRAPHIC2D_OFFSETS = 'urn:ogc:def:method:EPSG::9619'; |
|
222
|
|
|
|
|
223
|
|
|
/** |
|
224
|
|
|
* Geographic2D with Height Offsets |
|
225
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
226
|
|
|
* coordinate values of the point in the source system. |
|
227
|
|
|
*/ |
|
228
|
|
|
public const EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS = 'urn:ogc:def:method:EPSG::9618'; |
|
229
|
|
|
|
|
230
|
|
|
/** |
|
231
|
|
|
* Geographic3D offsets |
|
232
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
233
|
|
|
* coordinate values of the point in the source system. |
|
234
|
|
|
*/ |
|
235
|
|
|
public const EPSG_GEOGRAPHIC3D_OFFSETS = 'urn:ogc:def:method:EPSG::9660'; |
|
236
|
|
|
|
|
237
|
|
|
/** |
|
238
|
|
|
* Geographic3D to 2D conversion. |
|
239
|
|
|
*/ |
|
240
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION = 'urn:ogc:def:method:EPSG::9659'; |
|
241
|
|
|
|
|
242
|
|
|
/** |
|
243
|
|
|
* Geographic3D to GravityRelatedHeight (NZgeoid) |
|
244
|
|
|
* EPSG initially gave this method the name "Geographic3D to GravityRelatedHeight (NZgeoid2009)". As the same file |
|
245
|
|
|
* format was retained for the 2016 geoid, date removed from the method name. |
|
246
|
|
|
*/ |
|
247
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_NZGEOID = 'urn:ogc:def:method:EPSG::1030'; |
|
248
|
|
|
|
|
249
|
|
|
/** |
|
250
|
|
|
* Geographic3D to GravityRelatedHeight (OSGM-GB) |
|
251
|
|
|
* Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS. |
|
252
|
|
|
*/ |
|
253
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_OSGM_GB = 'urn:ogc:def:method:EPSG::9663'; |
|
254
|
|
|
|
|
255
|
|
|
/** |
|
256
|
|
|
* Geographic3D to GravityRelatedHeight (gtx) |
|
257
|
|
|
* Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS. Grid file format: US NGS .gtx |
|
258
|
|
|
* (in US sometimes also referred to as 'vdatum format'). |
|
259
|
|
|
*/ |
|
260
|
|
|
public const EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_GTX = 'urn:ogc:def:method:EPSG::9665'; |
|
261
|
|
|
|
|
262
|
|
|
/** |
|
263
|
|
|
* Guam Projection |
|
264
|
|
|
* Simplified form of Oblique Azimuthal Equidistant projection method. |
|
265
|
|
|
*/ |
|
266
|
|
|
public const EPSG_GUAM_PROJECTION = 'urn:ogc:def:method:EPSG::9831'; |
|
267
|
|
|
|
|
268
|
|
|
/** |
|
269
|
|
|
* Height Depth Reversal. |
|
270
|
|
|
*/ |
|
271
|
|
|
public const EPSG_HEIGHT_DEPTH_REVERSAL = 'urn:ogc:def:method:EPSG::1068'; |
|
272
|
|
|
|
|
273
|
|
|
/** |
|
274
|
|
|
* Hotine Oblique Mercator (variant A). |
|
275
|
|
|
*/ |
|
276
|
|
|
public const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9812'; |
|
277
|
|
|
|
|
278
|
|
|
/** |
|
279
|
|
|
* Hotine Oblique Mercator (variant B). |
|
280
|
|
|
*/ |
|
281
|
|
|
public const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9815'; |
|
282
|
|
|
|
|
283
|
|
|
/** |
|
284
|
|
|
* Hyperbolic Cassini-Soldner. |
|
285
|
|
|
*/ |
|
286
|
|
|
public const EPSG_HYPERBOLIC_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9833'; |
|
287
|
|
|
|
|
288
|
|
|
/** |
|
289
|
|
|
* Krovak. |
|
290
|
|
|
*/ |
|
291
|
|
|
public const EPSG_KROVAK = 'urn:ogc:def:method:EPSG::9819'; |
|
292
|
|
|
|
|
293
|
|
|
/** |
|
294
|
|
|
* Krovak (North Orientated). |
|
295
|
|
|
*/ |
|
296
|
|
|
public const EPSG_KROVAK_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1041'; |
|
297
|
|
|
|
|
298
|
|
|
/** |
|
299
|
|
|
* Krovak Modified |
|
300
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
|
301
|
|
|
* to be a map projection. |
|
302
|
|
|
*/ |
|
303
|
|
|
public const EPSG_KROVAK_MODIFIED = 'urn:ogc:def:method:EPSG::1042'; |
|
304
|
|
|
|
|
305
|
|
|
/** |
|
306
|
|
|
* Krovak Modified (North Orientated) |
|
307
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
|
308
|
|
|
* to be a map projection. |
|
309
|
|
|
*/ |
|
310
|
|
|
public const EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1043'; |
|
311
|
|
|
|
|
312
|
|
|
/** |
|
313
|
|
|
* Laborde Oblique Mercator. |
|
314
|
|
|
*/ |
|
315
|
|
|
public const EPSG_LABORDE_OBLIQUE_MERCATOR = 'urn:ogc:def:method:EPSG::9813'; |
