Passed
Push — master ( 0a16ff...1038d1 )
by Doug
28:57
created

ProjectedPoint::columbiaUrban()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 30
Code Lines 17

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 18
CRAP Score 1

Importance

Changes 0
Metric Value
cc 1
eloc 17
c 0
b 0
f 0
nc 1
nop 6
dl 0
loc 30
ccs 18
cts 18
cp 1
crap 1
rs 9.7
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use function count;
19
20
use DateTime;
21
use DateTimeImmutable;
22
use DateTimeInterface;
23
24
use function hypot;
25
use function implode;
26
use function is_nan;
27
use function log;
28
29
use const M_E;
30
use const M_PI;
31
use const M_PI_2;
32
33
use function max;
34
35
use PHPCoord\CoordinateOperation\AutoConversion;
36
use PHPCoord\CoordinateOperation\ComplexNumber;
37
use PHPCoord\CoordinateOperation\ConvertiblePoint;
38
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
39
use PHPCoord\CoordinateReferenceSystem\CoordinateReferenceSystem;
40
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
41
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
42
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
43
use PHPCoord\CoordinateSystem\Axis;
44
use PHPCoord\CoordinateSystem\Cartesian;
45
use PHPCoord\Exception\InvalidAxesException;
46
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
47
use PHPCoord\Exception\UnknownAxisException;
48
use PHPCoord\UnitOfMeasure\Angle\Angle;
49
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
50
use PHPCoord\UnitOfMeasure\Angle\Degree;
51
use PHPCoord\UnitOfMeasure\Angle\Radian;
52
use PHPCoord\UnitOfMeasure\Length\Length;
53
use PHPCoord\UnitOfMeasure\Length\Metre;
54
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
55
use PHPCoord\UnitOfMeasure\Scale\Scale;
56
use PHPCoord\UnitOfMeasure\Scale\Unity;
57
58
use function sin;
59
use function sinh;
60
use function sqrt;
61
use function substr;
62
use function tan;
63
use function tanh;
64
65
/**
66
 * Coordinate representing a point on a map projection.
67
 */
68
class ProjectedPoint extends Point implements ConvertiblePoint
69
{
70
    use AutoConversion {
71
        convert as protected autoConvert;
72
    }
73
74
    /**
75
     * Easting.
76
     */
77
    protected Length $easting;
78
79
    /**
80
     * Northing.
81
     */
82
    protected Length $northing;
83
84
    /**
85
     * Westing.
86
     */
87
    protected Length $westing;
88
89
    /**
90
     * Southing.
91
     */
92
    protected Length $southing;
93
94
    /**
95
     * Height.
96
     */
97
    protected ?Length $height;
98
99
    /**
100
     * Coordinate reference system.
101
     */
102
    protected Projected $crs;
103
104
    /**
105
     * Coordinate epoch (date for which the specified coordinates represented this point).
106
     */
107
    protected ?DateTimeImmutable $epoch;
108
109 5119
    protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height)
110
    {
111 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) {
112
            throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height');
113
        }
114
115 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) {
116
            throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given');
117
        }
118
119 5119
        $this->crs = $crs;
120
121 5119
        $eastingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::EASTING);
122 5119
        $westingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::WESTING);
123 5119
        $northingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::NORTHING);
124 5119
        $southingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::SOUTHING);
125
126 5119
        if ($easting && $eastingAxis) {
127 4948
            $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId());
128 4948
            $this->westing = $this->easting->multiply(-1);
129 171
        } elseif ($westing && $westingAxis) {
130 162
            $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId());
131 162
            $this->easting = $this->westing->multiply(-1);
132
        } else {
133 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
134
        }
135
136 5110
        if ($northing && $northingAxis) {
137 4975
            $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId());
138 4975
            $this->southing = $this->northing->multiply(-1);
139 135
        } elseif ($southing && $southingAxis) {
140 126
            $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId());
141 126
            $this->northing = $this->southing->multiply(-1);
142
        } else {
143 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
144
        }
145
146 5101
        if ($epoch instanceof DateTime) {
147 18
            $epoch = DateTimeImmutable::createFromMutable($epoch);
148
        }
149 5101
        $this->epoch = $epoch;
150
151 5101
        $this->height = $height;
152
    }
153
154 4894
    public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
155
    {
156 4894
        return match ($crs->getSRID()) {
157 4894
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

157
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

157
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
158 4841
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

158
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

158
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
159 4832
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

159
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

159
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
160 4894
            default => new static($crs, $easting, $northing, $westing, $southing, $epoch, $height),
161
        };
162
    }
163
164 509
    public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
165
    {
166 509
        return static::create($crs, $easting, $northing, null, null, $epoch, $height);
167
    }
168
169 27
    public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
170
    {
171 27
        return static::create($crs, null, $northing, $westing, null, $epoch, $height);
172
    }
173
174 54
    public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
175
    {
176 54
        return static::create($crs, null, null, $westing, $southing, $epoch, $height);
177
    }
178
179 2527
    public function getEasting(): Length
180
    {
181 2527
        return $this->easting;
182
    }
183
184 2545
    public function getNorthing(): Length
185
    {
186 2545
        return $this->northing;
187
    }
188
189 90
    public function getWesting(): Length
190
    {
191 90
        return $this->westing;
192
    }
193
194 72
    public function getSouthing(): Length
195
    {
196 72
        return $this->southing;
197
    }
198
199 9
    public function getHeight(): ?Length
200
    {
201 9
        return $this->height;
202
    }
203
204 280
    public function getCRS(): Projected
205
    {
206 280
        return $this->crs;
207
    }
208
209 51
    public function getCoordinateEpoch(): ?DateTimeImmutable
210
    {
211 51
        return $this->epoch;
212
    }
213
214
    /**
215
     * Calculate distance between two points.
216
     * Because this is a simple grid, we can use Pythagoras.
217
     */
218 63
    public function calculateDistance(Point $to): Length
219
    {
220
        try {
221 63
            if ($to instanceof ConvertiblePoint) {
222 63
                $to = $to->convert($this->crs);
223
            }
224
        } finally {
225 63
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
226 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
227
            }
228
229
            /* @var ProjectedPoint $to */
230 54
            return new Metre(
231 54
                sqrt(
232 54
                    ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 +
233 54
                    ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2
234
                )
235
            );
236
        }
237
    }
238
239 54
    public function asGeographicPoint(): GeographicPoint
240
    {
241 54
        return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
0 ignored issues
show
Bug Best Practice introduced by
The expression return $this->performOpe...rs->getBaseCRS(), true) returns the type PHPCoord\Point which includes types incompatible with the type-hinted return PHPCoord\GeographicPoint.
Loading history...
242
    }
243
244 2062
    public function convert(CoordinateReferenceSystem $to, bool $ignoreBoundaryRestrictions = false): Point
245
    {
246 2062
        if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) {
247 1989
            return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
248
        }
249
250 91
        return $this->autoConvert($to, $ignoreBoundaryRestrictions);
251
    }
252
253 162
    public function __toString(): string
254
    {
255 162
        $values = [];
256 162
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
257 162
            if ($axis->getName() === Axis::EASTING) {
258 144
                $values[] = $this->easting;
259 162
            } elseif ($axis->getName() === Axis::NORTHING) {
260 153
                $values[] = $this->northing;
261 18
            } elseif ($axis->getName() === Axis::WESTING) {
262 18
                $values[] = $this->westing;
263 9
            } elseif ($axis->getName() === Axis::SOUTHING) {
264 9
                $values[] = $this->southing;
265
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
266
                $values[] = $this->height;
267
            } else {
268
                throw new UnknownAxisException(); // @codeCoverageIgnore
269
            }
270
        }
271
272 162
        return '(' . implode(', ', $values) . ')';
273
    }
274
275
    /**
276
     * Affine parametric transformation.
