Passed
Push — master ( 344e29...cbaf3e )
by Doug
38:02
created

ProjectedPoint::similarityTransformation()   A

Complexity

Conditions 2
Paths 2

Size

Total Lines 24
Code Lines 13

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 11
CRAP Score 2.0145

Importance

Changes 0
Metric Value
cc 2
eloc 13
nc 2
nop 6
dl 0
loc 24
ccs 11
cts 13
cp 0.8462
crap 2.0145
rs 9.8333
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use DateTime;
12
use DateTimeImmutable;
13
use DateTimeInterface;
14
use PHPCoord\CoordinateOperation\AutoConversion;
15
use PHPCoord\CoordinateOperation\ComplexNumber;
16
use PHPCoord\CoordinateOperation\ConvertiblePoint;
17
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
18
use PHPCoord\CoordinateReferenceSystem\Compound;
19
use PHPCoord\CoordinateReferenceSystem\Geocentric;
20
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
21
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
22
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
23
use PHPCoord\CoordinateReferenceSystem\Vertical;
24
use PHPCoord\CoordinateSystem\Axis;
25
use PHPCoord\CoordinateSystem\Cartesian;
26
use PHPCoord\Exception\InvalidAxesException;
27
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
28
use PHPCoord\Exception\UnknownAxisException;
29
use PHPCoord\UnitOfMeasure\Angle\Angle;
30
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
31
use PHPCoord\UnitOfMeasure\Angle\Degree;
32
use PHPCoord\UnitOfMeasure\Angle\Radian;
33
use PHPCoord\UnitOfMeasure\Length\Length;
34
use PHPCoord\UnitOfMeasure\Length\Metre;
35
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
36
use PHPCoord\UnitOfMeasure\Scale\Scale;
37
use PHPCoord\UnitOfMeasure\Scale\Unity;
38
39
use function abs;
40
use function asinh;
41
use function atan;
42
use function atan2;
43
use function atanh;
44
use function cos;
45
use function cosh;
46
use function count;
47
use function hypot;
48
use function implode;
49
use function is_nan;
50
use function log;
51
use function max;
52
use function sin;
53
use function sinh;
54
use function sqrt;
55
use function substr;
56
use function tan;
57
use function tanh;
58
59
use const M_E;
60
use const M_PI;
61
use const M_PI_2;
62
63
/**
64
 * Coordinate representing a point on a map projection.
65
 */
66
class ProjectedPoint extends Point implements ConvertiblePoint
67
{
68
    use AutoConversion {
69
        convert as protected autoConvert;
70
    }
71
72
    /**
73
     * Easting.
74
     */
75
    protected Length $easting;
76
77
    /**
78
     * Northing.
79
     */
80
    protected Length $northing;
81
82
    /**
83
     * Westing.
84
     */
85
    protected Length $westing;
86
87
    /**
88
     * Southing.
89
     */
90
    protected Length $southing;
91
92
    /**
93
     * Height.
94
     */
95
    protected ?Length $height;
96
97
    /**
98
     * Coordinate reference system.
99
     */
100
    protected Projected $crs;
101
102
    /**
103
     * Coordinate epoch (date for which the specified coordinates represented this point).
104
     */
105
    protected ?DateTimeImmutable $epoch;
106
107 5119
    protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height)
108
    {
109 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) {
110
            throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height');
111
        }
112
113 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) {
114
            throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given');
115
        }
116
117 5119
        $this->crs = $crs;
118
119 5119
        $eastingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::EASTING);
120 5119
        $westingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::WESTING);
121 5119
        $northingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::NORTHING);
122 5119
        $southingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::SOUTHING);
123
124 5119
        if ($easting && $eastingAxis) {
125 4948
            $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId());
126 4948
            $this->westing = $this->easting->multiply(-1);
127 171
        } elseif ($westing && $westingAxis) {
128 162
            $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId());
129 162
            $this->easting = $this->westing->multiply(-1);
130
        } else {
131 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
132
        }
133
134 5110
        if ($northing && $northingAxis) {
135 4975
            $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId());
136 4975
            $this->southing = $this->northing->multiply(-1);
137 135
        } elseif ($southing && $southingAxis) {
138 126
            $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId());
139 126
            $this->northing = $this->southing->multiply(-1);
140
        } else {
141 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
142
        }
143
144 5101
        if ($epoch instanceof DateTime) {
145 18
            $epoch = DateTimeImmutable::createFromMutable($epoch);
146
        }
147 5101
        $this->epoch = $epoch;
148
149 5101
        $this->height = $height;
150
    }
151
152 4894
    public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
153
    {
154 4894
        return match ($crs->getSRID()) {
155 4894
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