|
316
|
|
|
|
|
317
|
|
|
/** |
|
318
|
|
|
* Lambert Azimuthal Equal Area |
|
319
|
|
|
* This is the ellipsoidal form of the projection. |
|
320
|
|
|
*/ |
|
321
|
|
|
public const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9820'; |
|
322
|
|
|
|
|
323
|
|
|
/** |
|
324
|
|
|
* Lambert Azimuthal Equal Area (Spherical) |
|
325
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
|
326
|
|
|
* (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
|
327
|
|
|
* methods. |
|
328
|
|
|
*/ |
|
329
|
|
|
public const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL = 'urn:ogc:def:method:EPSG::1027'; |
|
330
|
|
|
|
|
331
|
|
|
/** |
|
332
|
|
|
* Lambert Conic Conformal (1SP variant B). |
|
333
|
|
|
*/ |
|
334
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_1SP_VARIANT_B = 'urn:ogc:def:method:EPSG::1102'; |
|
335
|
|
|
|
|
336
|
|
|
/** |
|
337
|
|
|
* Lambert Conic Conformal (1SP). |
|
338
|
|
|
*/ |
|
339
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_1SP = 'urn:ogc:def:method:EPSG::9801'; |
|
340
|
|
|
|
|
341
|
|
|
/** |
|
342
|
|
|
* Lambert Conic Conformal (2SP Belgium) |
|
343
|
|
|
* In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
|
344
|
|
|
* with appropriately modified parameter values. |
|
345
|
|
|
*/ |
|
346
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM = 'urn:ogc:def:method:EPSG::9803'; |
|
347
|
|
|
|
|
348
|
|
|
/** |
|
349
|
|
|
* Lambert Conic Conformal (2SP Michigan). |
|
350
|
|
|
*/ |
|
351
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN = 'urn:ogc:def:method:EPSG::1051'; |
|
352
|
|
|
|
|
353
|
|
|
/** |
|
354
|
|
|
* Lambert Conic Conformal (2SP). |
|
355
|
|
|
*/ |
|
356
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_2SP = 'urn:ogc:def:method:EPSG::9802'; |
|
357
|
|
|
|
|
358
|
|
|
/** |
|
359
|
|
|
* Lambert Conic Conformal (West Orientated). |
|
360
|
|
|
*/ |
|
361
|
|
|
public const EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED = 'urn:ogc:def:method:EPSG::9826'; |
|
362
|
|
|
|
|
363
|
|
|
/** |
|
364
|
|
|
* Lambert Conic Near-Conformal |
|
365
|
|
|
* The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
|
366
|
|
|
* series expansion of the projection formulae. |
|
367
|
|
|
*/ |
|
368
|
|
|
public const EPSG_LAMBERT_CONIC_NEAR_CONFORMAL = 'urn:ogc:def:method:EPSG::9817'; |
|
369
|
|
|
|
|
370
|
|
|
/** |
|
371
|
|
|
* Lambert Cylindrical Equal Area |
|
372
|
|
|
* This is the ellipsoidal form of the projection. |
|
373
|
|
|
*/ |
|
374
|
|
|
public const EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9835'; |
|
375
|
|
|
|
|
376
|
|
|
/** |
|
377
|
|
|
* Lambert Cylindrical Equal Area (Spherical) |
|
378
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Cylindrical Equal Area |
|
379
|
|
|
* (code 9835) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
|
380
|
|
|
* methods. |
|
381
|
|
|
*/ |
|
382
|
|
|
public const EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA_SPHERICAL = 'urn:ogc:def:method:EPSG::9834'; |
|
383
|
|
|
|
|
384
|
|
|
/** |
|
385
|
|
|
* Longitude rotation |
|
386
|
|
|
* This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
|
387
|
|
|
* value to the longitude value of the point in the source system. |
|
388
|
|
|
*/ |
|
389
|
|
|
public const EPSG_LONGITUDE_ROTATION = 'urn:ogc:def:method:EPSG::9601'; |
|
390
|
|
|
|
|
391
|
|
|
/** |
|
392
|
|
|
* Madrid to ED50 polynomial. |
|
393
|
|
|
*/ |
|
394
|
|
|
public const EPSG_MADRID_TO_ED50_POLYNOMIAL = 'urn:ogc:def:method:EPSG::9617'; |
|
395
|
|
|
|
|
396
|
|
|
/** |
|
397
|
|
|
* Mercator (Spherical). |
|
398
|
|
|
*/ |
|
399
|
|
|
public const EPSG_MERCATOR_SPHERICAL = 'urn:ogc:def:method:EPSG::1026'; |
|
400
|
|
|
|
|
401
|
|
|
/** |
|
402
|
|
|
* Mercator (variant A) |
|
403
|
|
|
* Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
|
404
|
|
|
* Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
|
405
|
|
|
* completeness in CRS labelling. |
|
406
|
|
|
*/ |
|
407
|
|
|
public const EPSG_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9804'; |
|
408
|
|
|
|
|
409
|
|
|
/** |
|
410
|
|