277
     */
278 9
    public function affineParametricTransform(
279
        Projected $to,
280
        Length $A0,
281
        Coefficient $A1,
282
        Coefficient $A2,
283
        Length $B0,
284
        Coefficient $B1,
285
        Coefficient $B2,
286
        bool $inReverse
287
    ): self {
288 9
        $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor
289 9
        $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor
290
291 9
        if ($inReverse) {
292
            $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue());
293
            $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D;
294
            $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D;
295
            $a1 = $B2->getValue() / $D;
296
            $a2 = -$A2->getValue() / $D;
297
            $b1 = -$B1->getValue() / $D;
298
            $b2 = $A1->getValue() / $D;
299
        } else {
300 9
            $a0 = $A0->asMetres()->getValue();
301 9
            $a1 = $A1->getValue();
302 9
            $a2 = $A2->getValue();
303 9
            $b0 = $B0->asMetres()->getValue();
304 9
            $b1 = $B1->getValue();
305 9
            $b2 = $B2->getValue();
306
        }
307
308 9
        $xt = $a0 + ($a1 * $xs) + ($a2 * $ys);
309 9
        $yt = $b0 + ($b1 * $xs) + ($b2 * $ys);
310
311 9
        return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch);
312
    }
313
314
    /**
315
     * Albers Equal Area.
316
     */
317 90
    public function albersEqualArea(
318
        Geographic2D|Geographic3D $to,
319
        Angle $latitudeOfFalseOrigin,
320
        Angle $longitudeOfFalseOrigin,
321
        Angle $latitudeOf1stStandardParallel,
322
        Angle $latitudeOf2ndStandardParallel,
323
        Length $eastingAtFalseOrigin,
324
        Length $northingAtFalseOrigin
325
    ): GeographicPoint {
326 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
327 90
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
328 90
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
329 90
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
330 90
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
331 90
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
332 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
333 90
        $e = $ellipsoid->getEccentricity();
334 90
        $e2 = $ellipsoid->getEccentricitySquared();
335 90
        $e4 = $e ** 4;
336 90
        $e6 = $e ** 6;
337
338 90
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
339 90
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
340
341 90
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
342 90
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
343 90
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
344
345 90
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
346 90
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
347 90
        $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n;
348 90
        $rhoPrime = hypot($easting, $rhoOrigin - $northing);
349 90
        $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n;
350 90
        $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e))));
351 90
        if ($n > 0) {
352 9
            $theta = atan2($easting, $rhoOrigin - $northing);
353
        } else {
354 81
            $theta = atan2(-$easting, $northing - $rhoOrigin);
355
        }
356
357 90
        $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime));
358 90
        $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n);
359
360 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
361
    }
362
363
    /**
364
     * American Polyconic.
365
     */
366 72
    public function americanPolyconic(
367
        Geographic2D|Geographic3D $to,
368
        Angle $latitudeOfNaturalOrigin,
369
        Angle $longitudeOfNaturalOrigin,
370
        Length $falseEasting,
371
        Length $falseNorthing
372
    ): GeographicPoint {
373 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
374 72
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
375 72
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
376 72
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
377 72
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
378 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
379 72
        $e = $ellipsoid->getEccentricity();
380 72
        $e2 = $ellipsoid->getEccentricitySquared();
381 72
        $e4 = $e ** 4;
382 72
        $e6 = $e ** 6;
383
384 72
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
385 72
        $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024);
386 72
        $iii = (15 * $e4 / 256 + 45 * $e6 / 1024);
387 72
        $iv = (35 * $e6 / 3072);
388
389 72
        $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin));
390
391 72
        if ($MO === $northing) {
392 9
            $latitude = 0;
393 9
            $longitude = $longitudeOrigin + $easting / $a;
394
        } else {
395 63
            $A = ($MO + $northing) / $a;
396 63
            $B = $A ** 2 + $easting ** 2 / $a ** 2;
397
398 63
            $latitude = $A;
399 63
            $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
400
            do {
401 63
                $latitudeN = $latitude;
402 63
                $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude);
403 63
                $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude);
404 63
                $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime);
405 63
                $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
406 63
            } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
407
408 63
            $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude);
409
        }
410
411 72
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
412
    }
413
414
    /**
415
     * Bonne.
416
     */
417 9
    public function bonne(
418
        Geographic2D|Geographic3D $to,
419
        Angle $latitudeOfNaturalOrigin,
420
        Angle $longitudeOfNaturalOrigin,
421
        Length $falseEasting,
422
        Length $falseNorthing
423
    ): GeographicPoint {
424 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
425 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
426 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
427 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
428 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
429 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
430 9
        $e = $ellipsoid->getEccentricity();
431 9
        $e2 = $ellipsoid->getEccentricitySquared();
432 9
        $e4 = $e ** 4;
433 9
        $e6 = $e ** 6;
434
435 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
436 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
437 9
        $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin);
438
439 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
440 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
441 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
442
443 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
444 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
445
446 9
        if ($m === 0.0) {
447
            $longitude = $longitudeOrigin; // pole
448 9
        } elseif ($latitudeOrigin >= 0) {
449 9
            $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m;
450
        } else {
451
            $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m;
452
        }
453
454 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
455
    }
456
457
    /**
458
     * Bonne South Orientated.
459
     */
460 9
    public function bonneSouthOrientated(
461
        Geographic2D|Geographic3D $to,
462
        Angle $latitudeOfNaturalOrigin,
463
        Angle $longitudeOfNaturalOrigin,
464
        Length $falseEasting,
465
        Length $falseNorthing
466
    ): GeographicPoint {
467 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
468 9
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
469 9
        $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue();
470 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
471 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
472 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
473 9
        $e = $ellipsoid->getEccentricity();
474 9
        $e2 = $ellipsoid->getEccentricitySquared();
475 9
        $e4 = $e ** 4;
476 9
        $e6 = $e ** 6;
477
478 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
479 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
480 9
        $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin);
481
482 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
483 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
484 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
485
486 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
487 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
488
489 9
        if ($m === 0.0) {
490
            $longitude = $longitudeOrigin; // pole
491 9
        } elseif ($latitudeOrigin >= 0) {
492 9
            $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m;
493
        } else {
494
            $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m;
495
        }
496
497 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
498
    }
499
500
    /**
501
     * Cartesian Grid Offsets
502
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
503
     * coordinate values of the point in the source system.
504
     */
505 9
    public function offsets(
506
        Projected $to,
507
        Length $eastingOffset,
508
        Length $northingOffset
509
    ): self {
510 9
        $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue();
511 9
        $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue();
512
513 9
        return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
514
    }
515
516
    /**
517
     * Cassini-Soldner.
518
     */
519 90
    public function cassiniSoldner(
520
        Geographic2D|Geographic3D $to,
521
        Angle $latitudeOfNaturalOrigin,
522
        Angle $longitudeOfNaturalOrigin,
523
        Length $falseEasting,
524
        Length $falseNorthing
525
    ): GeographicPoint {
526 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
527 90
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
528 90
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
529 90
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
530 90
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
531 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
532 90
        $e = $ellipsoid->getEccentricity();
533 90
        $e2 = $ellipsoid->getEccentricitySquared();
534 90
        $e4 = $e ** 4;
535 90
        $e6 = $e ** 6;
536
537 90
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
538
539 90
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
540 90
        $M = $MO + $northing;
541 90
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
542 90
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
543
544 90
        $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2);
545 90
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5;
546
547 90
        $T = tan($latitudeCentralMeridian) ** 2;
548 90
        $D = $easting / $nu;
549
550 90
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
551 90
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
552
553 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
554
    }
555
556
    /**
557
     * Hyperbolic Cassini-Soldner.
558
     */
559 9
    public function hyperbolicCassiniSoldner(
560
        Geographic2D|Geographic3D $to,
561
        Angle $latitudeOfNaturalOrigin,
562
        Angle $longitudeOfNaturalOrigin,
563
        Length $falseEasting,
564
        Length $falseNorthing
565
    ): GeographicPoint {
566 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
567 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
568 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
569 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
570 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
571 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
572 9
        $e = $ellipsoid->getEccentricity();
573 9
        $e2 = $ellipsoid->getEccentricitySquared();
574 9
        $e4 = $e ** 4;
575 9
        $e6 = $e ** 6;
576
577 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
578 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
579
580 9
        $latitude1 = $latitudeOrigin + $northing / 1567446;
581
582 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2);
583 9
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5;
584
585 9
        $qPrime = $northing ** 3 / (6 * $rho * $nu);
586 9
        $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu);
587 9
        $M = $MO + $northing + $q;
588
589 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
590 9
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
591
592 9
        $T = tan($latitudeCentralMeridian) ** 2;
593 9
        $D = $easting / $nu;
594
595 9
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
596 9
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
597
598 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
599
    }
600
601
    /**
602
     * Colombia Urban.