155
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

155
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
156 4894
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

156
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

156
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
157 4894
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

157
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

157
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
158 4894
            default => new static($crs, $easting, $northing, $westing, $southing, $epoch, $height),
159 4894
        };
160
    }
161
162 509
    public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
163
    {
164 509
        return static::create($crs, $easting, $northing, null, null, $epoch, $height);
165
    }
166
167 27
    public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
168
    {
169 27
        return static::create($crs, null, $northing, $westing, null, $epoch, $height);
170
    }
171
172 54
    public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
173
    {
174 54
        return static::create($crs, null, null, $westing, $southing, $epoch, $height);
175
    }
176
177 2527
    public function getEasting(): Length
178
    {
179 2527
        return $this->easting;
180
    }
181
182 2545
    public function getNorthing(): Length
183
    {
184 2545
        return $this->northing;
185
    }
186
187 90
    public function getWesting(): Length
188
    {
189 90
        return $this->westing;
190
    }
191
192 72
    public function getSouthing(): Length
193
    {
194 72
        return $this->southing;
195
    }
196
197 9
    public function getHeight(): ?Length
198
    {
199 9
        return $this->height;
200
    }
201
202 280
    public function getCRS(): Projected
203
    {
204 280
        return $this->crs;
205
    }
206
207 51
    public function getCoordinateEpoch(): ?DateTimeImmutable
208
    {
209 51
        return $this->epoch;
210
    }
211
212
    /**
213
     * Calculate distance between two points.
214
     * Because this is a simple grid, we can use Pythagoras.
215
     */
216 63
    public function calculateDistance(Point $to): Length
217
    {
218
        try {
219 63
            if ($to instanceof ConvertiblePoint) {
220 63
                $to = $to->convert($this->crs);
221
            }
222
        } finally {
223 63
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
224 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
225
            }
226
227
            /* @var ProjectedPoint $to */
228 54
            return new Metre(
229 54
                sqrt(
230 54
                    ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 +
231 54
                    ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2
232 54
                )
233 54
            );
234
        }
235
    }
236
237 54
    public function asGeographicPoint(): GeographicPoint
238
    {
239 54
        return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
0 ignored issues
show
Bug Best Practice introduced by
The expression return $this->performOpe...rs->getBaseCRS(), true) returns the type PHPCoord\Point which includes types incompatible with the type-hinted return PHPCoord\GeographicPoint.
Loading history...
240
    }
241
242 2062
    public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point
243
    {
244 2062
        if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) {
245 1989
            return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
246
        }
247
248 91
        return $this->autoConvert($to, $ignoreBoundaryRestrictions);
249
    }
250
251 162
    public function __toString(): string
252
    {
253 162
        $values = [];
254 162
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
255 162
            if ($axis->getName() === Axis::EASTING) {
256 144
                $values[] = $this->easting;
257 162
            } elseif ($axis->getName() === Axis::NORTHING) {
258 153
                $values[] = $this->northing;
259 18
            } elseif ($axis->getName() === Axis::WESTING) {
260 18
                $values[] = $this->westing;
261 9
            } elseif ($axis->getName() === Axis::SOUTHING) {
262 9
                $values[] = $this->southing;
263
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
264
                $values[] = $this->height;
265
            } else {
266
                throw new UnknownAxisException(); // @codeCoverageIgnore
267
            }
268
        }
269
270 162
        return '(' . implode(', ', $values) . ')';
271
    }
272
273
    /**
274
     * Affine parametric transformation.
275
     */
276 9
    public function affineParametricTransform(
277
        Projected $to,
278
        Length $A0,
279
        Coefficient $A1,
280
        Coefficient $A2,
281
        Length $B0,
282
        Coefficient $B1,
283
        Coefficient $B2,
284
        bool $inReverse
285
    ): self {
286 9
        $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor
287 9
        $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor
288
289 9
        if ($inReverse) {
290
