1
|
|
|
<?php |
2
|
|
|
/** |
3
|
|
|
* PHPCoord. |
4
|
|
|
* |
5
|
|
|
* @author Doug Wright |
6
|
|
|
*/ |
7
|
|
|
declare(strict_types=1); |
8
|
|
|
|
9
|
|
|
namespace PHPCoord; |
10
|
|
|
|
11
|
|
|
use function abs; |
12
|
|
|
use function asinh; |
13
|
|
|
use function atan; |
14
|
|
|
use function atan2; |
15
|
|
|
use function atanh; |
16
|
|
|
use function cos; |
17
|
|
|
use function cosh; |
18
|
|
|
use DateTime; |
19
|
|
|
use DateTimeImmutable; |
20
|
|
|
use DateTimeInterface; |
21
|
|
|
use function get_class; |
22
|
|
|
use function implode; |
23
|
|
|
use InvalidArgumentException; |
24
|
|
|
use function is_nan; |
25
|
|
|
use function log; |
26
|
|
|
use function max; |
27
|
|
|
use PHPCoord\CoordinateOperation\AutoConversion; |
28
|
|
|
use PHPCoord\CoordinateOperation\ComplexNumber; |
29
|
|
|
use PHPCoord\CoordinateOperation\GeocentricValue; |
30
|
|
|
use PHPCoord\CoordinateOperation\GeographicValue; |
31
|
|
|
use PHPCoord\CoordinateReferenceSystem\Compound; |
32
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geocentric; |
33
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geographic; |
34
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geographic2D; |
35
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geographic3D; |
36
|
|
|
use PHPCoord\CoordinateReferenceSystem\Projected; |
37
|
|
|
use PHPCoord\CoordinateSystem\Axis; |
38
|
|
|
use PHPCoord\Datum\Ellipsoid; |
39
|
|
|
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException; |
40
|
|
|
use PHPCoord\Exception\UnknownAxisException; |
41
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Angle; |
42
|
|
|
use PHPCoord\UnitOfMeasure\Angle\ArcSecond; |
43
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Degree; |
44
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Radian; |
45
|
|
|
use PHPCoord\UnitOfMeasure\Length\Length; |
46
|
|
|
use PHPCoord\UnitOfMeasure\Length\Metre; |
47
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Coefficient; |
48
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Scale; |
49
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Unity; |
50
|
|
|
use function sin; |
51
|
|
|
use function sinh; |
52
|
|
|
use function sprintf; |
53
|
|
|
use function sqrt; |
54
|
|
|
use function tan; |
55
|
|
|
use TypeError; |
56
|
|
|
|
57
|
|
|
/** |
58
|
|
|
* Coordinate representing a point on an ellipsoid. |
59
|
|
|
*/ |
60
|
|
|
class GeographicPoint extends Point |
61
|
|
|
{ |
62
|
|
|
use AutoConversion; |
63
|
|
|
|
64
|
|
|
/** |
65
|
|
|
* Latitude. |
66
|
|
|
*/ |
67
|
|
|
protected Angle $latitude; |
68
|
|
|
|
69
|
|
|
/** |
70
|
|
|
* Longitude. |
71
|
|
|
*/ |
72
|
|
|
protected Angle $longitude; |
73
|
|
|
|
74
|
|
|
/** |
75
|
|
|
* Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible). |
76
|
|
|
*/ |
77
|
|
|
protected ?Length $height; |
78
|
|
|
|
79
|
|
|
/** |
80
|
|
|
* Coordinate reference system. |
81
|
|
|
*/ |
82
|
|
|
protected Geographic $crs; |
83
|
|
|
|
84
|
|
|
/** |
85
|
|
|
* Coordinate epoch (date for which the specified coordinates represented this point). |
86
|
|
|
*/ |
87
|
|
|
protected ?DateTimeImmutable $epoch; |
88
|
|
|
|
89
|
128 |
|
protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null) |
90
|
|
|
{ |
91
|
128 |
|
if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) { |
92
|
|
|
throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs))); |
93
|
|
|
} |
94
|
|
|
|
95
|
128 |
|
if ($crs instanceof Geographic2D && $height !== null) { |
96
|
1 |
|
throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height'); |
97
|
|
|
} |
98
|
|
|
|
99
|
127 |
|
if ($crs instanceof Geographic3D && $height === null) { |
100
|
1 |
|
throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given'); |
101
|
|
|
} |
102
|
|
|
|
103
|
126 |
|
$this->crs = $crs; |
104
|
|
|
|
105
|
126 |
|
$this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId()); |
106
|
126 |
|
$this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId()); |
107
|
|
|
|
108
|
126 |
|
if ($height) { |
109
|
16 |
|
$this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId()); |
110
|
|
|
} else { |
111
|
114 |
|
$this->height = null; |
112
|
|
|
} |
113
|
|
|
|
114
|
126 |
|
if ($epoch instanceof DateTime) { |
115
|
1 |
|
$epoch = DateTimeImmutable::createFromMutable($epoch); |
116
|
|
|
} |
117
|
126 |
|
$this->epoch = $epoch; |
118
|
126 |
|
} |
119
|
|
|
|
120
|
|
|
/** |
121
|
|
|
* @param Angle $latitude refer to CRS for preferred unit of measure, but any angle unit accepted |
122
|
|
|
* @param Angle $longitude refer to CRS for preferred unit of measure, but any angle unit accepted |
123
|
|
|
* @param ?Length $height refer to CRS for preferred unit of measure, but any length unit accepted |
124
|
|
|
*/ |
125
|
128 |
|
public static function create(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null): self |
126
|
|
|
{ |
127
|
128 |
|
return new static($latitude, $longitude, $height, $crs, $epoch); |
128
|
|
|
} |
129
|
|
|
|
130
|
76 |
|
public function getLatitude(): Angle |
131
|
|
|
{ |
132
|
76 |
|
return $this->latitude; |
133
|
|
|
} |
134
|
|
|
|
135
|
76 |
|
public function getLongitude(): Angle |
136
|
|
|
{ |
137
|
76 |
|
return $this->longitude; |
138
|
|
|
} |
139
|
|
|
|
140
|
36 |
|
public function getHeight(): ?Length |
141
|
|
|
{ |
142
|
36 |
|
return $this->height; |
143
|
|
|
} |
144
|
|
|
|
145
|
126 |
|
public function getCRS(): Geographic |
146
|
|
|
{ |
147
|
126 |
|
return $this->crs; |
148
|
|
|
} |
149
|
|
|
|
150
|
12 |
|
public function getCoordinateEpoch(): ?DateTimeImmutable |
151
|
|
|
{ |
152
|
12 |
|
return $this->epoch; |
153
|
|
|
} |
154
|
|
|
|
155
|
|
|
/** |
156
|
|
|
* Calculate surface distance between two points. |
157
|
|
|
*/ |
158
|
2 |
|
public function calculateDistance(Point $to): Length |
159
|
|
|
{ |
160
|
2 |
|
if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
161
|
1 |
|
throw new InvalidArgumentException('Can only calculate distances between two points in the same CRS'); |
162
|
|
|
} |
163
|
|
|
|
164
|
|
|
//Mean radius definition taken from Wikipedia |
165
|
|
|
/** @var Ellipsoid $ellipsoid */ |
166
|
1 |
|
$ellipsoid = $this->getCRS()->getDatum()->getEllipsoid(); |
167
|
1 |
|
$radius = ((2 * $ellipsoid->getSemiMajorAxis()->asMetres()->getValue()) + $ellipsoid->getSemiMinorAxis()->asMetres()->getValue()) / 3; |
168
|
|
|
|
169
|
1 |
|
return new Metre(self::acos(sin($this->latitude->asRadians()->getValue()) * sin($to->latitude->asRadians()->getValue()) + cos($this->latitude->asRadians()->getValue()) * cos($to->latitude->asRadians()->getValue()) * cos($to->longitude->asRadians()->getValue() - $this->longitude->asRadians()->getValue())) * $radius); |
170
|
|
|
} |
171
|
|
|
|
172
|
4 |
|
public function __toString(): string |
173
|
|
|
{ |
174
|
4 |
|
$values = []; |
175
|
4 |
|
foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
176
|
4 |
|
if ($axis->getName() === Axis::GEODETIC_LATITUDE) { |
177
|
4 |
|
$values[] = $this->latitude; |
178
|
4 |
|
} elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) { |
179
|
4 |
|
$values[] = $this->longitude; |
180
|
1 |
|
} elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
181
|
1 |
|
$values[] = $this->height; |
182
|
|
|
} else { |
183
|
|
|
throw new UnknownAxisException(); // @codeCoverageIgnore |
184
|
|
|
} |
185
|
|
|
} |
186
|
|
|
|
187
|
4 |
|
return '(' . implode(', ', $values) . ')'; |
188
|
|
|
} |
189
|
|
|
|
190
|
|
|
/** |
191
|
|
|
* Geographic/geocentric conversions |
192
|
|
|
* In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
193
|
|
|
* 9636 to form a geographic to geographic transformation. |
194
|
|
|
*/ |
195
|
1 |
|
public function geographicGeocentric( |
196
|
|
|
Geocentric $to |
197
|
|
|
): GeocentricPoint { |
198
|
1 |
|
$geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
199
|
1 |
|
$asGeocentric = $geographicValue->asGeocentricValue(); |
200
|
|
|
|
201
|
1 |
|
return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch); |
202
|
|
|
} |
203
|
|
|
|
204
|
|
|
/** |
205
|
|
|
* Coordinate Frame rotation (geog2D/geog3D domain) |
206
|
|
|
* Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences! The Position Vector |
207
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating |
208
|
|
|
* between other CRS types. |
209
|
|
|
*/ |
210
|
2 |
|
public function coordinateFrameRotation( |
211
|
|
|
Geographic $to, |
212
|
|
|
Length $xAxisTranslation, |
213
|
|
|
Length $yAxisTranslation, |
214
|
|
|
Length $zAxisTranslation, |
215
|
|
|
Angle $xAxisRotation, |
216
|
|
|
Angle $yAxisRotation, |
217
|
|
|
Angle $zAxisRotation, |
218
|
|
|
Scale $scaleDifference |
219
|
|
|
): self { |
220
|
2 |
|
return $this->coordinateFrameMolodenskyBadekas( |
221
|
2 |
|
$to, |
222
|
|
|
$xAxisTranslation, |
223
|
|
|
$yAxisTranslation, |
224
|
|
|
$zAxisTranslation, |
225
|
|
|
$xAxisRotation, |
226
|
|
|
$yAxisRotation, |
227
|
|
|
$zAxisRotation, |
228
|
|
|
$scaleDifference, |
229
|
2 |
|
new Metre(0), |
230
|
2 |
|
new Metre(0), |
231
|
2 |
|
new Metre(0) |
232
|
|
|
); |
233
|
|
|
} |
234
|
|
|
|
235
|
|
|
/** |
236
|
|
|
* Molodensky-Badekas (CF geog2D/geog3D domain) |
237
|
|
|
* See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the |
238
|
|
|
* opposite rotation convention in geographic 2D domain. |
239
|
|
|
*/ |
240
|
4 |
|
public function coordinateFrameMolodenskyBadekas( |
241
|
|
|
Geographic $to, |
242
|
|
|
Length $xAxisTranslation, |
243
|
|
|
Length $yAxisTranslation, |
244
|
|
|
Length $zAxisTranslation, |
245
|
|
|
Angle $xAxisRotation, |
246
|
|
|
Angle $yAxisRotation, |
247
|
|
|
Angle $zAxisRotation, |
248
|
|
|
Scale $scaleDifference, |
249
|
|
|
Length $ordinate1OfEvaluationPoint, |
250
|
|
|
Length $ordinate2OfEvaluationPoint, |
251
|
|
|
Length $ordinate3OfEvaluationPoint |
252
|
|
|
): self { |
253
|
4 |
|
$geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
254
|
4 |
|
$asGeocentric = $geographicValue->asGeocentricValue(); |
255
|
|
|
|
256
|
4 |
|
$xs = $asGeocentric->getX()->asMetres()->getValue(); |
257
|
4 |
|
$ys = $asGeocentric->getY()->asMetres()->getValue(); |
258
|
4 |
|
$zs = $asGeocentric->getZ()->asMetres()->getValue(); |
259
|
4 |
|
$tx = $xAxisTranslation->asMetres()->getValue(); |
260
|
4 |
|
$ty = $yAxisTranslation->asMetres()->getValue(); |
261
|
4 |
|
$tz = $zAxisTranslation->asMetres()->getValue(); |
262
|
4 |
|
$rx = $xAxisRotation->asRadians()->getValue(); |
263
|
4 |
|
$ry = $yAxisRotation->asRadians()->getValue(); |
264
|
4 |
|
$rz = $zAxisRotation->asRadians()->getValue(); |
265
|
4 |
|
$M = 1 + $scaleDifference->asUnity()->getValue(); |
266
|
4 |
|
$xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
267
|
4 |
|
$yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
268
|
4 |
|
$zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
269
|
|
|
|
270
|
4 |
|
$xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp; |
271
|
4 |
|
$yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp; |
272
|
4 |
|
$zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp; |
273
|
4 |
|
$newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
274
|
4 |
|
$newGeographic = $newGeocentric->asGeographicValue(); |
275
|
|
|
|
276
|
4 |
|
return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch); |
277
|
|
|
} |
278
|
|
|
|
279
|
|
|
/** |
280
|
|
|