603
     */
604 9
    public function columbiaUrban(
605
        Geographic2D|Geographic3D $to,
606
        Angle $latitudeOfNaturalOrigin,
607
        Angle $longitudeOfNaturalOrigin,
608
        Length $falseEasting,
609
        Length $falseNorthing,
610
        Length $projectionPlaneOriginHeight
611
    ): GeographicPoint {
612 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
613 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
614 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
615 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
616 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
617 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
618 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
619 9
        $e2 = $ellipsoid->getEccentricitySquared();
620
621 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5;
622
623 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
624
625 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
626 9
        $C = 1 + $heightOrigin / $a;
627 9
        $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2)));
628
629 9
        $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2;
630 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
631 9
        $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude));
632
633 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
634
    }
635
636
    /**
637
     * Equal Earth.
638
     */
639 9
    public function equalEarth(
640
        Geographic2D|Geographic3D $to,
641
        Angle $longitudeOfNaturalOrigin,
642
        Length $falseEasting,
643
        Length $falseNorthing
644
    ): GeographicPoint {
645 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
646 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
647 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
648 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
649 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
650 9
        $e = $ellipsoid->getEccentricity();
651 9
        $e2 = $ellipsoid->getEccentricitySquared();
652 9
        $e4 = $e ** 4;
653 9
        $e6 = $e ** 6;
654
655 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
656 9
        $Rq = $a * sqrt($qP / 2);
657
658 9
        $theta = $northing / $Rq;
659
        do {
660 9
            $thetaN = $theta;
661 9
            $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2));
662 9
            $theta = $theta - $correctionFactor;
663 9
        } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA);
664
665 9
        $beta = self::asin(2 * sin($theta) / sqrt(3));
666
667 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
668 9
        $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta));
669
670 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
671
    }
672
673
    /**
674
     * Equidistant Cylindrical
675
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
676
     */
677 9
    public function equidistantCylindrical(
678
        Geographic2D|Geographic3D $to,
679
        Angle $latitudeOf1stStandardParallel,
680
        Angle $longitudeOfNaturalOrigin,
681
        Length $falseEasting,
682
        Length $falseNorthing
683
    ): GeographicPoint {
684 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
685 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
686 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
687 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
688 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
689 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
690 9
        $e = $ellipsoid->getEccentricity();
691 9
        $e2 = $ellipsoid->getEccentricitySquared();
692 9
        $e4 = $e ** 4;
693 9
        $e6 = $e ** 6;
694 9
        $e8 = $e ** 8;
695 9
        $e10 = $e ** 10;
696 9
        $e12 = $e ** 12;
697 9
        $e14 = $e ** 14;
698
699 9
        $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
700 9
        $n2 = $n ** 2;
701 9
        $n3 = $n ** 3;
702 9
        $n4 = $n ** 4;
703 9
        $n5 = $n ** 5;
704 9
        $n6 = $n ** 6;
705 9
        $n7 = $n ** 7;
706 9
        $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14));
707
708 9
        $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu)
709 9
            + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu)
710 9
            + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu)
711 9
            + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu)
712 9
            + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu)
713 9
            + (293393 / 61440 * $n6) * sin(12 * $mu)
714 9
            + (6845701 / 860160 * $n7) * sin(14 * $mu);
715
716 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel));
717
718 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
719
    }
720
721
    /**
722
     * Guam Projection
723
     * Simplified form of Oblique Azimuthal Equidistant projection method.
724
     */
725 9
    public function guamProjection(
726
        Geographic2D|Geographic3D $to,
727
        Angle $latitudeOfNaturalOrigin,
728
        Angle $longitudeOfNaturalOrigin,
729
        Length $falseEasting,
730
        Length $falseNorthing
731
    ): GeographicPoint {
732 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
733 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
734 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
735 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
736 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
737 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
738 9
        $e = $ellipsoid->getEccentricity();
739 9
        $e2 = $ellipsoid->getEccentricitySquared();
740 9
        $e4 = $e ** 4;
741 9
        $e6 = $e ** 6;
742
743 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
744 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
745 9
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
746
747 9
        $latitude = $latitudeOrigin;
748
        do {
749 9
            $latitudeN = $latitude;
750 9
            $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
751 9
            $mu = $M / ($a * $i);
752 9
            $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
753 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
754
755 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude));
756
757 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
758
    }
759
760
    /**
761
     * Krovak.
762
     */
763 36
    public function krovak(
764
        Geographic2D|Geographic3D $to,
765
        Angle $latitudeOfProjectionCentre,
766
        Angle $longitudeOfOrigin,
767
        Angle $coLatitudeOfConeAxis,
768
        Angle $latitudeOfPseudoStandardParallel,
769
        Scale $scaleFactorOnPseudoStandardParallel,
770
        Length $falseEasting,
771
        Length $falseNorthing
772
    ): GeographicPoint {
773 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
774 36
        $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
775 36
        $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
776 36
        $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
777 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
778 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
779 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
780 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
781 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
782 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
783 36
        $e = $ellipsoid->getEccentricity();
784 36
        $e2 = $ellipsoid->getEccentricitySquared();
785
786 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
787 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
788 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
789 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
790 36
        $n = sin($latitudeP);
791 36
        $rO = $kP * $A / tan($latitudeP);
792
793 36
        $r = hypot($southing, $westing) ?: 1;
794 36
        $theta = atan2($westing, $southing);
795 36
        $D = $theta / sin($latitudeP);
796 36
        $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4);
797 36
        $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D));
798 36
        $V = self::asin(cos($T) * sin($D) / cos($U));
799
800 36
        $latitude = $U;
801
        do {
802 36
            $latitudeN = $latitude;
803 36
            $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4);
804 36
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
805
806 36
        $longitude = $longitudeO + $longitudeOffset - $V / $B;
807
808 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
809
    }
810
811
    /**
812
     * Krovak Modified
813
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
814
     * to be a map projection.
815
     */
816 18
    public function krovakModified(
817
        Geographic2D|Geographic3D $to,
818
        Angle $latitudeOfProjectionCentre,
819
        Angle $longitudeOfOrigin,
820
        Angle $coLatitudeOfConeAxis,
821
        Angle $latitudeOfPseudoStandardParallel,
822
        Scale $scaleFactorOnPseudoStandardParallel,
823
        Length $falseEasting,
824
        Length $falseNorthing,
825
        Length $ordinate1OfEvaluationPoint,
826
        Length $ordinate2OfEvaluationPoint,
827
        Coefficient $C1,
828
        Coefficient $C2,
829
        Coefficient $C3,
830
        Coefficient $C4,
831
        Coefficient $C5,
832
        Coefficient $C6,
833
        Coefficient $C7,
834
        Coefficient $C8,
835
        Coefficient $C9,
836
        Coefficient $C10
837
    ): GeographicPoint {
838 18
        $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue();
839 18
        $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue();
840 18
        $c1 = $C1->asUnity()->getValue();
841 18
        $c2 = $C2->asUnity()->getValue();
842 18
        $c3 = $C3->asUnity()->getValue();
843 18
        $c4 = $C4->asUnity()->getValue();
844 18
        $c5 = $C5->asUnity()->getValue();
845 18
        $c6 = $C6->asUnity()->getValue();
846 18
        $c7 = $C7->asUnity()->getValue();
847 18
        $c8 = $C8->asUnity()->getValue();
848 18
        $c9 = $C9->asUnity()->getValue();
849 18
        $c10 = $C10->asUnity()->getValue();
850
851 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
852 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
853
854 18
        $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX;
855 18
        $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY;
856
857 18
        $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch);
858
859 18
        return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
860
    }
861
862
    /**
863
     * Lambert Azimuthal Equal Area
864
     * This is the ellipsoidal form of the projection.