            $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue());
291
            $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D;
292
            $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D;
293
            $a1 = $B2->getValue() / $D;
294
            $a2 = -$A2->getValue() / $D;
295
            $b1 = -$B1->getValue() / $D;
296
            $b2 = $A1->getValue() / $D;
297
        } else {
298 9
            $a0 = $A0->asMetres()->getValue();
299 9
            $a1 = $A1->getValue();
300 9
            $a2 = $A2->getValue();
301 9
            $b0 = $B0->asMetres()->getValue();
302 9
            $b1 = $B1->getValue();
303 9
            $b2 = $B2->getValue();
304
        }
305
306 9
        $xt = $a0 + ($a1 * $xs) + ($a2 * $ys);
307 9
        $yt = $b0 + ($b1 * $xs) + ($b2 * $ys);
308
309 9
        return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch);
310
    }
311
312
    /**
313
     * Albers Equal Area.
314
     */
315 90
    public function albersEqualArea(
316
        Geographic2D|Geographic3D $to,
317
        Angle $latitudeOfFalseOrigin,
318
        Angle $longitudeOfFalseOrigin,
319
        Angle $latitudeOf1stStandardParallel,
320
        Angle $latitudeOf2ndStandardParallel,
321
        Length $eastingAtFalseOrigin,
322
        Length $northingAtFalseOrigin
323
    ): GeographicPoint {
324 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
325 90
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
326 90
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
327 90
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
328 90
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
329 90
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
330 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
331 90
        $e = $ellipsoid->getEccentricity();
332 90
        $e2 = $ellipsoid->getEccentricitySquared();
333 90
        $e4 = $e ** 4;
334 90
        $e6 = $e ** 6;
335
336 90
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
337 90
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
338
339 90
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
340 90
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
341 90
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
342
343 90
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
344 90
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
345 90
        $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n;
346 90
        $rhoPrime = hypot($easting, $rhoOrigin - $northing);
347 90
        $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n;
348 90
        $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e))));
349 90
        if ($n > 0) {
350 9
            $theta = atan2($easting, $rhoOrigin - $northing);
351
        } else {
352 81
            $theta = atan2(-$easting, $northing - $rhoOrigin);
353
        }
354
355 90
        $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime));
356 90
        $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n);
357
358 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
359
    }
360
361
    /**
362
     * American Polyconic.
363
     */
364 72
    public function americanPolyconic(
365
        Geographic2D|Geographic3D $to,
366
        Angle $latitudeOfNaturalOrigin,
367
        Angle $longitudeOfNaturalOrigin,
368
        Length $falseEasting,
369
        Length $falseNorthing
370
    ): GeographicPoint {
371 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
372 72
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
373 72
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
374 72
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
375 72
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
376 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
377 72
        $e = $ellipsoid->getEccentricity();
378 72
        $e2 = $ellipsoid->getEccentricitySquared();
379 72
        $e4 = $e ** 4;
380 72
        $e6 = $e ** 6;
381
382 72
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
383 72
        $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024);
384 72
        $iii = (15 * $e4 / 256 + 45 * $e6 / 1024);
385 72
        $iv = (35 * $e6 / 3072);
386
387 72
        $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin));
388
389 72
        if ($MO === $northing) {
390 9
            $latitude = 0;
391 9
            $longitude = $longitudeOrigin + $easting / $a;
392
        } else {
393 63
            $A = ($MO + $northing) / $a;
394 63
            $B = $A ** 2 + $easting ** 2 / $a ** 2;
395
396 63
            $latitude = $A;
397 63
            $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
398
            do {
399 63
                $latitudeN = $latitude;
400 63
                $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude);
401 63
                $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude);
402 63
                $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime);
403 63
                $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
404 63
            } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
405
406 63
            $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude);