* Position Vector transformation (geog2D/geog3D domain) |
281
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences! The Position |
282
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms |
283
|
|
|
* operating between other CRS types. |
284
|
|
|
*/ |
285
|
4 |
|
public function positionVectorTransformation( |
286
|
|
|
Geographic $to, |
287
|
|
|
Length $xAxisTranslation, |
288
|
|
|
Length $yAxisTranslation, |
289
|
|
|
Length $zAxisTranslation, |
290
|
|
|
Angle $xAxisRotation, |
291
|
|
|
Angle $yAxisRotation, |
292
|
|
|
Angle $zAxisRotation, |
293
|
|
|
Scale $scaleDifference |
294
|
|
|
): self { |
295
|
4 |
|
return $this->positionVectorMolodenskyBadekas( |
296
|
4 |
|
$to, |
297
|
|
|
$xAxisTranslation, |
298
|
|
|
$yAxisTranslation, |
299
|
|
|
$zAxisTranslation, |
300
|
|
|
$xAxisRotation, |
301
|
|
|
$yAxisRotation, |
302
|
|
|
$zAxisRotation, |
303
|
|
|
$scaleDifference, |
304
|
4 |
|
new Metre(0), |
305
|
4 |
|
new Metre(0), |
306
|
4 |
|
new Metre(0) |
307
|
|
|
); |
308
|
|
|
} |
309
|
|
|
|
310
|
|
|
/** |
311
|
|
|
* Molodensky-Badekas (PV geog2D/geog3D domain) |
312
|
|
|
* See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite |
313
|
|
|
* rotation in geographic 2D/3D domain. |
314
|
|
|
*/ |
315
|
6 |
|
public function positionVectorMolodenskyBadekas( |
316
|
|
|
Geographic $to, |
317
|
|
|
Length $xAxisTranslation, |
318
|
|
|
Length $yAxisTranslation, |
319
|
|
|
Length $zAxisTranslation, |
320
|
|
|
Angle $xAxisRotation, |
321
|
|
|
Angle $yAxisRotation, |
322
|
|
|
Angle $zAxisRotation, |
323
|
|
|
Scale $scaleDifference, |
324
|
|
|
Length $ordinate1OfEvaluationPoint, |
325
|
|
|
Length $ordinate2OfEvaluationPoint, |
326
|
|
|
Length $ordinate3OfEvaluationPoint |
327
|
|
|
): self { |
328
|
6 |
|
$geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
329
|
6 |
|
$asGeocentric = $geographicValue->asGeocentricValue(); |
330
|
|
|
|
331
|
6 |
|
$xs = $asGeocentric->getX()->asMetres()->getValue(); |
332
|
6 |
|
$ys = $asGeocentric->getY()->asMetres()->getValue(); |
333
|
6 |
|
$zs = $asGeocentric->getZ()->asMetres()->getValue(); |
334
|
6 |
|
$tx = $xAxisTranslation->asMetres()->getValue(); |
335
|
6 |
|
$ty = $yAxisTranslation->asMetres()->getValue(); |
336
|
6 |
|
$tz = $zAxisTranslation->asMetres()->getValue(); |
337
|
6 |
|
$rx = $xAxisRotation->asRadians()->getValue(); |
338
|
6 |
|
$ry = $yAxisRotation->asRadians()->getValue(); |
339
|
6 |
|
$rz = $zAxisRotation->asRadians()->getValue(); |
340
|
6 |
|
$M = 1 + $scaleDifference->asUnity()->getValue(); |
341
|
6 |
|
$xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
342
|
6 |
|
$yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
343
|
6 |
|
$zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
344
|
|
|
|
345
|
6 |
|
$xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp; |
346
|
6 |
|
$yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp; |
347
|
6 |
|
$zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp; |
348
|
6 |
|
$newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
349
|
6 |
|
$newGeographic = $newGeocentric->asGeographicValue(); |
350
|
|
|
|
351
|
6 |
|
return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch); |
352
|
|
|
} |
353
|
|
|
|
354
|
|
|
/** |
355
|
|
|
* Geocentric translations |
356
|
|
|
* This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
357
|
|
|
* corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms |
358
|
|
|
* operating between other CRSs types. |
359
|
|
|
*/ |
360
|
1 |
|
public function geocentricTranslation( |
361
|
|
|
Geographic $to, |
362
|
|
|
Length $xAxisTranslation, |
363
|
|
|
Length $yAxisTranslation, |
364
|
|
|
Length $zAxisTranslation |
365
|
|
|
): self { |
366
|
1 |
|
return $this->positionVectorTransformation( |
367
|
1 |
|
$to, |
368
|
|
|
$xAxisTranslation, |
369
|
|
|
$yAxisTranslation, |
370
|
|
|
$zAxisTranslation, |
371
|
1 |
|
new Radian(0), |
372
|
1 |
|
new Radian(0), |
373
|
1 |
|
new Radian(0), |
374
|
1 |
|
new Unity(0) |
375
|
|
|
); |
376
|
|
|
} |
377
|
|
|
|
378
|
|
|
/** |
379
|
|
|
* Abridged Molodensky |
380
|
|
|
* This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
381
|
|
|
* systems, modelled as a set of geocentric translations. |
382
|
|
|
*/ |
383
|
2 |
|
public function abridgedMolodensky( |
384
|
|
|
Geographic $to, |
385
|
|
|
Length $xAxisTranslation, |
386
|
|
|
Length $yAxisTranslation, |
387
|
|
|
Length $zAxisTranslation, |
388
|
|
|
Length $differenceInSemiMajorAxis, |
389
|
|
|
Scale $differenceInFlattening |
390
|
|
|
): self { |
391
|
2 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
392
|
2 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
393
|
2 |
|
$fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
394
|
2 |
|
$tx = $xAxisTranslation->asMetres()->getValue(); |
395
|
2 |
|
$ty = $yAxisTranslation->asMetres()->getValue(); |
396
|
2 |
|
$tz = $zAxisTranslation->asMetres()->getValue(); |
397
|
2 |
|
$da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
398
|
2 |
|
$df = $differenceInFlattening->asUnity()->getValue(); |
399
|
|
|
|
400
|
2 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
401
|
2 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
402
|
|
|
|
403
|
2 |
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
404
|
2 |
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
405
|
|
|
|
406
|
2 |
|
$f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening(); |
407
|
|
|
|
408
|
2 |
|
$dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue())); |
409
|
2 |
|
$dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
410
|
2 |
|
$dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da; |
411
|
|
|
|
412
|
2 |
|
$toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
413
|
2 |
|
$toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
414
|
2 |
|
$toHeight = $fromHeight + $dHeight; |
415
|
|
|
|
416
|
2 |
|
return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch); |
417
|
|
|
} |
418
|
|
|
|
419
|
|
|
/** |
420
|
|
|
* Molodensky |
421
|
|
|
* See Abridged Molodensky. |
422
|
|
|
*/ |
423
|
2 |
|
public function molodensky( |
424
|
|
|
Geographic $to, |
425
|
|
|
Length $xAxisTranslation, |
426
|
|
|
Length $yAxisTranslation, |
427
|
|
|
Length $zAxisTranslation, |
428
|
|
|
Length $differenceInSemiMajorAxis, |
429
|
|
|
Scale $differenceInFlattening |
430
|
|
|
): self { |
431
|
2 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
432
|
2 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
433
|
2 |
|
$fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
434
|
2 |
|
$tx = $xAxisTranslation->asMetres()->getValue(); |
435
|
2 |
|
$ty = $yAxisTranslation->asMetres()->getValue(); |
436
|
2 |
|
$tz = $zAxisTranslation->asMetres()->getValue(); |
437
|
2 |
|
$da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
438
|
2 |
|
$df = $differenceInFlattening->asUnity()->getValue(); |
439
|
|
|
|
440
|
2 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
441
|
2 |
|
$b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue(); |
442
|
2 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
443
|
|
|
|
444
|
2 |
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
445
|
2 |
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
446
|
|
|
|
447
|
2 |
|
$f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening(); |
|
|
|
|
448
|
|
|
|
449
|
2 |
|
$dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue())); |
450
|
2 |
|
$dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
451
|
2 |
|
$dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2; |
452
|
|
|
|
453
|
2 |
|
$toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
454
|
2 |
|
$toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
455
|
2 |
|
$toHeight = $fromHeight + $dHeight; |
456
|
|
|
|
457
|
2 |
|
return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch); |
458
|
|
|
} |
459
|
|
|
|
460
|
|
|
/** |
461
|
|
|
* Albers Equal Area. |
462
|
|
|
*/ |
463
|
2 |
|
public function albersEqualArea( |
464
|
|
|
Projected $to, |
465
|
|
|
Angle $latitudeOfFalseOrigin, |
466
|
|
|
Angle $longitudeOfFalseOrigin, |
467
|
|
|
Angle $latitudeOf1stStandardParallel, |
468
|
|
|
Angle $latitudeOf2ndStandardParallel, |
469
|
|
|
Length $eastingAtFalseOrigin, |
470
|
|
|
Length $northingAtFalseOrigin |
471
|
|
|
): ProjectedPoint { |
472
|
2 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
473
|
2 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
474
|
2 |
|
$phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
475
|
2 |
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
476
|
2 |
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
477
|
2 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
478
|
2 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
479
|
2 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
480
|
|
|
|
481
|
2 |
|
$centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2)); |
482
|
2 |
|
$centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2)); |
483
|
|
|
|
484
|
2 |
|
$alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
485
|
2 |
|
$alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
486
|
2 |
|
$alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
487
|
2 |
|
$alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
488
|
|
|
|
489
|
2 |
|
$n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
490
|
2 |
|
$C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
491
|
2 |
|
$theta = $n * ($longitude - $longitudeOfFalseOrigin->asRadians()->getValue()); |
492
|
2 |
|
$rho = $a * sqrt($C - $n * $alpha) / $n; |
493
|
2 |
|
$rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n; |
494
|
|
|
|
495
|
2 |
|
$easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta)); |
496
|
2 |
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta)); |
497
|
|
|
|
498
|
2 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
499
|
|
|
} |
500
|
|
|
|
501
|
|
|
/** |
502
|
|
|
* American Polyconic. |
503
|
|
|
*/ |
504
|
1 |
|
public function americanPolyconic( |
505
|
|
|
Projected $to, |
506
|
|
|
Angle $latitudeOfNaturalOrigin, |
507
|
|
|
Angle $longitudeOfNaturalOrigin, |
508
|
|
|
Length $falseEasting, |
509
|
|
|
Length $falseNorthing |
510
|
|
|
): ProjectedPoint { |
511
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
512
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
513
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
514
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
515
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
516
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
517
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
518
|
1 |
|
$e4 = $e ** 4; |
519
|
1 |
|
$e6 = $e ** 6; |
520
|
|
|
|
521
|
1 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
522
|
1 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
523
|
|
|
|
524
|
1 |
|
if ($latitude === 0.0) { |
|
|
|
|
525
|
|
|
$easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin); |
526
|
|
|
$northing = $falseNorthing->asMetres()->getValue() - $MO; |
527
|
|
|
} else { |
528
|
1 |
|
$L = ($longitude - $longitudeOrigin) * sin($latitude); |
529
|
1 |
|
$nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
530
|
|
|
|
531
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L); |
532
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L)); |
533
|
|
|
} |
534
|
|
|
|
535