865
     */
866 54
    public function lambertAzimuthalEqualArea(
867
        Geographic2D|Geographic3D $to,
868
        Angle $latitudeOfNaturalOrigin,
869
        Angle $longitudeOfNaturalOrigin,
870
        Length $falseEasting,
871
        Length $falseNorthing
872
    ): GeographicPoint {
873 54
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
874 54
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
875 54
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
876 54
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
877 54
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
878 54
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
879 54
        $e = $ellipsoid->getEccentricity();
880 54
        $e2 = $ellipsoid->getEccentricitySquared();
881 54
        $e4 = $e ** 4;
882 54
        $e6 = $e ** 6;
883
884 54
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
885 54
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
886 54
        $betaO = self::asin($qO / $qP);
887 54
        $Rq = $a * sqrt($qP / 2);
888 54
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
889 54
        $rho = hypot($easting / $D, $D * $northing) ?: 1;
890 54
        $C = 2 * self::asin($rho / (2 * $Rq));
891 54
        $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho);
892
893 54
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
894 54
        $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C));
895
896 54
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
897
    }
898
899
    /**
900
     * Lambert Azimuthal Equal Area (Spherical)
901
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
902
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
903
     * methods.
904
     */
905 9
    public function lambertAzimuthalEqualAreaSpherical(
906
        Geographic2D|Geographic3D $to,
907
        Angle $latitudeOfNaturalOrigin,
908
        Angle $longitudeOfNaturalOrigin,
909
        Length $falseEasting,
910
        Length $falseNorthing
911
    ): GeographicPoint {
912 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
913 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
914 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
915 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
916 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
917 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
918
919 9
        $rho = hypot($easting, $northing) ?: 1;
920 9
        $c = 2 * self::asin($rho / (2 * $a));
921
922 9
        $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho));
923
924 9
        if ($latitudeOrigin === 90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 90 is always false.
Loading history...
925
            $longitude = $longitudeOrigin + atan($easting / -$northing);
926 9
        } elseif ($latitudeOrigin === -90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === -90 is always false.
Loading history...
927
            $longitude = $longitudeOrigin + atan($easting / $northing);
928
        } else {
929 9
            $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c));
930 9
            $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator);
931 9
            if ($longitudeDenominator < 0) {
932 9
                $longitude += M_PI;
933
            }
934
        }
935
936 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
937
    }
938
939
    /**
940
     * Lambert Conic Conformal (1SP).
941
     */
942 180
    public function lambertConicConformal1SP(
943
        Geographic2D|Geographic3D $to,
944
        Angle $latitudeOfNaturalOrigin,
945
        Angle $longitudeOfNaturalOrigin,
946
        Scale $scaleFactorAtNaturalOrigin,
947
        Length $falseEasting,
948
        Length $falseNorthing
949
    ): GeographicPoint {
950 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
951 180
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
952 180
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
953 180
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
954 180
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
955 180
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
956 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
957 180
        $e = $ellipsoid->getEccentricity();
958 180
        $e2 = $ellipsoid->getEccentricitySquared();
959
960 180
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
961 180
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
962 180
        $n = sin($latitudeOrigin);
963 180
        $F = $mO / ($n * $tO ** $n);
964 180
        $rO = $a * $F * $tO ** $n * $scaleFactorOrigin;
965 180
        $r = hypot($easting, $rO - $northing);
966 180
        if ($n >= 0) {
967 180
            $theta = atan2($easting, $rO - $northing);
968
        } else {
969
            $r = -$r;
970
            $theta = atan2(-$easting, -($rO - $northing));
971
        }
972
973 180
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
974
975 180
        $latitude = M_PI / (2 - 2 * atan($t));
976
        do {
977 180
            $latitudeN = $latitude;
978 180
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
979 180
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
980
981 180
        $longitude = $theta / $n + $longitudeOrigin;
982
983 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
984
    }
985
986
    /**
987
     * Lambert Conic Conformal (west orientated).
988
     */
989
    public function lambertConicConformalWestOrientated(
990
        Geographic2D|Geographic3D $to,
991
        Angle $latitudeOfNaturalOrigin,
992
        Angle $longitudeOfNaturalOrigin,
993
        Scale $scaleFactorAtNaturalOrigin,
994
        Length $falseEasting,
995
        Length $falseNorthing
996
    ): GeographicPoint {
997
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
998
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
999
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1000
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1001
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1002
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1003
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1004
        $e = $ellipsoid->getEccentricity();
1005
        $e2 = $ellipsoid->getEccentricitySquared();
1006
1007
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1008
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1009
        $n = sin($latitudeOrigin);
1010
        $F = $mO / ($n * $tO ** $n);
1011
        $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin;
1012
        $r = hypot($westing, $rO - $northing);
1013
        if ($n >= 0) {
1014
            $theta = atan2($westing, $rO - $northing);
1015
        } else {
1016
            $r = -$r;
1017
            $theta = atan2(-$westing, -($rO - $northing));
1018
        }
1019
1020
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1021
1022
        $latitude = M_PI / (2 - 2 * atan($t));
1023
        do {
1024
            $latitudeN = $latitude;
1025
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1026
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1027
1028
        $longitude = $theta / $n + $longitudeOrigin;
1029
1030
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1031
    }
1032
1033
    /**
1034
     * Lambert Conic Conformal (1SP) Variant B.
1035
     */
1036
    public function lambertConicConformal1SPVariantB(
1037
        Geographic2D|Geographic3D $to,
1038
        Angle $latitudeOfNaturalOrigin,
1039
        Scale $scaleFactorAtNaturalOrigin,
1040
        Angle $latitudeOfFalseOrigin,
1041
        Angle $longitudeOfFalseOrigin,
1042
        Length $eastingAtFalseOrigin,
1043
        Length $northingAtFalseOrigin
1044
    ): GeographicPoint {
1045
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1046
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1047
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1048
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1049
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1050
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1051
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1052
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1053
        $e = $ellipsoid->getEccentricity();
1054
        $e2 = $ellipsoid->getEccentricitySquared();
1055
1056
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1057
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1058
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1059
        $n = sin($latitudeNaturalOrigin);
1060
        $F = $mO / ($n * $tO ** $n);
1061
        $rF = $a * $F * $tF ** $n * $scaleFactorOrigin;
1062
        $r = hypot($easting, $rF - $northing);
1063
        if ($n >= 0) {
1064
            $theta = atan2($easting, $rF - $northing);
1065
        } else {
1066
            $r = -$r;
1067
            $theta = atan2(-$easting, -($rF - $northing));
1068
        }
1069
1070
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1071
1072
        $latitude = M_PI / (2 - 2 * atan($t));
1073
        do {
1074
            $latitudeN = $latitude;
1075
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1076
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1077
1078
        $longitude = $theta / $n + $longitudeFalseOrigin;
1079
1080
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1081
    }
1082
1083
    /**
1084
     * Lambert Conic Conformal (2SP).
1085
     */
1086 199
    public function lambertConicConformal2SP(
1087
        Geographic2D|Geographic3D $to,
1088
        Angle $latitudeOfFalseOrigin,
1089
        Angle $longitudeOfFalseOrigin,
1090
        Angle $latitudeOf1stStandardParallel,
1091
        Angle $latitudeOf2ndStandardParallel,
1092
        Length $eastingAtFalseOrigin,
1093
        Length $northingAtFalseOrigin
1094
    ): GeographicPoint {
1095 199
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1096 199
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1097 199
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1098 199
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1099 199
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1100 199
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1101 199
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1102 199
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1103 199
        $e = $ellipsoid->getEccentricity();
1104 199
        $e2 = $ellipsoid->getEccentricitySquared();
1105
1106 199
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1107 199
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1108 199
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1109 199
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1110 199
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1111 199
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1112 199
        $F = $m1 / ($n * $t1 ** $n);
1113 199
        $rF = $a * $F * $tF ** $n;
1114 199
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1115 199
        $t = ($r / ($a * $F)) ** (1 / $n);
1116 199
        if ($n >= 0) {
1117 199
            $theta = atan2($easting, $rF - $northing);
1118
        } else {
1119
            $theta = atan2(-$easting, -($rF - $northing));
1120
        }
1121
1122 199
        $latitude = M_PI / 2 - 2 * atan($t);
1123
        do {
1124 199
            $latitudeN = $latitude;
1125 199
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1126 199
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1127
1128 199
        $longitude = $theta / $n + $lambdaOrigin;
1129
1130 199
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1131
    }
1132
1133
    /**
1134
     * Lambert Conic Conformal (2SP Michigan).