|
* Mercator (variant B) |
|
411
|
|
|
* Used for most nautical charts. |
|
412
|
|
|
*/ |
|
413
|
|
|
public const EPSG_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9805'; |
|
414
|
|
|
|
|
415
|
|
|
/** |
|
416
|
|
|
* Mercator (variant C). |
|
417
|
|
|
*/ |
|
418
|
|
|
public const EPSG_MERCATOR_VARIANT_C = 'urn:ogc:def:method:EPSG::1044'; |
|
419
|
|
|
|
|
420
|
|
|
/** |
|
421
|
|
|
* Modified Azimuthal Equidistant |
|
422
|
|
|
* Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
|
423
|
|
|
* distances over which these projections are used (under 800km) this modification introduces no significant error. |
|
424
|
|
|
*/ |
|
425
|
|
|
public const EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT = 'urn:ogc:def:method:EPSG::9832'; |
|
426
|
|
|
|
|
427
|
|
|
/** |
|
428
|
|
|
* Molodensky |
|
429
|
|
|
* See Abridged Molodensky. |
|
430
|
|
|
*/ |
|
431
|
|
|
public const EPSG_MOLODENSKY = 'urn:ogc:def:method:EPSG::9604'; |
|
432
|
|
|
|
|
433
|
|
|
/** |
|
434
|
|
|
* Molodensky-Badekas (CF geocentric domain) |
|
435
|
|
|
* See method codes 1039 and 9636 for this operation in other coordinate domains and method code 1061 for opposite |
|
436
|
|
|
* rotation convention in geocentric domain. |
|
437
|
|
|
*/ |
|
438
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1034'; |
|
439
|
|
|
|
|
440
|
|
|
/** |
|
441
|
|
|
* Molodensky-Badekas (CF geog2D domain) |
|
442
|
|
|
* See method codes 1034 and 1039 for this operation in other coordinate domains and method code 1063 for the |
|
443
|
|
|
* opposite rotation convention in geographic 2D domain. |
|
444
|
|
|
*/ |
|
445
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9636'; |
|
446
|
|
|
|
|
447
|
|
|
/** |
|
448
|
|
|
* Molodensky-Badekas (CF geog3D domain) |
|
449
|
|
|
* See method codes 1034 and 9636 for this operation in other coordinate domains and method code 1062 for opposite |
|
450
|
|
|
* rotation convention in geographic 3D domain. |
|
451
|
|
|
*/ |
|
452
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_CF_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1039'; |
|
453
|
|
|
|
|
454
|
|
|
/** |
|
455
|
|
|
* Molodensky-Badekas (PV geocentric domain) |
|
456
|
|
|
* See method codes 1062 and 1063 for this operation in other coordinate domains and method code 1034 for opposite |
|
457
|
|
|
* rotation convention in geocentric domain. |
|
458
|
|
|
*/ |
|
459
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1061'; |
|
460
|
|
|
|
|
461
|
|
|
/** |
|
462
|
|
|
* Molodensky-Badekas (PV geog2D domain) |
|
463
|
|
|
* See method codes 1061 and 1062 for this operation in other coordinate domains and method code 9636 for opposite |
|
464
|
|
|
* rotation in geographic 2D domain. |
|
465
|
|
|
*/ |
|
466
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::1063'; |
|
467
|
|
|
|
|
468
|
|
|
/** |
|
469
|
|
|
* Molodensky-Badekas (PV geog3D domain) |
|
470
|
|
|
* See method codes 1061 and 1063 for this operation in other coordinate domains and method code 1039 for opposite |
|
471
|
|
|
* rotation convention in geographic 3D domain. |
|
472
|
|
|
*/ |
|
473
|
|
|
public const EPSG_MOLODENSKY_BADEKAS_PV_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1062'; |
|
474
|
|
|
|
|
475
|
|
|
/** |
|
476
|
|
|
* NADCON5 (2D) |
|
477
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation. Input |
|
478
|
|
|
* expects longitudes to be positive east in range 0-360° (0° = Greenwich). |
|
479
|
|
|
*/ |
|
480
|
|
|
public const EPSG_NADCON5_2D = 'urn:ogc:def:method:EPSG::1074'; |
|
481
|
|
|
|
|
482
|
|
|
/** |
|
483
|
|
|
* NADCON5 (3D) |
|
484
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation. Input |
|
485
|
|
|
* expects longitudes to be positive east in range 0-360° (0° = Greenwich). |
|
486
|
|
|
*/ |
|
487
|
|
|
public const EPSG_NADCON5_3D = 'urn:ogc:def:method:EPSG::1075'; |
|
488
|
|
|
|
|
489
|
|
|
/** |
|
490
|
|
|
* NTv2 |
|
491
|
|
|
* Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation. Supersedes |
|
492
|
|
|
* NTv1 (transformation method code 9614). Input expects longitudes to be positive west. |