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
536
|
|
|
} |
537
|
|
|
|
538
|
|
|
/** |
539
|
|
|
* Bonne. |
540
|
|
|
*/ |
541
|
1 |
|
public function bonne( |
542
|
|
|
Projected $to, |
543
|
|
|
Angle $latitudeOfNaturalOrigin, |
544
|
|
|
Angle $longitudeOfNaturalOrigin, |
545
|
|
|
Length $falseEasting, |
546
|
|
|
Length $falseNorthing |
547
|
|
|
): ProjectedPoint { |
548
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
549
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
550
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
551
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
552
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
553
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
554
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
555
|
1 |
|
$e4 = $e ** 4; |
556
|
1 |
|
$e6 = $e ** 6; |
557
|
|
|
|
558
|
1 |
|
$m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
559
|
1 |
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
560
|
|
|
|
561
|
1 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
562
|
1 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
563
|
|
|
|
564
|
1 |
|
$rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
565
|
1 |
|
$tau = $a * $m * ($longitude - $longitudeOrigin) / $rho; |
566
|
|
|
|
567
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau)); |
568
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau))); |
569
|
|
|
|
570
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
571
|
|
|
} |
572
|
|
|
|
573
|
|
|
/** |
574
|
|
|
* Bonne South Orientated. |
575
|
|
|
*/ |
576
|
1 |
|
public function bonneSouthOrientated( |
577
|
|
|
Projected $to, |
578
|
|
|
Angle $latitudeOfNaturalOrigin, |
579
|
|
|
Angle $longitudeOfNaturalOrigin, |
580
|
|
|
Length $falseEasting, |
581
|
|
|
Length $falseNorthing |
582
|
|
|
): ProjectedPoint { |
583
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
584
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
585
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
586
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
587
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
588
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
589
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
590
|
1 |
|
$e4 = $e ** 4; |
591
|
1 |
|
$e6 = $e ** 6; |
592
|
|
|
|
593
|
1 |
|
$m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
594
|
1 |
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
595
|
|
|
|
596
|
1 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
597
|
1 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
598
|
|
|
|
599
|
1 |
|
$rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
600
|
1 |
|
$tau = $a * $m * ($longitude - $longitudeOrigin) / $rho; |
601
|
|
|
|
602
|
1 |
|
$westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau)); |
603
|
1 |
|
$southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau))); |
604
|
|
|
|
605
|
1 |
|
return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch); |
606
|
|
|
} |
607
|
|
|
|
608
|
|
|
/** |
609
|
|
|
* Cassini-Soldner. |
610
|
|
|
*/ |
611
|
1 |
|
public function cassiniSoldner( |
612
|
|
|
Projected $to, |
613
|
|
|
Angle $latitudeOfNaturalOrigin, |
614
|
|
|
Angle $longitudeOfNaturalOrigin, |
615
|
|
|
Length $falseEasting, |
616
|
|
|
Length $falseNorthing |
617
|
|
|
): ProjectedPoint { |
618
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
619
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
620
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
621
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
622
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
623
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
624
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
625
|
1 |
|
$e4 = $e ** 4; |
626
|
1 |
|
$e6 = $e ** 6; |
627
|
|
|
|
628
|
1 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
629
|
1 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
630
|
|
|
|
631
|
1 |
|
$A = ($longitude - $longitudeOrigin) * cos($latitude); |
632
|
1 |
|
$T = tan($latitude) ** 2; |
633
|
1 |
|
$C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
634
|
1 |
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
635
|
1 |
|
$X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
636
|
|
|
|
637
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
638
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $X; |
639
|
|
|
|
640
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
641
|
|
|
} |
642
|
|
|
|
643
|
|
|
/** |
644
|
|
|
* Hyperbolic Cassini-Soldner. |
645
|
|
|
*/ |
646
|
2 |
|
public function hyperbolicCassiniSoldner( |
647
|
|
|
Projected $to, |
648
|
|
|
Angle $latitudeOfNaturalOrigin, |
649
|
|
|
Angle $longitudeOfNaturalOrigin, |
650
|
|
|
Length $falseEasting, |
651
|
|
|
Length $falseNorthing |
652
|
|
|
): ProjectedPoint { |
653
|
2 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
654
|
2 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
655
|
2 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
656
|
2 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
657
|
2 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
658
|
2 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
659
|
2 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
660
|
2 |
|
$e4 = $e ** 4; |
661
|
2 |
|
$e6 = $e ** 6; |
662
|
|
|
|
663
|
2 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
664
|
2 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
665
|
|
|
|
666
|
2 |
|
$A = ($longitude - $longitudeOrigin) * cos($latitude); |
667
|
2 |
|
$T = tan($latitude) ** 2; |
668
|
2 |
|
$C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
669
|
2 |
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
670
|
2 |
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
671
|
2 |
|
$X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
672
|
|
|
|
673
|
2 |
|
$easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
674
|
2 |
|
$northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu)); |
675
|
|
|
|
676
|
2 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
677
|
|
|
} |
678
|
|
|
|
679
|
|
|
/** |
680
|
|
|
* Colombia Urban. |
681
|
|
|
*/ |
682
|
1 |
|
public function columbiaUrban( |
683
|
|
|
Projected $to, |
684
|
|
|
Angle $latitudeOfNaturalOrigin, |
685
|
|
|
Angle $longitudeOfNaturalOrigin, |
686
|
|
|
Length $falseEasting, |
687
|
|
|
Length $falseNorthing, |
688
|
|
|
Length $projectionPlaneOriginHeight |
689
|
|
|
): ProjectedPoint { |
690
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
691
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
692
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
693
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
694
|
1 |
|
$heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
695
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
696
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
697
|
|
|
|
698
|
1 |
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
|
|
|
|
699
|
1 |
|
$rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
700
|
1 |
|
$rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2); |
701
|
|
|
|
702
|
1 |
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
703
|
1 |
|
$nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
704
|
|
|
|
705
|
1 |
|
$A = 1 + $heightOrigin / $nuOrigin; |
706
|
1 |
|
$B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
707
|
1 |
|
$G = 1 + $heightOrigin / $rhoMid; |
708
|
|
|
|
709
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * ($longitude - $longitudeOrigin); |
710
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * ($longitude - $longitudeOrigin) ** 2 * $nu ** 2 * cos($latitude) ** 2)); |
711
|
|
|
|
712
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
713
|
|
|
} |
714
|
|
|
|
715
|
|
|
/** |
716
|
|
|
* Equal Earth. |
717
|
|
|
*/ |
718
|
1 |
|
public function equalEarth( |
719
|
|
|
Projected $to, |
720
|
|
|
Angle $longitudeOfNaturalOrigin, |
721
|
|
|
Length $falseEasting, |
722
|
|
|
Length $falseNorthing |
723
|
|
|
): ProjectedPoint { |
724
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
725
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
726
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
727
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
728
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
729
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
730
|
|
|
|
731
|
1 |
|
$q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
732
|
1 |
|
$qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
733
|
1 |
|
$beta = self::asin($q / $qP); |
734
|
1 |
|
$theta = self::asin(sin($beta) * sqrt(3) / 2); |
735
|
1 |
|
$Rq = $a * sqrt($qP / 2); |
736
|
|
|
|
737
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * ($longitude - $longitudeOrigin) * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2))); |
738
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)); |
739
|
|
|
|
740
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
741
|
|
|
} |
742
|
|
|
|
743
|
|
|
/** |
744
|
|
|
* Equidistant Cylindrical |
745
|
|
|
* See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
746
|
|
|
*/ |
747
|
1 |
|
public function equidistantCylindrical( |
748
|
|
|
Projected $to, |
749
|
|
|
Angle $latitudeOf1stStandardParallel, |
750
|
|
|
Angle $longitudeOfNaturalOrigin, |
751
|
|
|
Length $falseEasting, |
752
|
|
|
Length $falseNorthing |
753
|
|
|
): ProjectedPoint { |
754
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
755
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
756
|
1 |
|
$latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
757
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
758
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
759
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
760
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
761
|
1 |
|
$e4 = $e ** 4; |
762
|
1 |
|
$e6 = $e ** 6; |
763
|
1 |
|
$e8 = $e ** 8; |
764
|
1 |
|
$e10 = $e ** 10; |
765
|
1 |
|
$e12 = $e ** 12; |
766
|
1 |
|
$e14 = $e ** 14; |
767
|
|
|
|
768
|
1 |
|
$nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
769
|
|
|
|
770
|
|
|
$M = $a * ( |
771
|
1 |
|
(1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude + |
772
|
1 |
|
(-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) + |
773
|
1 |
|
(15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) + |
774
|
1 |
|
(-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) + |
775
|
1 |
|
(315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) + |
776
|
1 |
|
(-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) + |
777
|
1 |
|
(1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) + |
778
|
1 |
|
(-6435 / 234881024 * $e ** 14) * sin(14 * $latitude) |
779
|
|
|
); |
780
|
|
|
|
781
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * ($longitude - $longitudeOrigin); |
782
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $M; |
783
|
|
|
|
784
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
785
|
|
|
} |
786
|
|
|
|
787
|
|
|
/** |
788
|
|
|
* Guam Projection |
789
|
|
|
* Simplified form of Oblique Azimuthal Equidistant projection method. |
790
|
|
|
*/ |
791
|
1 |
|
public function guamProjection( |
792
|
|
|
Projected $to, |
793
|
|
|
Angle $latitudeOfNaturalOrigin, |
794
|
|
|
Angle $longitudeOfNaturalOrigin, |
795
|
|
|
Length $falseEasting, |