1135
     */
1136 9
    public function lambertConicConformal2SPMichigan(
1137
        Geographic2D|Geographic3D $to,
1138
        Angle $latitudeOfFalseOrigin,
1139
        Angle $longitudeOfFalseOrigin,
1140
        Angle $latitudeOf1stStandardParallel,
1141
        Angle $latitudeOf2ndStandardParallel,
1142
        Length $eastingAtFalseOrigin,
1143
        Length $northingAtFalseOrigin,
1144
        Scale $ellipsoidScalingFactor
1145
    ): GeographicPoint {
1146 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1147 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1148 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1149 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1150 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1151 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1152 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1153 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1154 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1155 9
        $e = $ellipsoid->getEccentricity();
1156 9
        $e2 = $ellipsoid->getEccentricitySquared();
1157
1158 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1159 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1160 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1161 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1162 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1163 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1164 9
        $F = $m1 / ($n * $t1 ** $n);
1165 9
        $rF = $a * $K * $F * $tF ** $n;
1166 9
        $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n);
1167 9
        $t = ($r / ($a * $K * $F)) ** (1 / $n);
1168 9
        if ($n >= 0) {
1169 9
            $theta = atan2($easting, $rF - $northing);
1170
        } else {
1171
            $theta = atan2(-$easting, -($rF - $northing));
1172
        }
1173
1174 9
        $latitude = M_PI / 2 - 2 * atan($t);
1175
        do {
1176 9
            $latitudeN = $latitude;
1177 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1178 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1179
1180 9
        $longitude = $theta / $n + $lambdaOrigin;
1181
1182 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1183
    }
1184
1185
    /**
1186
     * Lambert Conic Conformal (2SP Belgium)
1187
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1188
     * with appropriately modified parameter values.
1189
     */
1190 9
    public function lambertConicConformal2SPBelgium(
1191
        Geographic2D|Geographic3D $to,
1192
        Angle $latitudeOfFalseOrigin,
1193
        Angle $longitudeOfFalseOrigin,
1194
        Angle $latitudeOf1stStandardParallel,
1195
        Angle $latitudeOf2ndStandardParallel,
1196
        Length $eastingAtFalseOrigin,
1197
        Length $northingAtFalseOrigin
1198
    ): GeographicPoint {
1199 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1200 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1201 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1202 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1203 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1204 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1205 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1206 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1207 9
        $e = $ellipsoid->getEccentricity();
1208 9
        $e2 = $ellipsoid->getEccentricitySquared();
1209
1210 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1211 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1212 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1213 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1214 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1215 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1216 9
        $F = $m1 / ($n * $t1 ** $n);
1217 9
        $rF = $a * $F * $tF ** $n;
1218 9
        if (is_nan($rF)) {
1219 9
            $rF = 0;
1220
        }
1221 9
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1222 9
        $t = ($r / ($a * $F)) ** (1 / $n);
1223 9
        if ($n >= 0) {
1224 9
            $theta = atan2($easting, $rF - $northing);
1225
        } else {
1226
            $theta = atan2(-$easting, -($rF - $northing));
1227
        }
1228
1229 9
        $latitude = M_PI / 2 - 2 * atan($t);
1230
        do {
1231 9
            $latitudeN = $latitude;
1232 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1233 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1234
1235 9
        $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin;
1236
1237 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1238
    }
1239
1240
    /**
1241
     * Lambert Conic Near-Conformal
1242
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1243
     * series expansion of the projection formulae.
1244
     */
1245 9
    public function lambertConicNearConformal(
1246
        Geographic2D|Geographic3D $to,
1247
        Angle $latitudeOfNaturalOrigin,
1248
        Angle $longitudeOfNaturalOrigin,
1249
        Scale $scaleFactorAtNaturalOrigin,
1250
        Length $falseEasting,
1251
        Length $falseNorthing
1252
    ): GeographicPoint {
1253 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1254 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1255 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1256 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1257 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1258 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1259 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1260 9
        $e2 = $ellipsoid->getEccentricitySquared();
1261 9
        $f = $ellipsoid->getFlattening();
1262
1263 9
        $n = $f / (2 - $f);
1264 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1265 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1266 9
        $A = 1 / (6 * $rhoO * $nuO);
1267 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1268 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1269 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1270 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1271 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1272 9
        $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin);
1273 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1274
1275 9
        $theta = atan2($easting, $rO - $northing);
1276 9
        $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin);
1277 9
        $M = $rO - $r;
1278
1279 9
        $m = $M;
1280
        do {
1281 9
            $mN = $m;
1282 9
            $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2);
1283 9
        } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA);
1284
1285 9
        $latitude = $latitudeOrigin + $m / $A;
1286
        do {
1287 9
            $latitudeN = $latitude;
1288 9
            $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime;
1289 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1290
1291 9
        $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin);
1292
1293 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1294
    }
1295
1296
    /**
1297
     * Lambert Cylindrical Equal Area
1298
     * This is the ellipsoidal form of the projection.
1299
     */
1300 9
    public function lambertCylindricalEqualArea(
1301
        Geographic2D|Geographic3D $to,
1302
        Angle $latitudeOf1stStandardParallel,
1303
        Angle $longitudeOfNaturalOrigin,
1304
        Length $falseEasting,
1305
        Length $falseNorthing
1306
    ): GeographicPoint {
1307 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1308 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1309 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1310 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1311 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1312 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1313 9
        $e = $ellipsoid->getEccentricity();
1314 9
        $e2 = $ellipsoid->getEccentricitySquared();
1315 9
        $e4 = $e ** 4;
1316 9
        $e6 = $e ** 6;
1317
1318 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1319 9
        $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2))));
1320 9
        $beta = self::asin(2 * $northing * $k / ($a * $qP));
1321
1322 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
1323 9
        $longitude = $longitudeOrigin + $easting / ($a * $k);
1324
1325 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1326
    }
1327
1328
    /**
1329
     * Modified Azimuthal Equidistant
1330
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1331
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1332
     */
1333 9
    public function modifiedAzimuthalEquidistant(
1334
        Geographic2D|Geographic3D $to,
1335
        Angle $latitudeOfNaturalOrigin,
1336
        Angle $longitudeOfNaturalOrigin,
1337
        Length $falseEasting,
1338
        Length $falseNorthing
1339
    ): GeographicPoint {
1340 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1341 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1342 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1343 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1344 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1345 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1346 9
        $e2 = $ellipsoid->getEccentricitySquared();
1347
1348 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1349 9
        $c = hypot($easting, $northing);
1350 9
        $alpha = atan2($easting, $northing);
1351 9
        $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2);
1352 9
        $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2);
1353 9
        $D = $c / $nuO;
1354 9
        $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24);
1355 9
        $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6);
1356 9
        $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha));
1357
1358 9
        $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2));
1359 9
        $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi));
1360
1361 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1362
    }
1363
1364
    /**
1365
     * Oblique Stereographic
1366
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1367
     * Projections - A Working Manual" by John P. Snyder.
1368
     */
1369 126
    public function obliqueStereographic(
1370
        Geographic2D|Geographic3D $to,
1371
        Angle $latitudeOfNaturalOrigin,
1372
        Angle $longitudeOfNaturalOrigin,
1373
        Scale $scaleFactorAtNaturalOrigin,
1374
        Length $falseEasting,
1375
        Length $falseNorthing
1376
    ): GeographicPoint {
1377 126
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1378 126
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1379 126
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1380 126
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1381 126
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1382 126
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1383 126
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1384 126
        $e = $ellipsoid->getEccentricity();
1385 126
        $e2 = $ellipsoid->getEccentricitySquared();
1386
1387 126
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1388 126
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1389 126
        $R = sqrt($rhoOrigin * $nuOrigin);
1390
1391 126
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1392 126
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1393 126
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1394 126
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1395 126
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1396 126
        $w2 = $c * $w1;
1397 126
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1398
1399 126
        $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2);
1400 126
        $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g;
1401 126
        $i = atan2($easting, $h + $northing);
1402 126
        $j = atan2($easting, $g - $northing) - $i;
1403 126
        $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin));
1404 126
        $lambda = $j + 2 * $i + $longitudeOrigin;
1405
1406 126
        $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin;
1407
1408 126
        $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n;
1409
1410 126
        $latitude = 2 * atan(M_E ** $psi) - M_PI / 2;
1411
        do {
1412 126
            $latitudeN = $latitude;
1413 126
            $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2));
1414 126
            $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2);
1415 126
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1416
1417 126
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1418
    }
1419
1420
    /**
1421
     * Polar Stereographic (variant A)
1422
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1423
     */
1424 9
    public function polarStereographicVariantA(
1425
        Geographic2D|Geographic3D $to,
1426
        Angle $latitudeOfNaturalOrigin,
1427
        Angle $longitudeOfNaturalOrigin,
1428
        Scale $scaleFactorAtNaturalOrigin,
1429
        Length $falseEasting,
1430
        Length $falseNorthing
1431
    ): GeographicPoint {
1432 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1433 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1434 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1435 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1436 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1437 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1438 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1439 9
        $e = $ellipsoid->getEccentricity();
1440 9
        $e2 = $ellipsoid->getEccentricitySquared();
1441 9
        $e4 = $e ** 4;
1442 9
        $e6 = $e ** 6;
1443 9
        $e8 = $e ** 8;
1444
1445 9
        $rho = hypot($easting, $northing);
1446 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin);
1447
1448 9
        if ($latitudeOrigin < 0) {
1449
            $chi = 2 * atan($t) - M_PI / 2;
1450
        } else {
1451 9
            $chi = M_PI / 2 - 2 * atan($t);
1452
        }
1453
1454 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1455
1456 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1457
            $longitude = $longitudeOrigin;
1458 9
        } elseif ($latitudeOrigin < 0) {
1459
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1460
        } else {
1461 9
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1462
        }
1463
1464 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1465
    }
1466
1467
    /**
1468
     * Polar Stereographic (variant B).