|
493
|
|
|
*/ |
|
494
|
|
|
public const EPSG_NTV2 = 'urn:ogc:def:method:EPSG::9615'; |
|
495
|
|
|
|
|
496
|
|
|
/** |
|
497
|
|
|
* New Zealand Map Grid. |
|
498
|
|
|
*/ |
|
499
|
|
|
public const EPSG_NEW_ZEALAND_MAP_GRID = 'urn:ogc:def:method:EPSG::9811'; |
|
500
|
|
|
|
|
501
|
|
|
/** |
|
502
|
|
|
* Oblique Stereographic |
|
503
|
|
|
* This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
|
504
|
|
|
* Projections - A Working Manual" by John P. Snyder. |
|
505
|
|
|
*/ |
|
506
|
|
|
public const EPSG_OBLIQUE_STEREOGRAPHIC = 'urn:ogc:def:method:EPSG::9809'; |
|
507
|
|
|
|
|
508
|
|
|
/** |
|
509
|
|
|
* Ordnance Survey National Transformation |
|
510
|
|
|
* Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
|
511
|
|
|
* an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
|
512
|
|
|
*/ |
|
513
|
|
|
public const EPSG_ORDNANCE_SURVEY_NATIONAL_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9633'; |
|
514
|
|
|
|
|
515
|
|
|
/** |
|
516
|
|
|
* Orthographic |
|
517
|
|
|
* If the natural origin of the projection is at the topocentric origin, this is a special case of the Vertical |
|
518
|
|
|
* Perspective (orthographic case) (method code 9839) in which the ellipsoid height of all mapped points is zero (h |
|
519
|
|
|
* = 0). |
|
520
|
|
|
*/ |
|
521
|
|
|
public const EPSG_ORTHOGRAPHIC = 'urn:ogc:def:method:EPSG::9840'; |
|
522
|
|
|
|
|
523
|
|
|
/** |
|
524
|
|
|
* Point motion (ellipsoidal). |
|
525
|
|
|
*/ |
|
526
|
|
|
public const EPSG_POINT_MOTION_ELLIPSOIDAL = 'urn:ogc:def:method:EPSG::1067'; |
|
527
|
|
|
|
|
528
|
|
|
/** |
|
529
|
|
|
* Point motion (geocentric Cartesian). |
|
530
|
|
|
*/ |
|
531
|
|
|
public const EPSG_POINT_MOTION_GEOCENTRIC_CARTESIAN = 'urn:ogc:def:method:EPSG::1064'; |
|
532
|
|
|
|
|
533
|
|
|
/** |
|
534
|
|
|
* Polar Stereographic (variant A) |
|
535
|
|
|
* Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
|
536
|
|
|
*/ |
|
537
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_A = 'urn:ogc:def:method:EPSG::9810'; |
|
538
|
|
|
|
|
539
|
|
|
/** |
|
540
|
|
|
* Polar Stereographic (variant B). |
|
541
|
|
|
*/ |
|
542
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_B = 'urn:ogc:def:method:EPSG::9829'; |
|
543
|
|
|
|
|
544
|
|
|
/** |
|
545
|
|
|
* Polar Stereographic (variant C). |
|
546
|
|
|
*/ |
|
547
|
|
|
public const EPSG_POLAR_STEREOGRAPHIC_VARIANT_C = 'urn:ogc:def:method:EPSG::9830'; |
|
548
|
|
|
|
|
549
|
|
|
/** |
|
550
|
|
|
* Popular Visualisation Pseudo Mercator |
|
551
|
|
|
* Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
|
552
|
|
|
*/ |
|
553
|
|
|
public const EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR = 'urn:ogc:def:method:EPSG::1024'; |
|
554
|
|
|
|
|
555
|
|
|
/** |
|
556
|
|
|
* Position Vector transformation (geocentric domain) |
|
557
|
|
|
* This method is a specific case of the Molodensky-Badekas (PV) method (code 1061) in which the evaluation point |
|
558
|
|
|
* is the geocentre with coordinate values of zero. Note the analogy with the Coordinate Frame method (code 1032) |
|
559
|
|
|
* but beware of the differences! |
|
560
|
|
|
*/ |
|
561
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1033'; |
|
562
|
|
|
|
|
563
|
|
|
/** |
|
564
|
|
|
* Position Vector transformation (geog2D domain) |
|
565
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 9607) but beware of the differences! The Position |
|
566
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033 and 1037 for similar tfms |
|
567
|
|
|
* operating between other CRS types. |
|
568
|
|
|
*/ |
|
569
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9606'; |
|
570
|
|
|
|
|
571
|
|
|
/** |
|
572
|
|
|
* Position Vector transformation (geog3D domain) |
|
573
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 1038) but beware of the differences! The Position |
|
574
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033 and 9606 for similar tfms |
|
575
|
|
|
* operating between other CRS types. |
|
576
|
|
|
*/ |
|
577
|
|
|
public const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG3D_DOMAIN = 'urn:ogc:def:method:EPSG::1037'; |