796
|
|
|
Length $falseNorthing |
797
|
|
|
): ProjectedPoint { |
798
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
799
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
800
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
801
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
802
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
803
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
804
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
805
|
1 |
|
$e4 = $e ** 4; |
806
|
1 |
|
$e6 = $e ** 6; |
807
|
|
|
|
808
|
1 |
|
$M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
809
|
1 |
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
810
|
1 |
|
$x = ($a * ($longitude - $longitudeOrigin) * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2); |
811
|
|
|
|
812
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $x; |
813
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
814
|
|
|
|
815
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
816
|
|
|
} |
817
|
|
|
|
818
|
|
|
/** |
819
|
|
|
* Krovak. |
820
|
|
|
*/ |
821
|
4 |
|
public function krovak( |
822
|
|
|
Projected $to, |
823
|
|
|
Angle $latitudeOfProjectionCentre, |
824
|
|
|
Angle $longitudeOfOrigin, |
825
|
|
|
Angle $coLatitudeOfConeAxis, |
826
|
|
|
Angle $latitudeOfPseudoStandardParallel, |
827
|
|
|
Scale $scaleFactorOnPseudoStandardParallel, |
828
|
|
|
Length $falseEasting, |
829
|
|
|
Length $falseNorthing |
830
|
|
|
): ProjectedPoint { |
831
|
4 |
|
$longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
832
|
4 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
833
|
4 |
|
$longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset; |
834
|
4 |
|
$latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
835
|
4 |
|
$longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
836
|
4 |
|
$alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
837
|
4 |
|
$latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
838
|
4 |
|
$kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
839
|
4 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
840
|
4 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
841
|
4 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
842
|
|
|
|
843
|
4 |
|
$A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
844
|
4 |
|
$B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
845
|
4 |
|
$upsilonO = self::asin(sin($latitudeC) / $B); |
846
|
4 |
|
$tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
847
|
4 |
|
$n = sin($latitudeP); |
848
|
4 |
|
$rO = $kP * $A / tan($latitudeP); |
849
|
|
|
|
850
|
4 |
|
$U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4); |
851
|
4 |
|
$V = $B * ($longitudeO - $longitude); |
852
|
4 |
|
$T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V)); |
853
|
4 |
|
$D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T)))); |
854
|
4 |
|
$theta = $n * $D; |
855
|
4 |
|
$r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n; |
856
|
4 |
|
$X = $r * cos($theta); |
857
|
4 |
|
$Y = $r * sin($theta); |
858
|
|
|
|
859
|
4 |
|
$westing = $Y + $falseEasting->asMetres()->getValue(); |
860
|
4 |
|
$southing = $X + $falseNorthing->asMetres()->getValue(); |
861
|
|
|
|
862
|
4 |
|
return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch); |
863
|
|
|
} |
864
|
|
|
|
865
|
|
|
/** |
866
|
|
|
* Krovak Modified |
867
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
868
|
|
|
* to be a map projection. |
869
|
|
|
*/ |
870
|
2 |
|
public function krovakModified( |
871
|
|
|
Projected $to, |
872
|
|
|
Angle $latitudeOfProjectionCentre, |
873
|
|
|
Angle $longitudeOfOrigin, |
874
|
|
|
Angle $coLatitudeOfConeAxis, |
875
|
|
|
Angle $latitudeOfPseudoStandardParallel, |
876
|
|
|
Scale $scaleFactorOnPseudoStandardParallel, |
877
|
|
|
Length $falseEasting, |
878
|
|
|
Length $falseNorthing, |
879
|
|
|
Length $ordinate1OfEvaluationPoint, |
880
|
|
|
Length $ordinate2OfEvaluationPoint, |
881
|
|
|
Coefficient $C1, |
882
|
|
|
Coefficient $C2, |
883
|
|
|
Coefficient $C3, |
884
|
|
|
Coefficient $C4, |
885
|
|
|
Coefficient $C5, |
886
|
|
|
Coefficient $C6, |
887
|
|
|
Coefficient $C7, |
888
|
|
|
Coefficient $C8, |
889
|
|
|
Coefficient $C9, |
890
|
|
|
Coefficient $C10 |
891
|
|
|
): ProjectedPoint { |
892
|
2 |
|
$asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
893
|
|
|
|
894
|
2 |
|
$westing = $asKrovak->getWesting()->asMetres()->getValue(); |
895
|
2 |
|
$southing = $asKrovak->getSouthing()->asMetres()->getValue(); |
896
|
2 |
|
$c1 = $C1->asUnity()->getValue(); |
897
|
2 |
|
$c2 = $C2->asUnity()->getValue(); |
898
|
2 |
|
$c3 = $C3->asUnity()->getValue(); |
899
|
2 |
|
$c4 = $C4->asUnity()->getValue(); |
900
|
2 |
|
$c5 = $C5->asUnity()->getValue(); |
901
|
2 |
|
$c6 = $C6->asUnity()->getValue(); |
902
|
2 |
|
$c7 = $C7->asUnity()->getValue(); |
903
|
2 |
|
$c8 = $C8->asUnity()->getValue(); |
904
|
2 |
|
$c9 = $C9->asUnity()->getValue(); |
905
|
2 |
|
$c10 = $C10->asUnity()->getValue(); |
906
|
|
|
|
907
|
2 |
|
$Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
908
|
2 |
|
$Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
909
|
|
|
|
910
|
2 |
|
$dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
911
|
2 |
|
$dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
912
|
|
|
|
913
|
2 |
|
$westing += $falseEasting->asMetres()->getValue() - $dY; |
914
|
2 |
|
$southing += $falseNorthing->asMetres()->getValue() - $dX; |
915
|
|
|
|
916
|
2 |
|
return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch); |
917
|
|
|
} |
918
|
|
|
|
919
|
|
|
/** |
920
|
|
|
* Lambert Azimuthal Equal Area |
921
|
|
|
* This is the ellipsoidal form of the projection. |
922
|
|
|
*/ |
923
|
1 |
|
public function lambertAzimuthalEqualArea( |
924
|
|
|
Projected $to, |
925
|
|
|
Angle $latitudeOfNaturalOrigin, |
926
|
|
|
Angle $longitudeOfNaturalOrigin, |
927
|
|
|
Length $falseEasting, |
928
|
|
|
Length $falseNorthing |
929
|
|
|
): ProjectedPoint { |
930
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
931
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
932
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
933
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
934
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
935
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
936
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
937
|
|
|
|
938
|
1 |
|
$q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
939
|
1 |
|
$qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
940
|
1 |
|
$qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
941
|
1 |
|
$beta = self::asin($q / $qP); |
942
|
1 |
|
$betaO = self::asin($qO / $qP); |
943
|
1 |
|
$Rq = $a * sqrt($qP / 2); |
944
|
1 |
|
$B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($longitude - $longitudeOrigin)))); |
945
|
1 |
|
$D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
946
|
|
|
|
947
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($longitude - $longitudeOrigin))); |
948
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($longitude - $longitudeOrigin))); |
949
|
|
|
|
950
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
951
|
|
|
} |
952
|
|
|
|
953
|
|
|
/** |
954
|
|
|
* Lambert Azimuthal Equal Area (Spherical) |
955
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
956
|
|
|
* (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
957
|
|
|
* methods. |
958
|
|
|
*/ |
959
|
1 |
|
public function lambertAzimuthalEqualAreaSpherical( |
960
|
|
|
Projected $to, |
961
|
|
|
Angle $latitudeOfNaturalOrigin, |
962
|
|
|
Angle $longitudeOfNaturalOrigin, |
963
|
|
|
Length $falseEasting, |
964
|
|
|
Length $falseNorthing |
965
|
|
|
): ProjectedPoint { |
966
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
967
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
968
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
969
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
970
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
971
|
|
|
|
972
|
1 |
|
$k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin))); |
973
|
|
|
|
974
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($longitude - $longitudeOrigin)); |
975
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin))); |
976
|
|
|
|
977
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
978
|
|
|
} |
979
|
|
|
|
980
|
|
|
/** |
981
|
|
|
* Lambert Conic Conformal (1SP). |
982
|
|
|
*/ |
983
|
1 |
|
public function lambertConicConformal1SP( |
984
|
|
|
Projected $to, |
985
|
|
|
Angle $latitudeOfNaturalOrigin, |
986
|
|
|
Angle $longitudeOfNaturalOrigin, |
987
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
988
|
|
|
Length $falseEasting, |
989
|
|
|
Length $falseNorthing |
990
|
|
|
): ProjectedPoint { |
991
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
992
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
993
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
994
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
995
|
1 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
996
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
997
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
998
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
999
|
|
|
|
1000
|
1 |
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
1001
|
1 |
|
$tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
1002
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1003
|
1 |
|
$n = sin($latitudeOrigin); |
1004
|
1 |
|
$F = $mO / ($n * $tO ** $n); |
1005
|
1 |
|
$rO = $a * $F * $tO ** $n * $kO; |
1006
|
1 |
|
$r = $a * $F * $t ** $n * $kO; |
1007
|
1 |
|
$theta = $n * ($longitude - $longitudeOrigin); |
1008
|
|
|
|
1009
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
1010
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
1011
|
|
|
|
1012
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1013
|
|
|
} |
1014
|
|
|
|
1015
|
|
|
/** |
1016
|
|
|
* Lambert Conic Conformal (2SP Belgium) |
1017
|
|
|
* In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
1018
|
|
|
* with appropriately modified parameter values. |
1019
|
|
|
*/ |
1020
|
1 |
|
public function lambertConicConformal2SPBelgium( |
1021
|
|
|
Projected $to, |
1022
|
|
|
Angle $latitudeOfFalseOrigin, |
1023
|
|
|
Angle $longitudeOfFalseOrigin, |
1024
|
|
|
Angle $latitudeOf1stStandardParallel, |
1025
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1026
|
|
|
Length $eastingAtFalseOrigin, |
1027
|
|
|
Length $northingAtFalseOrigin |
1028
|
|
|
): ProjectedPoint { |
1029
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1030
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1031
|
1 |
|
$lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1032
|
1 |
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1033
|
1 |
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1034
|
1 |
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1035
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1036
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1037
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1038
|
|
|
|
1039
|
1 |
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1040
|
1 |
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1041
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1042
|
1 |
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1043
|
1 |