1469
     */
1470 9
    public function polarStereographicVariantB(
1471
        Geographic2D|Geographic3D $to,
1472
        Angle $latitudeOfStandardParallel,
1473
        Angle $longitudeOfOrigin,
1474
        Length $falseEasting,
1475
        Length $falseNorthing
1476
    ): GeographicPoint {
1477 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1478 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1479 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1480 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1481 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1482 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1483 9
        $e = $ellipsoid->getEccentricity();
1484 9
        $e2 = $ellipsoid->getEccentricitySquared();
1485 9
        $e4 = $e ** 4;
1486 9
        $e6 = $e ** 6;
1487 9
        $e8 = $e ** 8;
1488
1489 9
        $rho = hypot($easting, $northing);
1490 9
        if ($standardParallel < 0) {
1491 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1492
        } else {
1493
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1494
        }
1495 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1496 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1497 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO);
1498
1499 9
        if ($standardParallel < 0) {
1500 9
            $chi = 2 * atan($t) - M_PI / 2;
1501
        } else {
1502
            $chi = M_PI / 2 - 2 * atan($t);
1503
        }
1504
1505 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1506
1507 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1508
            $longitude = $longitudeOrigin;
1509 9
        } elseif ($standardParallel < 0) {
1510 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1511
        } else {
1512
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1513
        }
1514
1515 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1516
    }
1517
1518
    /**
1519
     * Polar Stereographic (variant C).
1520
     */
1521 9
    public function polarStereographicVariantC(
1522
        Geographic2D|Geographic3D $to,
1523
        Angle $latitudeOfStandardParallel,
1524
        Angle $longitudeOfOrigin,
1525
        Length $eastingAtFalseOrigin,
1526
        Length $northingAtFalseOrigin
1527
    ): GeographicPoint {
1528 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1529 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1530 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1531 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1532 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1533 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1534 9
        $e = $ellipsoid->getEccentricity();
1535 9
        $e2 = $ellipsoid->getEccentricitySquared();
1536 9
        $e4 = $e ** 4;
1537 9
        $e6 = $e ** 6;
1538 9
        $e8 = $e ** 8;
1539
1540 9
        if ($standardParallel < 0) {
1541 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1542
        } else {
1543
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1544
        }
1545 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1546 9
        $rhoF = $a * $mF;
1547 9
        if ($standardParallel < 0) {
1548 9
            $rho = hypot($easting, $northing + $rhoF);
1549 9
            $t = $rho * $tF / $rhoF;
1550 9
            $chi = 2 * atan($t) - M_PI / 2;
1551
        } else {
1552
            $rho = hypot($easting, $northing - $rhoF);
1553
            $t = $rho * $tF / $rhoF;
1554
            $chi = M_PI / 2 - 2 * atan($t);
1555
        }
1556
1557 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1558
1559 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1560
            $longitude = $longitudeOrigin;
1561 9
        } elseif ($standardParallel < 0) {
1562 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF);
1563
        } else {
1564
            $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF);
1565
        }
1566
1567 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1568
    }
1569
1570
    /**
1571
     * Popular Visualisation Pseudo Mercator
1572
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1573
     */
1574 18
    public function popularVisualisationPseudoMercator(
1575
        Geographic2D|Geographic3D $to,
1576
        Angle $latitudeOfNaturalOrigin,
1577
        Angle $longitudeOfNaturalOrigin,
1578
        Length $falseEasting,
1579
        Length $falseNorthing
1580
    ): GeographicPoint {
1581 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1582 18
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1583 18
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1584 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1585 18
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1586 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1587
1588 18
        $D = -$northing / $a;
1589 18
        $latitude = M_PI / 2 - 2 * atan(M_E ** $D);
1590 18
        $longitude = $easting / $a + $longitudeOrigin;
1591
1592 18
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1593
    }
1594
1595
    /**
1596
     * Similarity transformation
1597
     * Defined for two-dimensional coordinate systems.
1598
     */
1599 9
    public function similarityTransformation(
1600
        Projected $to,
1601
        Length $ordinate1OfEvaluationPointInTargetCRS,
1602
        Length $ordinate2OfEvaluationPointInTargetCRS,
1603
        Scale $scaleFactorForSourceCRSAxes,
1604
        Angle $rotationAngleOfSourceCRSAxes,
1605
        bool $inReverse
1606
    ): self {
1607 9
        $xs = $this->easting->asMetres()->getValue();
1608 9
        $ys = $this->northing->asMetres()->getValue();
1609 9
        $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue();
1610 9
        $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue();
1611 9
        $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue();
1612 9
        $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue();
1613
1614 9
        if ($inReverse) {
1615
            $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M;
1616
            $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M;
1617
        } else {
1618 9
            $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta);
1619 9
            $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta);
1620
        }
1621
1622 9
        return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1623
    }
1624
1625
    /**
1626
     * Mercator (variant A)
1627
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1628
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1629
     * completeness in CRS labelling.
1630
     */
1631 351
    public function mercatorVariantA(
1632
        Geographic2D|Geographic3D $to,
1633
        Angle $latitudeOfNaturalOrigin,
1634
        Angle $longitudeOfNaturalOrigin,
1635
        Scale $scaleFactorAtNaturalOrigin,
1636
        Length $falseEasting,
1637
        Length $falseNorthing
1638
    ): GeographicPoint {
1639 351
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1640 351
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1641 351
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1642 351
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1643 351
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1644 351
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1645 351
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1646 351
        $e = $ellipsoid->getEccentricity();
1647 351
        $e2 = $ellipsoid->getEccentricitySquared();
1648 351
        $e4 = $e ** 4;
1649 351
        $e6 = $e ** 6;
1650 351
        $e8 = $e ** 8;
1651
1652 351
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1653 351
        $chi = M_PI / 2 - 2 * atan($t);
1654
1655 351
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1656 351
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1657
1658 351
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1659
    }
1660
1661
    /**
1662
     * Mercator (variant B)
1663
     * Used for most nautical charts.
1664
     */
1665 36
    public function mercatorVariantB(
1666
        Geographic2D|Geographic3D $to,
1667
        Angle $latitudeOf1stStandardParallel,
1668
        Angle $longitudeOfNaturalOrigin,
1669
        Length $falseEasting,
1670
        Length $falseNorthing
1671
    ): GeographicPoint {
1672 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1673 36
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1674 36
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1675 36
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1676 36
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1677 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1678 36
        $e = $ellipsoid->getEccentricity();
1679 36
        $e2 = $ellipsoid->getEccentricitySquared();
1680 36
        $e4 = $e ** 4;
1681 36
        $e6 = $e ** 6;
1682 36
        $e8 = $e ** 8;
1683
1684 36
        $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1685
1686 36
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1687 36
        $chi = M_PI / 2 - 2 * atan($t);
1688
1689 36
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1690 36
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1691
1692 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1693
    }
1694
1695
    /**
1696
     * Hotine Oblique Mercator (variant A).