|
578
|
|
|
|
|
579
|
|
|
/** |
|
580
|
|
|
* Pseudo Plate Carree |
|
581
|
|
|
* Used only for depiction of graticule (latitude/longitude) coordinates on a computer display. The axes units are |
|
582
|
|
|
* decimal degrees and of variable scale. The origin is at Lat = 0, Long = 0. See Equidistant Cylindrical, code |
|
583
|
|
|
* 1029, for proper Plate Carrée. |
|
584
|
|
|
*/ |
|
585
|
|
|
public const EPSG_PSEUDO_PLATE_CARREE = 'urn:ogc:def:method:EPSG::9825'; |
|
586
|
|
|
|
|
587
|
|
|
/** |
|
588
|
|
|
* Reversible polynomial of degree 13. |
|
589
|
|
|
*/ |
|
590
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 = 'urn:ogc:def:method:EPSG::9654'; |
|
591
|
|
|
|
|
592
|
|
|
/** |
|
593
|
|
|
* Reversible polynomial of degree 2 |
|
594
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
|
595
|
|
|
*/ |
|
596
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_2 = 'urn:ogc:def:method:EPSG::9649'; |
|
597
|
|
|
|
|
598
|
|
|
/** |
|
599
|
|
|
* Reversible polynomial of degree 3 |
|
600
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
|
601
|
|
|
*/ |
|
602
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9650'; |
|
603
|
|
|
|
|
604
|
|
|
/** |
|
605
|
|
|
* Reversible polynomial of degree 4 |
|
606
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
|
607
|
|
|
*/ |
|
608
|
|
|
public const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9651'; |
|
609
|
|
|
|
|
610
|
|
|
/** |
|
611
|
|
|
* Similarity transformation |
|
612
|
|
|
* Defined for two-dimensional coordinate systems. |
|
613
|
|
|
*/ |
|
614
|
|
|
public const EPSG_SIMILARITY_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9621'; |
|
615
|
|
|
|
|
616
|
|
|
/** |
|
617
|
|
|
* Swiss Oblique Cylindrical |
|
618
|
|
|
* Can be accommodated by Oblique Mercator method (code 9815), for which this method is an approximation (see BfL |
|
619
|
|
|
* document swissprojectionen.pdf at www.swisstopo.com). |
|
620
|
|
|
*/ |
|
621
|
|
|
public const EPSG_SWISS_OBLIQUE_CYLINDRICAL = 'urn:ogc:def:method:EPSG::9814'; |
|
622
|
|
|
|
|
623
|
|
|
/** |
|
624
|
|
|
* Time-dependent Coordinate Frame rotation (geocen) |
|
625
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1053) but beware of the |
|
626
|
|
|
* differences! The Position Vector convention is used by IAG. See method codes 1057 and 1058 for similar methods |
|
627
|
|
|
* operating between other CRS types. |
|
628
|
|
|
*/ |
|
629
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1056'; |
|
630
|
|
|
|
|
631
|
|
|
/** |
|
632
|
|
|
* Time-dependent Coordinate Frame rotation (geog2D) |
|
633
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1054) but beware of the |
|
634
|
|
|
* differences! The Position Vector convention is used by IAG. See methods 1056 and 1058 for similar tfms |
|
635
|
|
|
* operating between other CRS types. |
|
636
|
|
|
*/ |
|
637
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOG2D = 'urn:ogc:def:method:EPSG::1057'; |
|
638
|
|
|
|
|
639
|
|
|
/** |
|
640
|
|
|
* Time-dependent Coordinate Frame rotation (geog3D) |
|
641
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1055) but beware of the |
|
642
|
|
|
* differences! The Position Vector convention is used by IAG. See method codes 1056 and 1057 for similar methods |
|
643
|
|
|
* operating between other CRS types. |
|
644
|
|
|
*/ |
|
645
|
|
|
public const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOG3D = 'urn:ogc:def:method:EPSG::1058'; |
|
646
|
|
|
|
|
647
|
|
|
/** |
|
648
|
|
|
* Time-dependent Position Vector tfm (geocentric) |
|
649
|
|
|
* Note the analogy with the Time-dependent Coordinate Frame rotation (code 1056) but beware of the differences! |
|
650
|
|
|
* The Position Vector convention is used by IAG. See method codes 1054 and 1055 for similar methods operating |
|
651
|
|
|
* between other CRS types. |
|
652
|
|
|
*/ |
|
653
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC = 'urn:ogc:def:method:EPSG::1053'; |
|
654
|
|
|
|
|
655
|
|
|
/** |
|
656
|
|
|
* Time-dependent Position Vector tfm (geog2D) |