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1044
|
1 |
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1045
|
1 |
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1046
|
1 |
|
$F = $m1 / ($n * $t1 ** $n); |
1047
|
1 |
|
$r = $a * $F * $t ** $n; |
1048
|
1 |
|
$rF = $a * $F * $tF ** $n; |
1049
|
1 |
|
if (is_nan($rF)) { |
1050
|
1 |
|
$rF = 0; |
1051
|
|
|
} |
1052
|
1 |
|
$theta = ($n * ($longitude - $lambdaF)) - (new ArcSecond(29.2985))->asRadians()->getValue(); |
1053
|
|
|
|
1054
|
1 |
|
$easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
1055
|
1 |
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
1056
|
|
|
|
1057
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1058
|
|
|
} |
1059
|
|
|
|
1060
|
|
|
/** |
1061
|
|
|
* Lambert Conic Conformal (2SP Michigan). |
1062
|
|
|
*/ |
1063
|
1 |
|
public function lambertConicConformal2SPMichigan( |
1064
|
|
|
Projected $to, |
1065
|
|
|
Angle $latitudeOfFalseOrigin, |
1066
|
|
|
Angle $longitudeOfFalseOrigin, |
1067
|
|
|
Angle $latitudeOf1stStandardParallel, |
1068
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1069
|
|
|
Length $eastingAtFalseOrigin, |
1070
|
|
|
Length $northingAtFalseOrigin, |
1071
|
|
|
Scale $ellipsoidScalingFactor |
1072
|
|
|
): ProjectedPoint { |
1073
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1074
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1075
|
1 |
|
$lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1076
|
1 |
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1077
|
1 |
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1078
|
1 |
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1079
|
1 |
|
$K = $ellipsoidScalingFactor->asUnity()->getValue(); |
1080
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1081
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1082
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1083
|
|
|
|
1084
|
1 |
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1085
|
1 |
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1086
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1087
|
1 |
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1088
|
1 |
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1089
|
1 |
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1090
|
1 |
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1091
|
1 |
|
$F = $m1 / ($n * $t1 ** $n); |
1092
|
1 |
|
$r = $a * $K * $F * $t ** $n; |
1093
|
1 |
|
$rF = $a * $K * $F * $tF ** $n; |
1094
|
1 |
|
$theta = $n * ($longitude - $lambdaF); |
1095
|
|
|
|
1096
|
1 |
|
$easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
1097
|
1 |
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
1098
|
|
|
|
1099
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1100
|
|
|
} |
1101
|
|
|
|
1102
|
|
|
/** |
1103
|
|
|
* Lambert Conic Conformal (2SP). |
1104
|
|
|
*/ |
1105
|
1 |
|
public function lambertConicConformal2SP( |
1106
|
|
|
Projected $to, |
1107
|
|
|
Angle $latitudeOfFalseOrigin, |
1108
|
|
|
Angle $longitudeOfFalseOrigin, |
1109
|
|
|
Angle $latitudeOf1stStandardParallel, |
1110
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1111
|
|
|
Length $eastingAtFalseOrigin, |
1112
|
|
|
Length $northingAtFalseOrigin |
1113
|
|
|
): ProjectedPoint { |
1114
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1115
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1116
|
1 |
|
$lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1117
|
1 |
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1118
|
1 |
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1119
|
1 |
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1120
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1121
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1122
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1123
|
|
|
|
1124
|
1 |
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1125
|
1 |
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1126
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1127
|
1 |
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1128
|
1 |
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1129
|
1 |
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1130
|
1 |
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1131
|
1 |
|
$F = $m1 / ($n * $t1 ** $n); |
1132
|
1 |
|
$r = $a * $F * $t ** $n; |
1133
|
1 |
|
$rF = $a * $F * $tF ** $n; |
1134
|
1 |
|
$theta = $n * ($longitude - $lambdaF); |
1135
|
|
|
|
1136
|
1 |
|
$easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
1137
|
1 |
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
1138
|
|
|
|
1139
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1140
|
|
|
} |
1141
|
|
|
|
1142
|
|
|
/** |
1143
|
|
|
* Lambert Conic Conformal (West Orientated). |
1144
|
|
|
*/ |
1145
|
|
|
public function lambertConicConformalWestOrientated( |
1146
|
|
|
Projected $to, |
1147
|
|
|
Angle $latitudeOfNaturalOrigin, |
1148
|
|
|
Angle $longitudeOfNaturalOrigin, |
1149
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1150
|
|
|
Length $falseEasting, |
1151
|
|
|
Length $falseNorthing |
1152
|
|
|
): ProjectedPoint { |
1153
|
|
|
$latitude = $this->latitude->asRadians()->getValue(); |
1154
|
|
|
$longitude = $this->longitude->asRadians()->getValue(); |
1155
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1156
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1157
|
|
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1158
|
|
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1159
|
|
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1160
|
|
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1161
|
|
|
|
1162
|
|
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
1163
|
|
|
$tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
1164
|
|
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1165
|
|
|
$n = sin($latitudeOrigin); |
1166
|
|
|
$F = $mO / ($n * $tO ** $n); |
1167
|
|
|
$rO = $a * $F * $tO ** $n ** $kO; |
1168
|
|
|
$r = $a * $F * $t ** $n ** $kO; |
1169
|
|
|
$theta = $n * ($longitude - $longitudeOrigin); |
1170
|
|
|
|
1171
|
|
|
$westing = $falseEasting->asMetres()->getValue() - $r * sin($theta); |
1172
|
|
|
$northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
1173
|
|
|
|
1174
|
|
|
return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch); |
1175
|
|
|
} |
1176
|
|
|
|
1177
|
|
|
/** |
1178
|
|
|
* Lambert Conic Near-Conformal |
1179
|
|
|
* The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
1180
|
|
|
* series expansion of the projection formulae. |
1181
|
|
|
*/ |
1182
|
1 |
|
public function lambertConicNearConformal( |
1183
|
|
|
Projected $to, |
1184
|
|
|
Angle $latitudeOfNaturalOrigin, |
1185
|
|
|
Angle $longitudeOfNaturalOrigin, |
1186
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1187
|
|
|
Length $falseEasting, |
1188
|
|
|
Length $falseNorthing |
1189
|
|
|
): ProjectedPoint { |
1190
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1191
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1192
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1193
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1194
|
1 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1195
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1196
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1197
|
1 |
|
$f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening(); |
1198
|
|
|
|
1199
|
1 |
|
$n = $f / (2 - $f); |
1200
|
1 |
|
$rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
1201
|
1 |
|
$nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
1202
|
1 |
|
$A = 1 / (6 * $rhoO * $nuO); |
1203
|
1 |
|
$APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
1204
|
1 |
|
$BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
1205
|
1 |
|
$CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
1206
|
1 |
|
$DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
1207
|
1 |
|
$EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
1208
|
1 |
|
$rO = $kO * $nuO / tan($latitudeOrigin); |
1209
|
1 |
|
$sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
1210
|
1 |
|
$s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude); |
1211
|
1 |
|
$m = $s - $sO; |
1212
|
1 |
|
$M = $kO * ($m + $A * $m ** 3); |
1213
|
1 |
|
$r = $rO - $M; |
1214
|
1 |
|
$theta = ($longitude - $longitudeOrigin) * sin($latitudeOrigin); |
1215
|
|
|
|
1216
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
1217
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2); |
1218
|
|
|
|
1219
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1220
|
|
|
} |
1221
|
|
|
|
1222
|
|
|
/** |
1223
|
|
|
* Lambert Cylindrical Equal Area |
1224
|
|
|
* This is the ellipsoidal form of the projection. |
1225
|
|
|
*/ |
1226
|
1 |
|
public function lambertCylindricalEqualArea( |
1227
|
|
|
Projected $to, |
1228
|
|
|
Angle $latitudeOf1stStandardParallel, |
1229
|
|
|
Angle $longitudeOfNaturalOrigin, |
1230
|
|
|
Length $falseEasting, |
1231
|
|
|
Length $falseNorthing |
1232
|
|
|
): ProjectedPoint { |
1233
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1234
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1235
|
1 |
|
$latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1236
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1237
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1238
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1239
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1240
|
|
|
|
1241
|
1 |
|
$k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
1242
|
1 |
|
$q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
1243
|
|
|
|
1244
|
1 |
|
$x = $a * $k * ($longitude - $longitudeOrigin); |
1245
|
1 |
|
$y = $a * $q / (2 * $k); |
1246
|
|
|
|
1247
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $x; |
1248
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $y; |
1249
|
|
|
|
1250
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1251
|
|
|
} |
1252
|
|
|
|
1253
|
|
|
/** |
1254
|
|
|
* Modified Azimuthal Equidistant |
1255
|
|
|
* Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
1256
|
|
|
* distances over which these projections are used (under 800km) this modification introduces no significant error. |
1257
|
|
|
*/ |
1258
|
1 |
|
public function modifiedAzimuthalEquidistant( |
1259
|
|
|
Projected $to, |
1260
|
|
|
Angle $latitudeOfNaturalOrigin, |
1261
|
|
|
Angle $longitudeOfNaturalOrigin, |
1262
|
|
|
Length $falseEasting, |
1263
|
|
|
Length $falseNorthing |
1264
|
|
|
): ProjectedPoint { |
1265
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1266
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1267
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1268
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1269
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1270
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1271
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1272
|
|
|
|
1273
|
1 |
|
$nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
1274
|
1 |
|
$nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
1275
|
1 |
|
$psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude))); |
1276
|
1 |
|
$alpha = atan2(sin($longitude - $longitudeOrigin), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($longitude - $longitudeOrigin))); |
1277
|
1 |
|
$G = $e * sin($latitudeOrigin) / sqrt(1 - $e2); |
1278
|
1 |
|