1697
     */
1698 117
    public function obliqueMercatorHotineVariantA(
1699
        Geographic2D|Geographic3D $to,
1700
        Angle $latitudeOfProjectionCentre,
1701
        Angle $longitudeOfProjectionCentre,
1702
        Angle $azimuthOfInitialLine,
1703
        Angle $angleFromRectifiedToSkewGrid,
1704
        Scale $scaleFactorOnInitialLine,
1705
        Length $falseEasting,
1706
        Length $falseNorthing
1707
    ): GeographicPoint {
1708 117
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1709 117
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1710 117
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1711 117
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1712 117
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1713 117
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1714 117
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1715 117
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1716 117
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1717 117
        $e = $ellipsoid->getEccentricity();
1718 117
        $e2 = $ellipsoid->getEccentricitySquared();
1719 117
        $e4 = $e ** 4;
1720 117
        $e6 = $e ** 6;
1721 117
        $e8 = $e ** 8;
1722
1723 117
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1724 117
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1725 117
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1726 117
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1727 117
        $DD = max(1, $D ** 2);
1728 117
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1729 117
        $H = $F * $tO ** $B;
1730 117
        $G = ($F - 1 / $F) / 2;
1731 117
        $gammaO = self::asin(sin($alphaC) / $D);
1732 117
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1733
1734 117
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1735 117
        $u = $northing * cos($gammaC) + $easting * sin($gammaC);
1736
1737 117
        $Q = M_E ** -($B * $v / $A);
1738 117
        $S = ($Q - 1 / $Q) / 2;
1739 117
        $T = ($Q + 1 / $Q) / 2;
1740 117
        $V = sin($B * $u / $A);
1741 117
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1742 117
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1743
1744 117
        $chi = M_PI / 2 - 2 * atan($t);
1745
1746 117
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1747 117
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1748
1749 117
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1750
    }
1751
1752
    /**
1753
     * Hotine Oblique Mercator (variant B).
1754
     */
1755 180
    public function obliqueMercatorHotineVariantB(
1756
        Geographic2D|Geographic3D $to,
1757
        Angle $latitudeOfProjectionCentre,
1758
        Angle $longitudeOfProjectionCentre,
1759
        Angle $azimuthOfInitialLine,
1760
        Angle $angleFromRectifiedToSkewGrid,
1761
        Scale $scaleFactorOnInitialLine,
1762
        Length $eastingAtProjectionCentre,
1763
        Length $northingAtProjectionCentre
1764
    ): GeographicPoint {
1765 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1766 180
        $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue();
1767 180
        $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue();
1768 180
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1769 180
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1770 180
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1771 180
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1772 180
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1773 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1774 180
        $e = $ellipsoid->getEccentricity();
1775 180
        $e2 = $ellipsoid->getEccentricitySquared();
1776 180
        $e4 = $e ** 4;
1777 180
        $e6 = $e ** 6;
1778 180
        $e8 = $e ** 8;
1779
1780 180
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1781 180
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1782 180
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1783 180
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1784 180
        $DD = max(1, $D ** 2);
1785 180
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1786 180
        $H = $F * $tO ** $B;
1787 180
        $G = ($F - 1 / $F) / 2;
1788 180
        $gammaO = self::asin(sin($alphaC) / $D);
1789 180
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1790 180
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1791 180
        if ($alphaC === M_PI / 2) {
1792 54
            $uC = $A * ($lonC - $lonO);
1793
        } else {
1794 126
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1795
        }
1796
1797 180
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1798 180
        $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC));
1799
1800 180
        $Q = M_E ** -($B * $v / $A);
1801 180
        $S = ($Q - 1 / $Q) / 2;
1802 180
        $T = ($Q + 1 / $Q) / 2;
1803 180
        $V = sin($B * $u / $A);
1804 180
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1805 180
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1806
1807 180
        $chi = M_PI / 2 - 2 * atan($t);
1808
1809 180
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1810 180
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1811
1812 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1813
    }
1814
1815
    /**
1816
     * Laborde Oblique Mercator.
1817
     */
1818 9
    public function obliqueMercatorLaborde(
1819
        Geographic2D|Geographic3D $to,
1820
        Angle $latitudeOfProjectionCentre,
1821
        Angle $longitudeOfProjectionCentre,
1822
        Angle $azimuthOfInitialLine,
1823
        Scale $scaleFactorOnInitialLine,
1824
        Length $falseEasting,
1825
        Length $falseNorthing
1826
    ): GeographicPoint {
1827 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1828 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1829 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1830 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1831 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1832 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1833 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1834 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1835 9
        $e = $ellipsoid->getEccentricity();
1836 9
        $e2 = $ellipsoid->getEccentricitySquared();
1837
1838 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1839 9
        $latS = self::asin(sin($latC) / $B);
1840 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1841 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1842
1843 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1844
1845 9
        $H0 = new ComplexNumber($northing / $R, $easting / $R);
1846 9
        $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0));
1847
        do {
1848 9
            $HN = $H;
1849 9
            $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0)));
1850 9
        } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA);
1851
1852 9
        $LPrime = -1 * $H->getReal();
1853 9
        $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2;
1854 9
        $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS);
1855 9
        $V = sin($PPrime);
1856 9
        $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS);
1857
1858 9
        $d = hypot($U, $V);
1859 9
        if ($d === 0) {
1860
            $L = 0;
1861
            $P = static::sign($W) * M_PI / 2;
1862
        } else {
1863 9
            $L = 2 * atan($V / ($U + $d));
1864 9
            $P = atan($W / $d);
1865
        }
1866
1867 9
        $longitude = $lonC + ($L / $B);
1868
1869 9
        $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B;
1870
1871 9
        $latitude = 2 * atan(M_E ** $q) - M_PI / 2;
1872
        do {
1873 9
            $latitudeN = $latitude;
1874 9
            $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2;
1875 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1876
1877 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1878
    }
1879
1880
    /**
1881
     * Transverse Mercator.
1882
     */
1883 740
    public function transverseMercator(
1884
        Geographic2D|Geographic3D $to,
1885
        Angle $latitudeOfNaturalOrigin,
1886
        Angle $longitudeOfNaturalOrigin,
1887
        Scale $scaleFactorAtNaturalOrigin,
1888
        Length $falseEasting,
1889
        Length $falseNorthing
1890
    ): GeographicPoint {
1891 740
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1892 740
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1893 740
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1894 740
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1895 740
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1896 740
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1897 740
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1898 740
        $e = $ellipsoid->getEccentricity();
1899 740
        $f = $ellipsoid->getFlattening();
1900
1901 740
        $n = $f / (2 - $f);
1902 740
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1903
1904 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1905 740
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1906 740
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1907 740
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1908 740
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1909 740
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1910 740
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1911 740
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1912
1913 740
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1914 306
            $mO = 0;
1915 434
        } elseif ($latitudeOrigin === M_PI / 2) {
1916
            $mO = $B * M_PI / 2;
1917 434
        } elseif ($latitudeOrigin === -M_PI / 2) {
1918 99
            $mO = $B * -M_PI / 2;
1919
        } else {
1920 335
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1921 335
            $betaO = atan(sinh($qO));
1922 335
            $xiO0 = self::asin(sin($betaO));
1923 335
            $xiO1 = $h1 * sin(2 * $xiO0);
1924 335
            $xiO2 = $h2 * sin(4 * $xiO0);
1925 335
            $xiO3 = $h3 * sin(6 * $xiO0);
1926 335
            $xiO4 = $h4 * sin(8 * $xiO0);
1927 335
            $xiO5 = $h5 * sin(10 * $xiO0);
1928 335
            $xiO6 = $h6 * sin(12 * $xiO0);
1929 335
            $xiO7 = $h7 * sin(14 * $xiO0);
1930 335
            $xiO8 = $h8 * sin(16 * $xiO0);
1931 335
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1932 335
            $mO = $B * $xiO;
1933
        }
1934
1935 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8;
1936 740
        $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8;
1937 740
        $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8;
1938 740
        $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8;
1939 740
        $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8;
1940 740
        $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8;
1941 740
        $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8;
1942 740
        $h8 = (191773887257 / 3719607091200) * $n ** 8;
1943
1944 740
        $eta = $easting / ($B * $kO);
1945 740
        $xi = ($northing + $kO * $mO) / ($B * $kO);
1946 740
        $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta);
1947 740
        $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta);
1948 740
        $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta);
1949 740
        $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta);
1950 740
        $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta);
1951 740
        $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta);
1952 740
        $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta);
1953 740
        $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta);
1954 740
        $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta);
1955 740
        $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta);
1956 740
        $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta);
1957 740
        $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta);
1958 740
        $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta);
1959 740
        $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta);
1960 740
        $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta);
1961 740
        $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta);
1962 740
        $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8;
1963 740
        $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8;
1964
1965 740
        $beta = self::asin(sin($xi0) / cosh($eta0));
1966
1967 740
        $QPrime = asinh(tan($beta));
1968 740
        $Q = asinh(tan($beta));
1969
        do {
1970 740
            $QN = $Q;
1971 740
            $Q = $QPrime + ($e * atanh($e * tanh($Q)));
1972 740
        } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA);
1973
1974 740
        $latitude = atan(sinh($Q));
1975 740
        $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta));
1976
1977 740
        $height = $this->height && $to instanceof Geographic3D ? $this->height : null;
1978
1979 740
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch);
1980
    }
1981
1982
    /**
1983
     * Transverse Mercator Zoned Grid System
1984
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1985
     * each zone.