|
657
|
|
|
* Note the analogy with the Time-dependent Coordinate Frame rotation (code 1057) but beware of the differences! |
|
658
|
|
|
* The Position Vector convention is used by IAG. See method codes 1053 and 1055 for similar methods operating |
|
659
|
|
|
* between other CRS types. |
|
660
|
|
|
*/ |
|
661
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOG2D = 'urn:ogc:def:method:EPSG::1054'; |
|
662
|
|
|
|
|
663
|
|
|
/** |
|
664
|
|
|
* Time-dependent Position Vector tfm (geog3D) |
|
665
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 1058) but beware of the differences! The Position |
|
666
|
|
|
* Vector convention is used by IAG. See method codes 1053 and 1054 for similar methods operating between other CRS |
|
667
|
|
|
* types. |
|
668
|
|
|
*/ |
|
669
|
|
|
public const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOG3D = 'urn:ogc:def:method:EPSG::1055'; |
|
670
|
|
|
|
|
671
|
|
|
/** |
|
672
|
|
|
* Time-specific Coordinate Frame rotation (geocen) |
|
673
|
|
|
* Note the analogy with the Time-specific Position Vector method (code 1065) but beware of the differences! |
|
674
|
|
|
*/ |
|
675
|
|
|
public const EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1066'; |
|
676
|
|
|
|
|
677
|
|
|
/** |
|
678
|
|
|
* Time-specific Position Vector transform (geocen) |
|
679
|
|
|
* Note the analogy with the Time-specifc Coordinate Frame method (code 1066) but beware of the differences! |
|
680
|
|
|
*/ |
|
681
|
|
|
public const EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN = 'urn:ogc:def:method:EPSG::1065'; |
|
682
|
|
|
|
|
683
|
|
|
/** |
|
684
|
|
|
* Transverse Mercator. |
|
685
|
|
|
*/ |
|
686
|
|
|
public const EPSG_TRANSVERSE_MERCATOR = 'urn:ogc:def:method:EPSG::9807'; |
|
687
|
|
|
|
|
688
|
|
|
/** |
|
689
|
|
|
* Transverse Mercator (South Orientated). |
|
690
|
|
|
*/ |
|
691
|
|
|
public const EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9808'; |
|
692
|
|
|
|
|
693
|
|
|
/** |
|
694
|
|
|
* Transverse Mercator Zoned Grid System |
|
695
|
|
|
* If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
|
696
|
|
|
* each zone. |
|
697
|
|
|
*/ |
|
698
|
|
|
public const EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM = 'urn:ogc:def:method:EPSG::9824'; |
|
699
|
|
|
|
|
700
|
|
|
/** |
|
701
|
|
|
* Vertical Offset |
|
702
|
|
|
* This transformation allows calculation of height (or depth) in the target system by adding the parameter value |
|
703
|
|
|
* to the height (or depth)-value of the point in the source system. |
|
704
|
|
|
*/ |
|
705
|
|
|
public const EPSG_VERTICAL_OFFSET = 'urn:ogc:def:method:EPSG::9616'; |
|
706
|
|
|
|
|
707
|
|
|
/** |
|
708
|
|
|
* Vertical Offset and Slope |
|
709
|
|
|
* This transformation allows calculation of height in the target system by applying the parameter values to the |
|
710
|
|
|
* height value of the point in the source system. |
|
711
|
|
|
*/ |
|
712
|
|
|
public const EPSG_VERTICAL_OFFSET_AND_SLOPE = 'urn:ogc:def:method:EPSG::1046'; |
|
713
|
|
|
|
|
714
|
|
|
/** |
|
715
|
|
|
* Vertical Offset by Grid Interpolation (NZLVD). |
|
716
|
|
|
*/ |
|
717
|
|
|
public const EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_NZLVD = 'urn:ogc:def:method:EPSG::1071'; |
|
718
|
|
|
|
|
719
|
|
|
/** |
|
720
|
|
|
* Vertical Offset by Grid Interpolation (gtx). |
|
721
|
|
|
*/ |
|
722
|
|
|
public const EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_GTX = 'urn:ogc:def:method:EPSG::1084'; |
|
723
|
|
|
|
|
724
|
|
|
/** |
|
725
|
|
|
* Vertical Perspective |
|
726
|
|
|
* For a viewing point height approaching or at infinity, see the Vertical Perspective (orthographic case) (method |
|
727
|
|
|
* code 9839). |
|
728
|
|
|
*/ |
|
729
|
|
|
public const EPSG_VERTICAL_PERSPECTIVE = 'urn:ogc:def:method:EPSG::9838'; |
|
730
|
|
|
|
|
731
|
|
|
/** |
|
732
|
|
|
* Vertical Perspective (Orthographic case) |
|
733
|
|
|
* This is a special case of the general Vertical Perspective (method code 9838) in which the viewing point at |
|
734
|
|
|
* infinity. |
|
735
|
|
|