$H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2); |
1279
|
|
|
|
1280
|
1 |
|
if (sin($alpha) === 0.0) { |
1281
|
|
|
$s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha)); |
1282
|
|
|
} else { |
1283
|
1 |
|
$s = self::asin(sin($longitude - $longitudeOrigin) * cos($psi) / sin($alpha)); |
1284
|
|
|
} |
1285
|
|
|
|
1286
|
1 |
|
$c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H)); |
1287
|
|
|
|
1288
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha); |
1289
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha); |
1290
|
|
|
|
1291
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1292
|
|
|
} |
1293
|
|
|
|
1294
|
|
|
/** |
1295
|
|
|
* Oblique Stereographic |
1296
|
|
|
* This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
1297
|
|
|
* Projections - A Working Manual" by John P. Snyder. |
1298
|
|
|
*/ |
1299
|
1 |
|
public function obliqueStereographic( |
1300
|
|
|
Projected $to, |
1301
|
|
|
Angle $latitudeOfNaturalOrigin, |
1302
|
|
|
Angle $longitudeOfNaturalOrigin, |
1303
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1304
|
|
|
Length $falseEasting, |
1305
|
|
|
Length $falseNorthing |
1306
|
|
|
): ProjectedPoint { |
1307
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1308
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1309
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1310
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1311
|
1 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1312
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1313
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1314
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1315
|
|
|
|
1316
|
1 |
|
$rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
1317
|
1 |
|
$nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
1318
|
1 |
|
$R = sqrt($rhoOrigin * $nuOrigin); |
1319
|
|
|
|
1320
|
1 |
|
$n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
1321
|
1 |
|
$S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
1322
|
1 |
|
$S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
1323
|
1 |
|
$w1 = ($S1 * ($S2 ** $e)) ** $n; |
1324
|
1 |
|
$c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
1325
|
1 |
|
$w2 = $c * $w1; |
1326
|
1 |
|
$chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
1327
|
|
|
|
1328
|
1 |
|
$lambda = $n * ($longitude - $longitudeOrigin) + $longitudeOrigin; |
1329
|
|
|
|
1330
|
1 |
|
$Sa = (1 + sin($latitude)) / (1 - sin($latitude)); |
1331
|
1 |
|
$Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude)); |
1332
|
1 |
|
$w = $c * ($Sa * ($Sb ** $e)) ** $n; |
1333
|
1 |
|
$chi = self::asin(($w - 1) / ($w + 1)); |
1334
|
|
|
|
1335
|
1 |
|
$B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin)); |
1336
|
|
|
|
1337
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B; |
1338
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B; |
1339
|
|
|
|
1340
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1341
|
|
|
} |
1342
|
|
|
|
1343
|
|
|
/** |
1344
|
|
|
* Polar Stereographic (variant A) |
1345
|
|
|
* Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
1346
|
|
|
*/ |
1347
|
1 |
|
public function polarStereographicVariantA( |
1348
|
|
|
Projected $to, |
1349
|
|
|
Angle $latitudeOfNaturalOrigin, |
1350
|
|
|
Angle $longitudeOfNaturalOrigin, |
1351
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1352
|
|
|
Length $falseEasting, |
1353
|
|
|
Length $falseNorthing |
1354
|
|
|
): ProjectedPoint { |
1355
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1356
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1357
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1358
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1359
|
1 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1360
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1361
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1362
|
|
|
|
1363
|
1 |
|
if ($latitudeOrigin < 0) { |
1364
|
|
|
$t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1365
|
|
|
} else { |
1366
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1367
|
|
|
} |
1368
|
1 |
|
$rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
1369
|
|
|
|
1370
|
1 |
|
$theta = $longitude - $longitudeOrigin; |
1371
|
1 |
|
$dE = $rho * sin($theta); |
1372
|
1 |
|
$dN = $rho * cos($theta); |
1373
|
|
|
|
1374
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $dE; |
1375
|
1 |
|
if ($latitudeOrigin < 0) { |
1376
|
|
|
$northing = $falseNorthing->asMetres()->getValue() + $dN; |
1377
|
|
|
} else { |
1378
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() - $dN; |
1379
|
|
|
} |
1380
|
|
|
|
1381
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1382
|
|
|
} |
1383
|
|
|
|
1384
|
|
|
/** |
1385
|
|
|
* Polar Stereographic (variant B). |
1386
|
|
|
*/ |
1387
|
1 |
|
public function polarStereographicVariantB( |
1388
|
|
|
Projected $to, |
1389
|
|
|
Angle $latitudeOfStandardParallel, |
1390
|
|
|
Angle $longitudeOfOrigin, |
1391
|
|
|
Length $falseEasting, |
1392
|
|
|
Length $falseNorthing |
1393
|
|
|
): ProjectedPoint { |
1394
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1395
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1396
|
1 |
|
$firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
1397
|
1 |
|
$longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
1398
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1399
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1400
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1401
|
|
|
|
1402
|
1 |
|
if ($firstStandardParallel < 0) { |
1403
|
1 |
|
$tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
1404
|
1 |
|
$t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1405
|
|
|
} else { |
1406
|
|
|
$tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
1407
|
|
|
$t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1408
|
|
|
} |
1409
|
1 |
|
$mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
1410
|
1 |
|
$kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
1411
|
|
|
|
1412
|
1 |
|
$rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
1413
|
|
|
|
1414
|
1 |
|
$theta = $longitude - $longitudeOrigin; |
1415
|
1 |
|
$dE = $rho * sin($theta); |
1416
|
1 |
|
$dN = $rho * cos($theta); |
1417
|
|
|
|
1418
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $dE; |
1419
|
1 |
|
if ($firstStandardParallel < 0) { |
1420
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $dN; |
1421
|
|
|
} else { |
1422
|
|
|
$northing = $falseNorthing->asMetres()->getValue() - $dN; |
1423
|
|
|
} |
1424
|
|
|
|
1425
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1426
|
|
|
} |
1427
|
|
|
|
1428
|
|
|
/** |
1429
|
|
|
* Polar Stereographic (variant C). |
1430
|
|
|
*/ |
1431
|
1 |
|
public function polarStereographicVariantC( |
1432
|
|
|
Projected $to, |
1433
|
|
|
Angle $latitudeOfStandardParallel, |
1434
|
|
|
Angle $longitudeOfOrigin, |
1435
|
|
|
Length $eastingAtFalseOrigin, |
1436
|
|
|
Length $northingAtFalseOrigin |
1437
|
|
|
): ProjectedPoint { |
1438
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1439
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1440
|
1 |
|
$firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
1441
|
1 |
|
$longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
1442
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1443
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1444
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1445
|
|
|
|
1446
|
1 |
|
if ($firstStandardParallel < 0) { |
1447
|
1 |
|
$tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
1448
|
1 |
|
$t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1449
|
|
|
} else { |
1450
|
|
|
$tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
1451
|
|
|
$t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
1452
|
|
|
} |
1453
|
1 |
|
$mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
1454
|
|
|
|
1455
|
1 |
|
$rhoF = $a * $mF; |
1456
|
1 |
|
$rho = $rhoF * $t / $tF; |
1457
|
|
|
|
1458
|
1 |
|
$theta = $longitude - $longitudeOrigin; |
1459
|
1 |
|
$dE = $rho * sin($theta); |
1460
|
1 |
|
$dN = $rho * cos($theta); |
1461
|
|
|
|
1462
|
1 |
|
$easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE; |
1463
|
1 |
|
if ($firstStandardParallel < 0) { |
1464
|
1 |
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN; |
1465
|
|
|
} else { |
1466
|
|
|
$northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN; |
1467
|
|
|
} |
1468
|
|
|
|
1469
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1470
|
|
|
} |
1471
|
|
|
|
1472
|
|
|
/** |
1473
|
|
|
* Popular Visualisation Pseudo Mercator |
1474
|
|
|
* Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
1475
|
|
|
*/ |
1476
|
1 |
|
public function popularVisualisationPseudoMercator( |
1477
|
|
|
Projected $to, |
1478
|
|
|
Angle $latitudeOfNaturalOrigin, |
1479
|
|
|
Angle $longitudeOfNaturalOrigin, |
1480
|
|
|
Length $falseEasting, |
1481
|
|
|
Length $falseNorthing |
1482
|
|
|
): ProjectedPoint { |
1483
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1484
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1485
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|
|
|
|
1486
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1487
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1488
|
|
|
|
1489
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin); |
1490
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2)); |
1491
|
|
|
|
1492
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1493
|
|
|
} |
1494
|
|
|
|
1495
|
|
|
/** |
1496
|
|
|
* Mercator (variant A) |
1497
|
|
|
* Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
1498
|
|
|
* Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
1499
|
|
|
* completeness in CRS labelling. |
1500
|
|
|
*/ |
1501
|
1 |
|
public function mercatorVariantA( |
1502
|
|
|
Projected $to, |
1503
|
|
|
Angle $latitudeOfNaturalOrigin, |
1504
|
|
|
Angle $longitudeOfNaturalOrigin, |
1505
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1506
|
|
|
Length $falseEasting, |
1507
|
|
|
Length $falseNorthing |
1508
|
|
|
): ProjectedPoint { |
1509
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1510
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1511
|
|
|
|
1512
|
1 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|
|
|
|
1513
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1514
|
1 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1515
|
|
|
|
1516
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1517
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1518
|
|
|
|
1519
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin); |
1520
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1521
|
|
|
|
1522
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1523
|
|
|
} |
1524
|
|
|
|
1525
|
|
|
/** |
1526
|
|
|
* Mercator (variant B) |
1527
|
|
|
* Used for most nautical charts. |
1528
|
|
|
*/ |
1529
|
1 |
|
public function mercatorVariantB( |
1530
|
|
|
Projected $to, |
1531
|
|
|
Angle $latitudeOf1stStandardParallel, |
1532
|
|
|
Angle $longitudeOfNaturalOrigin, |
1533
|
|
|
Length $falseEasting, |
1534
|
|
|
Length $falseNorthing |
1535
|
|
|
): ProjectedPoint { |
1536
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1537
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1538
|
1 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1539
|