1986
     */
1987 18
    public function transverseMercatorZonedGrid(
1988
        Geographic2D|Geographic3D $to,
1989
        Angle $latitudeOfNaturalOrigin,
1990
        Angle $initialLongitude,
1991
        Angle $zoneWidth,
1992
        Scale $scaleFactorAtNaturalOrigin,
1993
        Length $falseEasting,
1994
        Length $falseNorthing
1995
    ): GeographicPoint {
1996 18
        $Z = substr((string) $this->easting->asMetres()->getValue(), 0, 2);
1997 18
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1998
1999 18
        $W = $zoneWidth->asDegrees()->getValue();
2000 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
2001
2002 18
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2003
    }
2004
2005
    /**
2006
     * General polynomial.
2007
     * @param Coefficient[] $powerCoefficients
2008
     */
2009
    public function generalPolynomial(
2010
        Projected $to,
2011
        Length $ordinate1OfEvaluationPointInSourceCRS,
2012
        Length $ordinate2OfEvaluationPointInSourceCRS,
2013
        Length $ordinate1OfEvaluationPointInTargetCRS,
2014
        Length $ordinate2OfEvaluationPointInTargetCRS,
2015
        Scale $scalingFactorForSourceCRSCoordDifferences,
2016
        Scale $scalingFactorForTargetCRSCoordDifferences,
2017
        Scale $A0,
2018
        Scale $B0,
2019
        array $powerCoefficients
2020
    ): self {
2021
        $xs = $this->easting->getValue();
2022
        $ys = $this->northing->getValue();
2023
2024
        $t = $this->generalPolynomialUnitless(
2025
            $xs,
2026
            $ys,
2027
            $ordinate1OfEvaluationPointInSourceCRS,
2028
            $ordinate2OfEvaluationPointInSourceCRS,
2029
            $ordinate1OfEvaluationPointInTargetCRS,
2030
            $ordinate2OfEvaluationPointInTargetCRS,
2031
            $scalingFactorForSourceCRSCoordDifferences,
2032
            $scalingFactorForTargetCRSCoordDifferences,
2033
            $A0,
2034
            $B0,
2035
            $powerCoefficients
2036
        );
2037
2038
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2039
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2040
2041
        return static::createFromEastingNorthing(
2042
            $to,
2043
            Length::makeUnit($t['xt'], $xtUnit),
2044
            Length::makeUnit($t['yt'], $ytUnit),
2045
            $this->epoch
2046
        );
2047
    }
2048
2049
    /**
2050
     * New Zealand Map Grid.
2051
     */
2052 27
    public function newZealandMapGrid(
2053
        Geographic2D|Geographic3D $to,
2054
        Angle $latitudeOfNaturalOrigin,
2055
        Angle $longitudeOfNaturalOrigin,
2056
        Length $falseEasting,
2057
        Length $falseNorthing
2058
    ): GeographicPoint {
2059 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2060 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2061
2062 27
        $z = new ComplexNumber(
2063 27
            $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(),
2064 27
            $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(),
2065
        );
2066
2067 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
2068 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
2069 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
2070 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
2071 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
2072 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
2073 27
        $b1 = new ComplexNumber(1.3231270439, 0.0);
2074 27
        $b2 = new ComplexNumber(-0.577245789, -0.007809598);
2075 27
        $b3 = new ComplexNumber(0.508307513, -0.112208952);
2076 27
        $b4 = new ComplexNumber(-0.15094762, 0.18200602);
2077 27
        $b5 = new ComplexNumber(1.01418179, 1.64497696);
2078 27
        $b6 = new ComplexNumber(1.9660549, 2.5127645);
2079
2080 27
        $zeta = new ComplexNumber(0, 0);
2081 27
        $zeta = $zeta->add($b1->multiply($z->pow(1)));
2082 27
        $zeta = $zeta->add($b2->multiply($z->pow(2)));
2083 27
        $zeta = $zeta->add($b3->multiply($z->pow(3)));
2084 27
        $zeta = $zeta->add($b4->multiply($z->pow(4)));
2085 27
        $zeta = $zeta->add($b5->multiply($z->pow(5)));
2086 27
        $zeta = $zeta->add($b6->multiply($z->pow(6)));
2087
2088 27
        for ($iterations = 0; $iterations < 2; ++$iterations) {
2089 27
            $numerator = $z;
2090 27
            $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0)));
2091 27
            $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0)));
2092 27
            $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0)));
2093 27
            $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0)));
2094 27
            $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0)));
2095
2096 27
            $denominator = $B1;
2097 27
            $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0)));
2098 27
            $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0)));
2099 27
            $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0)));
2100 27
            $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0)));
2101 27
            $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0)));
2102
2103 27
            $zeta = $numerator->divide($denominator);
2104
        }
2105
2106 27
        $deltaPsi = $zeta->getReal();
2107 27
        $deltaLatitudeToOrigin = 0;
2108 27
        $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1;
2109 27
        $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2;
2110 27
        $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3;
2111 27
        $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4;
2112 27
        $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5;
2113 27
        $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6;
2114 27
        $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7;
2115 27
        $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8;
2116 27
        $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9;
2117
2118 27
        $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001));
2119 27
        $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary()));
2120
2121 27
        return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch);
2122
    }
2123
2124
    /**
2125
     * Complex polynomial.
2126
     * Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients
2127
     * and leads to a smaller number of coefficients than the general polynomials.
2128
     */
2129 9
    public function complexPolynomial(
2130
        Projected $to,
2131
        Length $ordinate1OfEvaluationPointInSourceCRS,
2132
        Length $ordinate2OfEvaluationPointInSourceCRS,
2133
        Length $ordinate1OfEvaluationPointInTargetCRS,
2134
        Length $ordinate2OfEvaluationPointInTargetCRS,
2135
        Scale $scalingFactorForSourceCRSCoordDifferences,
2136
        Scale $scalingFactorForTargetCRSCoordDifferences,
2137
        Scale $A1,
2138
        Scale $A2,
2139
        Scale $A3,
2140
        Scale $A4,
2141
        Scale $A5,
2142
        Scale $A6,
2143
        ?Scale $A7 = null,
2144
        ?Scale $A8 = null
2145
    ): self {
2146 9
        $xs = $this->easting->getValue();
2147 9
        $ys = $this->northing->getValue();
2148 9
        $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue();
2149 9
        $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue();
2150 9
        $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue();
2151 9
        $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue();
2152
2153 9
        $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso);
2154 9
        $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso);
2155
2156 9
        $mTdXdY = new ComplexNumber(0, 0);
2157 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1));
2158 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2)));
2159 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3)));
2160 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4)));
2161
2162 9
        $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2163 9
        $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2164
2165 9
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2166 9
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2167
2168 9
        return static::createFromEastingNorthing(
2169
            $to,
2170 9
            Length::makeUnit($xt, $xtUnit),
2171 9
            Length::makeUnit($yt, $ytUnit),
2172 9
            $this->epoch
2173
        );
2174
    }
2175
2176
    /**
2177
     * Ordnance Survey National Transformation
2178
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2179
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2180
     */
2181 2
    public function OSTN15(
2182
        Geographic2D $to,
2183
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2184
    ): GeographicPoint {
2185 2
        $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this);
2186
2187 2
        return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2188
    }
2189
}
2190