*/ |
|
736
|
|
|
public const EPSG_VERTICAL_PERSPECTIVE_ORTHOGRAPHIC_CASE = 'urn:ogc:def:method:EPSG::9839'; |
|
737
|
|
|
|
|
738
|
|
|
/** |
|
739
|
|
|
* zero-tide height to mean-tide height (EVRF2019) |
|
740
|
|
|
* The offset of -0.08593 is applied to force EVRF2019 mean-tide height to be equal to EVRF2019 height at the |
|
741
|
|
|
* EVRF2019 nominal origin at Amsterdams Peil. |
|
742
|
|
|
*/ |
|
743
|
|
|
public const EPSG_ZERO_TIDE_HEIGHT_TO_MEAN_TIDE_HEIGHT_EVRF2019 = 'urn:ogc:def:method:EPSG::1107'; |
|
744
|
|
|
|
|
745
|
|
|
private const METHOD_CODE_TO_IMPLEMENTATION_LOOKUP = [ |
|
746
|
|
|
self::EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS => 'geographicGeocentric', |
|
747
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN => 'geocentricTranslation', |
|
748
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN => 'geocentricTranslation', |
|
749
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN => 'coordinateFrameRotation', |
|
750
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN => 'coordinateFrameRotation', |
|
751
|
|
|
self::EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeDependentCoordinateFrameRotation', |
|
752
|
|
|
self::EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeSpecificCoordinateFrameRotation', |
|
753
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN => 'positionVectorTransformation', |
|
754
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN => 'positionVectorTransformation', |
|
755
|
|
|
self::EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC => 'timeDependentPositionVectorTransformation', |
|
756
|
|
|
self::EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN => 'timeSpecificPositionVectorTransformation', |
|
757
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN => 'coordinateFrameMolodenskyBadekas', |
|
758
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN => 'positionVectorMolodenskyBadekas', |
|
759
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN => 'positionVectorMolodenskyBadekas', |
|
760
|
|
|
self::EPSG_AFFINE_PARAMETRIC_TRANSFORMATION => 'affineParametricTransform', |
|
761
|
|
|
self::EPSG_ALBERS_EQUAL_AREA => 'albersEqualArea', |
|
762
|
|
|
self::EPSG_AMERICAN_POLYCONIC => 'americanPolyconic', |
|
763
|
|
|
self::EPSG_BONNE_SOUTH_ORIENTATED => 'bonneSouthOrientated', |
|
764
|
|
|
self::EPSG_CARTESIAN_GRID_OFFSETS => 'offsets', |
|
765
|
|
|
self::EPSG_CASSINI_SOLDNER => 'cassiniSoldner', |
|
766
|
|
|
self::EPSG_HYPERBOLIC_CASSINI_SOLDNER => 'hyperbolicCassiniSoldner', |
|
767
|
|
|
self::EPSG_COLOMBIA_URBAN => 'columbiaUrban', |
|
768
|
|
|
self::EPSG_EQUAL_EARTH => 'equalEarth', |
|
769
|
|
|
self::EPSG_EQUIDISTANT_CYLINDRICAL => 'equidistantCylindrical', |
|
770
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION => 'threeDToTwoD', |
|
771
|
|
|
self::EPSG_GUAM_PROJECTION => 'guamProjection', |
|
772
|
|
|
self::EPSG_KROVAK => 'krovak', |
|
773
|
|
|
self::EPSG_KROVAK_NORTH_ORIENTATED => 'krovak', |
|
774
|
|
|
self::EPSG_KROVAK_MODIFIED => 'krovakModified', |
|
775
|
|
|
self::EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED => 'krovakModified', |
|
776
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA => 'lambertAzimuthalEqualArea', |
|
777
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL => 'lambertAzimuthalEqualAreaSpherical', |
|
778
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_1SP => 'lambertConicConformal1SP', |
|
779
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_1SP_VARIANT_B => 'lambertConicConformal1SPVariantB', |
|
780
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM => 'lambertConicConformal2SPBelgium', |
|
781
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN => 'lambertConicConformal2SPMichigan', |
|
782
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP => 'lambertConicConformal2SP', |
|
783
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED => 'lambertConicConformalWestOrientated', |
|
784
|
|
|
self::EPSG_LAMBERT_CONIC_NEAR_CONFORMAL => 'lambertConicNearConformal', |
|
785
|
|
|