1 |
|
$firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1540
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1541
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1542
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1543
|
|
|
|
1544
|
1 |
|
$kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
1545
|
|
|
|
1546
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin); |
1547
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1548
|
|
|
|
1549
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1550
|
|
|
} |
1551
|
|
|
|
1552
|
|
|
/** |
1553
|
|
|
* Longitude rotation |
1554
|
|
|
* This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
1555
|
|
|
* value to the longitude value of the point in the source system. |
1556
|
|
|
*/ |
1557
|
1 |
|
public function longitudeRotation( |
1558
|
|
|
Geographic $to, |
1559
|
|
|
Angle $longitudeOffset |
1560
|
|
|
): self { |
1561
|
1 |
|
$newLongitude = $this->longitude->add($longitudeOffset); |
1562
|
1 |
|
if ($newLongitude->asDegrees()->getValue() < -180) { |
1563
|
|
|
$newLongitude = $newLongitude->add(new Degree(360)); |
1564
|
|
|
} |
1565
|
|
|
|
1566
|
1 |
|
return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch); |
1567
|
|
|
} |
1568
|
|
|
|
1569
|
|
|
/** |
1570
|
|
|
* Hotine Oblique Mercator (variant A). |
1571
|
|
|
*/ |
1572
|
1 |
|
public function obliqueMercatorHotineVariantA( |
1573
|
|
|
Projected $to, |
1574
|
|
|
Angle $latitudeOfProjectionCentre, |
1575
|
|
|
Angle $longitudeOfProjectionCentre, |
1576
|
|
|
Angle $azimuthOfInitialLine, |
1577
|
|
|
Angle $angleFromRectifiedToSkewGrid, |
1578
|
|
|
Scale $scaleFactorOnInitialLine, |
1579
|
|
|
Length $falseEasting, |
1580
|
|
|
Length $falseNorthing |
1581
|
|
|
): ProjectedPoint { |
1582
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1583
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1584
|
1 |
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1585
|
1 |
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1586
|
1 |
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1587
|
1 |
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1588
|
1 |
|
$gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
1589
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1590
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1591
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1592
|
|
|
|
1593
|
1 |
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1594
|
1 |
|
$A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
1595
|
1 |
|
$tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
1596
|
1 |
|
$D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
1597
|
1 |
|
$DD = max(1, $D ** 2); |
1598
|
1 |
|
$F = $D + sqrt($DD - 1) * static::sign($latC); |
1599
|
1 |
|
$H = $F * ($tO) ** $B; |
1600
|
1 |
|
$G = ($F - 1 / $F) / 2; |
1601
|
1 |
|
$gammaO = self::asin(sin($alphaC) / $D); |
1602
|
1 |
|
$lonO = $lonC - (self::asin($G * tan($gammaO))) / $B; |
1603
|
|
|
|
1604
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1605
|
1 |
|
$Q = $H / $t ** $B; |
1606
|
1 |
|
$S = ($Q - 1 / $Q) / 2; |
1607
|
1 |
|
$T = ($Q + 1 / $Q) / 2; |
1608
|
1 |
|
$V = sin($B * ($longitude - $lonO)); |
1609
|
1 |
|
$U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
1610
|
1 |
|
$v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
1611
|
1 |
|
$u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B; |
1612
|
|
|
|
1613
|
1 |
|
$easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue(); |
1614
|
1 |
|
$northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue(); |
1615
|
|
|
|
1616
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1617
|
|
|
} |
1618
|
|
|
|
1619
|
|
|
/** |
1620
|
|
|
* Hotine Oblique Mercator (variant B). |
1621
|
|
|
*/ |
1622
|
1 |
|
public function obliqueMercatorHotineVariantB( |
1623
|
|
|
Projected $to, |
1624
|
|
|
Angle $latitudeOfProjectionCentre, |
1625
|
|
|
Angle $longitudeOfProjectionCentre, |
1626
|
|
|
Angle $azimuthOfInitialLine, |
1627
|
|
|
Angle $angleFromRectifiedToSkewGrid, |
1628
|
|
|
Scale $scaleFactorOnInitialLine, |
1629
|
|
|
Length $eastingAtProjectionCentre, |
1630
|
|
|
Length $northingAtProjectionCentre |
1631
|
|
|
): ProjectedPoint { |
1632
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1633
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1634
|
1 |
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1635
|
1 |
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1636
|
1 |
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1637
|
1 |
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1638
|
1 |
|
$gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
1639
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1640
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1641
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1642
|
|
|
|
1643
|
1 |
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1644
|
1 |
|
$A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
1645
|
1 |
|
$tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
1646
|
1 |
|
$D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
1647
|
1 |
|
$DD = max(1, $D ** 2); |
1648
|
1 |
|
$F = $D + sqrt($DD - 1) * static::sign($latC); |
1649
|
1 |
|
$H = $F * ($tO) ** $B; |
1650
|
1 |
|
$G = ($F - 1 / $F) / 2; |
1651
|
1 |
|
$gammaO = self::asin(sin($alphaC) / $D); |
1652
|
1 |
|
$lonO = $lonC - (self::asin($G * tan($gammaO))) / $B; |
1653
|
1 |
|
$vC = 0; |
|
|
|
|
1654
|
1 |
|
if ($alphaC === M_PI / 2) { |
1655
|
|
|
$uC = $A * ($lonC - $lonO); |
1656
|
|
|
} else { |
1657
|
1 |
|
$uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC); |
1658
|
|
|
} |
1659
|
|
|
|
1660
|
1 |
|
$t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
1661
|
1 |
|
$Q = $H / $t ** $B; |
1662
|
1 |
|
$S = ($Q - 1 / $Q) / 2; |
1663
|
1 |
|
$T = ($Q + 1 / $Q) / 2; |
1664
|
1 |
|
$V = sin($B * ($longitude - $lonO)); |
1665
|
1 |
|
$U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
1666
|
1 |
|
$v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
1667
|
|
|
|
1668
|
1 |
|
if ($alphaC === M_PI / 2) { |
1669
|
|
|
if ($longitude === $lonC) { |
1670
|
|
|
$u = 0; |
1671
|
|
|
} else { |
1672
|
|
|
$u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude)); |
1673
|
|
|
} |
1674
|
|
|
} else { |
1675
|
1 |
|
$u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC)); |
1676
|
|
|
} |
1677
|
|
|
|
1678
|
1 |
|
$easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue(); |
1679
|
1 |
|
$northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue(); |
1680
|
|
|
|
1681
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1682
|
|
|
} |
1683
|
|
|
|
1684
|
|
|
/** |
1685
|
|
|
* Laborde Oblique Mercator. |
1686
|
|
|
*/ |
1687
|
1 |
|
public function obliqueMercatorLaborde( |
1688
|
|
|
Projected $to, |
1689
|
|
|
Angle $latitudeOfProjectionCentre, |
1690
|
|
|
Angle $longitudeOfProjectionCentre, |
1691
|
|
|
Angle $azimuthOfInitialLine, |
1692
|
|
|
Scale $scaleFactorOnInitialLine, |
1693
|
|
|
Length $falseEasting, |
1694
|
|
|
Length $falseNorthing |
1695
|
|
|
): ProjectedPoint { |
1696
|
1 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1697
|
1 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1698
|
1 |
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1699
|
1 |
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1700
|
1 |
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1701
|
1 |
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1702
|
1 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1703
|
1 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1704
|
1 |
|
$e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared(); |
1705
|
|
|
|
1706
|
1 |
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1707
|
1 |
|
$latS = self::asin(sin($latC) / $B); |
1708
|
1 |
|
$R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
1709
|
1 |
|
$C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
1710
|
|
|
|
1711
|
1 |
|
$L = $B * ($longitude - $lonC); |
1712
|
1 |
|
$q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1713
|
1 |
|
$P = 2 * atan(M_E ** $q) - M_PI / 2; |
1714
|
1 |
|
$U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS); |
1715
|
1 |
|
$V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS); |
1716
|
1 |
|
$W = cos($P) * sin($L); |
1717
|
1 |
|
$d = sqrt($U ** 2 + $V ** 2); |
1718
|
1 |
|
if ($d === 0.0) { |
1719
|
|
|
$LPrime = 0; |
1720
|
|
|
$PPrime = static::sign($W) * M_PI / 2; |
1721
|
|
|
} else { |
1722
|
1 |
|
$LPrime = 2 * atan($V / ($U + $d)); |
1723
|
1 |
|
$PPrime = atan($W / $d); |
1724
|
|
|
} |
1725
|
1 |
|
$H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2))); |
1726
|
1 |
|
$G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
1727
|
|
|
|
1728
|
1 |
|
$easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary(); |
1729
|
1 |
|
$northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal(); |
1730
|
|
|
|
1731
|
1 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1732
|
|
|
} |
1733
|
|
|
|
1734
|
|
|
/** |
1735
|
|
|
* Transverse Mercator. |
1736
|
|
|
*/ |
1737
|
7 |
|
public function transverseMercator( |
1738
|
|
|
Projected $to, |
1739
|
|
|
Angle $latitudeOfNaturalOrigin, |
1740
|
|
|
Angle $longitudeOfNaturalOrigin, |
1741
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1742
|
|
|
Length $falseEasting, |
1743
|
|
|
Length $falseNorthing |
1744
|
|
|
): ProjectedPoint { |
1745
|
7 |
|
$latitude = $this->latitude->asRadians()->getValue(); |
1746
|
7 |
|
$longitude = $this->longitude->asRadians()->getValue(); |
1747
|
7 |
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1748
|
7 |
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1749
|
7 |
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1750
|
7 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1751
|
7 |
|
$e = $this->crs->getDatum()->getEllipsoid()->getEccentricity(); |
1752
|
7 |
|
$f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening(); |
1753
|
|
|
|
1754
|
7 |
|
$n = $f / (2 - $f); |
1755
|
7 |
|
$B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64); |
1756
|
|
|
|
1757
|
7 |
|
$h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4; |
1758
|
7 |
|
$h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4; |
1759
|
7 |
|
$h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4; |
1760
|
7 |
|
$h4 = (49561 / 161280) * $n ** 4; |
1761
|
|
|
|
1762
|
7 |
|
if ($latitudeOrigin === 0.0) { |
|
|
|
|
1763
|
5 |
|
$mO = 0; |
1764
|
2 |
|
} elseif ($latitudeOrigin === M_PI / 2) { |
1765
|
|
|
$mO = $B * M_PI / 2; |
1766
|
2 |
|
} elseif ($latitudeOrigin === -M_PI / 2) { |
1767
|
|
|
$mO = $B * -M_PI / 2; |
1768
|
|
|
} else { |
1769
|
2 |
|
$qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
1770
|
2 |
|
$betaO = atan(sinh($qO)); |
1771
|
2 |
|
$xiO0 = self::asin(sin($betaO)); |
1772
|
2 |
|
$xiO1 = $h1 * sin(2 * $xiO0); |
1773
|
2 |
|
$xiO2 = $h2 * sin(4 * $xiO0); |
1774
|
2 |
|
$xiO3 = $h3 * sin(6 * $xiO0); |
1775
|
2 |
|
$xiO4 = $h4 * sin(8 * $xiO0); |
1776
|
2 |
|
$xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4; |
1777
|
2 |
|
$mO = $B * $xiO; |
1778
|
|
|
} |
1779
|
|
|
|
1780
|
7 |
|
$Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude))); |
1781
|
7 |
|
$beta = atan(sinh($Q)); |
1782
|
7 |
|
$eta0 = atanh(cos($beta) * sin($longitude - $longitudeOrigin)); |
1783
|
7 |
|