self::EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA => 'lambertCylindricalEqualArea', |
|
786
|
|
|
self::EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT => 'modifiedAzimuthalEquidistant', |
|
787
|
|
|
self::EPSG_OBLIQUE_STEREOGRAPHIC => 'obliqueStereographic', |
|
788
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_A => 'polarStereographicVariantA', |
|
789
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_B => 'polarStereographicVariantB', |
|
790
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_C => 'polarStereographicVariantC', |
|
791
|
|
|
self::EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR => 'popularVisualisationPseudoMercator', |
|
792
|
|
|
self::EPSG_SIMILARITY_TRANSFORMATION => 'similarityTransformation', |
|
793
|
|
|
self::EPSG_MERCATOR_VARIANT_A => 'mercatorVariantA', |
|
794
|
|
|
self::EPSG_MERCATOR_VARIANT_B => 'mercatorVariantB', |
|
795
|
|
|
self::EPSG_GEOGRAPHIC2D_OFFSETS => 'geographic2DOffsets', |
|
796
|
|
|
self::EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS => 'geographic2DWithHeightOffsets', |
|
797
|
|
|
self::EPSG_LONGITUDE_ROTATION => 'longitudeRotation', |
|
798
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A => 'obliqueMercatorHotineVariantA', |
|
799
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B => 'obliqueMercatorHotineVariantB', |
|
800
|
|
|
self::EPSG_TRANSVERSE_MERCATOR => 'transverseMercator', |
|
801
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED => 'transverseMercator', |
|
802
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM => 'transverseMercatorZonedGrid', |
|
803
|
|
|
self::EPSG_VERTICAL_OFFSET => 'verticalOffset', |
|
804
|
|
|
self::EPSG_VERTICAL_OFFSET_AND_SLOPE => 'verticalOffsetAndSlope', |
|
805
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 => 'generalPolynomial', |
|
806
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 => 'generalPolynomial', |
|
807
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 => 'reversiblePolynomial', |
|
808
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 => 'reversiblePolynomial', |
|
809
|
|
|
self::EPSG_NEW_ZEALAND_MAP_GRID => 'newZealandMapGrid', |
|
810
|
|
|
self::EPSG_LABORDE_OBLIQUE_MERCATOR => 'obliqueMercatorLaborde', |
|
811
|
|
|
self::EPSG_MADRID_TO_ED50_POLYNOMIAL => 'madridToED50Polynomial', |
|
812
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 => 'complexPolynomial', |
|
813
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 => 'complexPolynomial', |
|
814
|
|
|
self::EPSG_AXIS_ORDER_REVERSAL_2D => 'axisReversal', |
|
815
|
|
|
self::EPSG_AXIS_ORDER_REVERSAL_GEOGRAPHIC3D_HORIZONTAL => 'axisReversal', |
|
816
|
|
|
self::EPSG_HEIGHT_DEPTH_REVERSAL => 'heightDepthReversal', |
|
817
|
|
|
self::EPSG_CHANGE_OF_VERTICAL_UNIT => 'changeOfVerticalUnit', |
|
818
|
|
|
self::EPSG_ORDNANCE_SURVEY_NATIONAL_TRANSFORMATION => 'OSTN15', |
|
819
|
|
|
self::EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_OSGM_GB => 'geographic3DTo2DPlusGravityHeightOSGM15', |
|
820
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_OSGM_GB => 'geographic3DToGravityHeightOSGM15', |
|
821
|
|
|
self::EPSG_NADCON5_2D => 'NADCON5', |
|
822
|
|
|
self::EPSG_NADCON5_3D => 'NADCON5', |
|
823
|
|
|
self::EPSG_NTV2 => 'NTv2', |
|
824
|
|
|
self::EPSG_ZERO_TIDE_HEIGHT_TO_MEAN_TIDE_HEIGHT_EVRF2019 => 'zeroTideHeightToMeanTideHeightEVRF2019', |
|
825
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATION_BY_GRID_INTERPOLATION_IGN => 'geocentricTranslationByGridInterpolationIGNF', |
|
826
|
|
|
self::EPSG_GEOG3D_TO_GEOG2D_PLUS_GRAVITYRELATEDHEIGHT_GTX => 'geographic3DTo2DPlusGravityHeightGTX', |
|
827
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_GRAVITYRELATEDHEIGHT_GTX => 'geographic3DToGravityHeightGTX', |
|
828
|
|
|
self::EPSG_VERTICAL_OFFSET_BY_GRID_INTERPOLATION_GTX => 'verticalOffsetGTX', |
|
829
|
|
|
]; |
|
830
|
|
|
|
|
831
|
|
|
public static function getFunctionName(string $srid): string |
|
832
|
|
|
{ |
|
833
|
|
|
return self::METHOD_CODE_TO_IMPLEMENTATION_LOOKUP[$srid]; |
|
834
|
|
|
} |
|
835
|
|
|
} |
|
836
|
|
|
|