$xi0 = self::asin(sin($beta) * cosh($eta0)); |
1784
|
7 |
|
$xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0); |
1785
|
7 |
|
$eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0); |
1786
|
7 |
|
$xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0); |
1787
|
7 |
|
$eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0); |
1788
|
7 |
|
$xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0); |
1789
|
7 |
|
$eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0); |
1790
|
7 |
|
$xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0); |
1791
|
7 |
|
$eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0); |
1792
|
7 |
|
$xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4; |
1793
|
7 |
|
$eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4; |
1794
|
|
|
|
1795
|
7 |
|
$easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta; |
1796
|
7 |
|
$northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO); |
1797
|
|
|
|
1798
|
7 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1799
|
|
|
} |
1800
|
|
|
|
1801
|
|
|
/** |
1802
|
|
|
* Transverse Mercator Zoned Grid System |
1803
|
|
|
* If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
1804
|
|
|
* each zone. |
1805
|
|
|
*/ |
1806
|
3 |
|
public function transverseMercatorZonedGrid( |
1807
|
|
|
Projected $to, |
1808
|
|
|
Angle $latitudeOfNaturalOrigin, |
1809
|
|
|
Angle $initialLongitude, |
1810
|
|
|
Angle $zoneWidth, |
1811
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1812
|
|
|
Length $falseEasting, |
1813
|
|
|
Length $falseNorthing |
1814
|
|
|
): ProjectedPoint { |
1815
|
3 |
|
$W = $zoneWidth->asDegrees()->getValue(); |
1816
|
3 |
|
$Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1; |
1817
|
|
|
|
1818
|
3 |
|
$longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
1819
|
3 |
|
$falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
1820
|
|
|
|
1821
|
3 |
|
return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
1822
|
|
|
} |
1823
|
|
|
|
1824
|
|
|
/** |
1825
|
|
|
* New Zealand Map Grid. |
1826
|
|
|
*/ |
1827
|
3 |
|
public function newZealandMapGrid( |
1828
|
|
|
Projected $to, |
1829
|
|
|
Angle $latitudeOfNaturalOrigin, |
1830
|
|
|
Angle $longitudeOfNaturalOrigin, |
1831
|
|
|
Length $falseEasting, |
1832
|
|
|
Length $falseNorthing |
1833
|
|
|
): ProjectedPoint { |
1834
|
3 |
|
$a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue(); |
1835
|
|
|
|
1836
|
3 |
|
$deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue(); |
1837
|
3 |
|
$deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians(); |
1838
|
|
|
|
1839
|
3 |
|
$deltaPsi = 0; |
1840
|
3 |
|
$deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1; |
1841
|
3 |
|
$deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2; |
1842
|
3 |
|
$deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3; |
1843
|
3 |
|
$deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4; |
1844
|
3 |
|
$deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5; |
1845
|
3 |
|
$deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6; |
1846
|
3 |
|
$deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7; |
1847
|
3 |
|
$deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8; |
1848
|
3 |
|
$deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9; |
1849
|
3 |
|
$deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10; |
1850
|
|
|
|
1851
|
3 |
|
$zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue()); |
1852
|
|
|
|
1853
|
3 |
|
$B1 = new ComplexNumber(0.7557853228, 0.0); |
1854
|
3 |
|
$B2 = new ComplexNumber(0.249204646, 0.003371507); |
1855
|
3 |
|
$B3 = new ComplexNumber(-0.001541739, 0.041058560); |
1856
|
3 |
|
$B4 = new ComplexNumber(-0.10162907, 0.01727609); |
1857
|
3 |
|
$B5 = new ComplexNumber(-0.26623489, -0.36249218); |
1858
|
3 |
|
$B6 = new ComplexNumber(-0.6870983, -1.1651967); |
1859
|
3 |
|
$z = new ComplexNumber(0, 0); |
1860
|
3 |
|
$z = $z->add($B1->multiply($zeta->pow(1))); |
1861
|
3 |
|
$z = $z->add($B2->multiply($zeta->pow(2))); |
1862
|
3 |
|
$z = $z->add($B3->multiply($zeta->pow(3))); |
1863
|
3 |
|
$z = $z->add($B4->multiply($zeta->pow(4))); |
1864
|
3 |
|
$z = $z->add($B5->multiply($zeta->pow(5))); |
1865
|
3 |
|
$z = $z->add($B6->multiply($zeta->pow(6))); |
1866
|
|
|
|
1867
|
3 |
|
$easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a; |
1868
|
3 |
|
$northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a; |
1869
|
|
|
|
1870
|
3 |
|
return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch); |
1871
|
|
|
} |
1872
|
|
|
|
1873
|
|
|
/** |
1874
|
|
|
* Madrid to ED50 polynomial. |
1875
|
|
|
*/ |
1876
|
1 |
|
public function madridToED50Polynomial( |
1877
|
|
|
Geographic2D $to, |
1878
|
|
|
Scale $A0, |
1879
|
|
|
Scale $A1, |
1880
|
|
|
Scale $A2, |
1881
|
|
|
Scale $A3, |
1882
|
|
|
Angle $B00, |
1883
|
|
|
Scale $B0, |
1884
|
|
|
Scale $B1, |
1885
|
|
|
Scale $B2, |
1886
|
|
|
Scale $B3 |
1887
|
|
|
): self { |
1888
|
1 |
|
$dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue()); |
1889
|
1 |
|
$dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue())); |
1890
|
|
|
|
1891
|
1 |
|
return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch); |
1892
|
|
|
} |
1893
|
|
|
|
1894
|
|
|
/** |
1895
|
|
|
* Geographic3D to 2D conversion. |
1896
|
|
|
*/ |
1897
|
1 |
|
public function threeDToTwoD( |
1898
|
|
|
Geographic $to |
1899
|
|
|
): self { |
1900
|
1 |
|
if ($to instanceof Geographic2D) { |
1901
|
1 |
|
return static::create($this->latitude, $this->longitude, null, $to, $this->epoch); |
1902
|
|
|
} |
1903
|
|
|
|
1904
|
|
|
return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch); |
1905
|
|
|
} |
1906
|
|
|
|
1907
|
|
|
/** |
1908
|
|
|
* Geographic2D offsets. |
1909
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
1910
|
|
|
* coordinate values of the point in the source system. |
1911
|
|
|
*/ |
1912
|
1 |
|
public function geographic2DOffsets( |
1913
|
|
|
Geographic $to, |
1914
|
|
|
Angle $latitudeOffset, |
1915
|
|
|
Angle $longitudeOffset |
1916
|
|
|
): self { |
1917
|
1 |
|
$toLatitude = $this->latitude->add($latitudeOffset); |
1918
|
1 |
|
$toLongitude = $this->longitude->add($longitudeOffset); |
1919
|
|
|
|
1920
|
1 |
|
return static::create($toLatitude, $toLongitude, null, $to, $this->epoch); |
1921
|
|
|
} |
1922
|
|
|
|
1923
|
|
|
/* |
1924
|
|
|
* Geographic2D with Height Offsets. |
1925
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
1926
|
|
|
* coordinate values of the point in the source system. |
1927
|
|
|
*/ |
1928
|
|
|
public function geographic2DWithHeightOffsets( |
1929
|
|
|
Compound $to, |
1930
|
|
|
Angle $latitudeOffset, |
1931
|
|
|
Angle $longitudeOffset, |
1932
|
|
|
Length $geoidUndulation |
1933
|
|
|
): CompoundPoint { |
1934
|
|
|
$toLatitude = $this->latitude->add($latitudeOffset); |
1935
|
|
|
$toLongitude = $this->longitude->add($longitudeOffset); |
1936
|
|
|
$toHeight = $this->height->add($geoidUndulation); |
|
|
|
|
1937
|
|
|
|
1938
|
|
|
$horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch); |
1939
|
|
|
$vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch); |
|
|
|
|
1940
|
|
|
|
1941
|
|
|
return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch); |
1942
|
|
|
} |
1943
|
|
|
|
1944
|
|
|
/** |
1945
|
|
|
* General polynomial of degree. |
1946
|
|
|
* @param Coefficient[] $powerCoefficients |
1947
|
|
|
*/ |
1948
|
2 |
|
public function generalPolynomial( |
1949
|
|
|
Geographic $to, |
1950
|
|
|
Angle $ordinate1OfEvaluationPointInSourceCRS, |
1951
|
|
|
Angle $ordinate2OfEvaluationPointInSourceCRS, |
1952
|
|
|
Angle $ordinate1OfEvaluationPointInTargetCRS, |
1953
|
|
|
Angle $ordinate2OfEvaluationPointInTargetCRS, |
1954
|
|
|
Scale $scalingFactorForSourceCRSCoordDifferences, |
1955
|
|
|
Scale $scalingFactorForTargetCRSCoordDifferences, |
1956
|
|
|
Scale $A0, |
1957
|
|
|
Scale $B0, |
1958
|
|
|
array $powerCoefficients |
1959
|
|
|
): self { |
1960
|
2 |
|
$xs = $this->latitude->getValue(); |
1961
|
2 |
|
$ys = $this->longitude->getValue(); |
1962
|
|
|
|
1963
|
2 |
|
$t = $this->generalPolynomialUnitless( |
1964
|
2 |
|
$xs, |
1965
|
|
|
$ys, |
1966
|
|
|
$ordinate1OfEvaluationPointInSourceCRS, |
1967
|
|
|
$ordinate2OfEvaluationPointInSourceCRS, |
1968
|
|
|
$ordinate1OfEvaluationPointInTargetCRS, |
1969
|
|
|
$ordinate2OfEvaluationPointInTargetCRS, |
1970
|
|
|
$scalingFactorForSourceCRSCoordDifferences, |
1971
|
|
|
$scalingFactorForTargetCRSCoordDifferences, |
1972
|
|
|
$A0, |
1973
|
|
|
$B0, |
1974
|
|
|
$powerCoefficients |
1975
|
|
|
); |
1976
|
|
|
|
1977
|
2 |
|
$xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
1978
|
2 |
|
if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) { |
1979
|
2 |
|
$xtUnit = Angle::EPSG_DEGREE; |
1980
|
|
|
} |
1981
|
2 |
|
$ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
1982
|
2 |
|
if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) { |
1983
|
2 |
|
$ytUnit = Angle::EPSG_DEGREE; |
1984
|
|
|
} |
1985
|
|
|
|
1986
|
2 |
|
return static::create( |
1987
|
2 |
|
Angle::makeUnit($t['xt'], $xtUnit), |
1988
|
2 |
|
Angle::makeUnit($t['yt'], $ytUnit), |
1989
|
2 |
|
$this->height, |
1990
|
|
|
$to, |
1991
|
2 |
|
$this->epoch |
1992
|
|
|
); |
1993
|
|
|
} |
1994
|
|
|
|
1995
|
|
|
/** |
1996
|
|
|
* Reversible polynomial. |
1997
|
|
|
* @param Coefficient[] $powerCoefficients |
1998
|
|
|
*/ |
1999
|
4 |
|
public function reversiblePolynomial( |
2000
|
|
|
Geographic $to, |
2001
|
|
|
Angle $ordinate1OfEvaluationPoint, |
2002
|
|
|
Angle $ordinate2OfEvaluationPoint, |
2003
|
|
|
Scale $scalingFactorForCoordDifferences, |
2004
|
|
|
Scale $A0, |
2005
|
|
|
Scale $B0, |
2006
|
|
|
$powerCoefficients |
2007
|
|
|
): self { |
2008
|
4 |
|
$xs = $this->latitude->getValue(); |
2009
|
4 |
|
$ys = $this->longitude->getValue(); |
2010
|
|
|
|
2011
|
4 |
|
$t = $this->reversiblePolynomialUnitless( |
2012
|
4 |
|
$xs, |
2013
|
|
|
$ys, |
2014
|
|
|
$ordinate1OfEvaluationPoint, |
2015
|
|
|
$ordinate2OfEvaluationPoint, |
2016
|
|
|
$scalingFactorForCoordDifferences, |
2017
|
|
|
$A0, |
2018
|
|
|
$B0, |
2019
|
|
|
$powerCoefficients |
2020
|
|
|
); |
2021
|
|
|
|
2022
|
4 |
|
$xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
2023
|
4 |
|
if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) { |
2024
|
4 |
|
$xtUnit = Angle::EPSG_DEGREE; |
2025
|
|
|
} |
2026
|
4 |
|
$ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
2027
|
4 |
|
if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) { |
2028
|
4 |
|
$ytUnit = Angle::EPSG_DEGREE; |
2029
|
|
|
} |
2030
|
|
|
|
2031
|
4 |
|
return static::create( |
2032
|
4 |
|
Angle::makeUnit($t['xt'], $xtUnit), |
2033
|
4 |
|
Angle::makeUnit($t['yt'], $ytUnit), |
2034
|
4 |
|
$this->height, |
2035
|
|
|
$to, |
2036
|
4 |
|
$this->epoch |
2037
|
|
|
); |
2038
|
|
|
} |
2039
|
|
|
|
2040
|
|
|
/** |
2041
|
|
|
* Axis Order Reversal. |
2042
|
|
|
*/ |
2043
|
|
|
public function axisReversal( |
2044
|
|
|
Geographic $to |
2045
|
|
|
) { |
2046
|
|
|
// axes are read in from the CRS, this is a book-keeping adjustment only |
2047
|
|
|
return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch); |
2048
|
|
|
} |
2049
|
|
|
|
2050
|
10 |
|
public function asGeographicValue(): GeographicValue |
2051
|
|
|
{ |
2052
|
10 |
|
return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
2053
|
|
|
} |
2054
|
|
|
} |
2055
|
|
|
|