407
        }
408
409 72
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
410
    }
411
412
    /**
413
     * Bonne.
414
     */
415 9
    public function bonne(
416
        Geographic2D|Geographic3D $to,
417
        Angle $latitudeOfNaturalOrigin,
418
        Angle $longitudeOfNaturalOrigin,
419
        Length $falseEasting,
420
        Length $falseNorthing
421
    ): GeographicPoint {
422 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
423 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
424 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
425 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
426 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
427 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
428 9
        $e = $ellipsoid->getEccentricity();
429 9
        $e2 = $ellipsoid->getEccentricitySquared();
430 9
        $e4 = $e ** 4;
431 9
        $e6 = $e ** 6;
432
433 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
434 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
435 9
        $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin);
436
437 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
438 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
439 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
440
441 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
442 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
443
444 9
        if ($m === 0.0) {
445
            $longitude = $longitudeOrigin; // pole
446 9
        } elseif ($latitudeOrigin >= 0) {
447 9
            $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m;
448
        } else {
449
            $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m;
450
        }
451
452 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
453
    }
454
455
    /**
456
     * Bonne South Orientated.
457
     */
458 9
    public function bonneSouthOrientated(
459
        Geographic2D|Geographic3D $to,
460
        Angle $latitudeOfNaturalOrigin,
461
        Angle $longitudeOfNaturalOrigin,
462
        Length $falseEasting,
463
        Length $falseNorthing
464
    ): GeographicPoint {
465 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
466 9
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
467 9
        $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue();
468 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
469 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
470 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
471 9
        $e = $ellipsoid->getEccentricity();
472 9
        $e2 = $ellipsoid->getEccentricitySquared();
473 9
        $e4 = $e ** 4;
474 9
        $e6 = $e ** 6;
475
476 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
477 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
478 9
        $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin);
479
480 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
481 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
482 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
483
484 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
485 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
486
487 9
        if ($m === 0.0) {
488
            $longitude = $longitudeOrigin; // pole
489 9
        } elseif ($latitudeOrigin >= 0) {
490 9
            $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m;
491
        } else {
492
            $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m;
493
        }
494
495 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
496
    }
497
498
    /**
499
     * Cartesian Grid Offsets
500
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
501
     * coordinate values of the point in the source system.
502
     */
503 9
    public function offsets(
504
        Projected $to,
505
        Length $eastingOffset,
506
        Length $northingOffset
507
    ): self {
508 9
        $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue();
509 9
        $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue();
510
511 9
        return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
512
    }
513
514
    /**
515
     * Cassini-Soldner.
516
     */
517 90
    public function cassiniSoldner(
518
        Geographic2D|Geographic3D $to,
519
        Angle $latitudeOfNaturalOrigin,
520
        Angle $longitudeOfNaturalOrigin,
521
        Length $falseEasting,
522
        Length $falseNorthing
523
    ): GeographicPoint {
524 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
525 90
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
526 90
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
527 90
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
528 90
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
529 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
530 90
        $e = $ellipsoid->getEccentricity();
531 90
        $e2 = $ellipsoid->getEccentricitySquared();
532 90
        $e4 = $e ** 4;
533 90
        $e6 = $e ** 6;
534
535 90
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
536
537 90
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
538 90
        $M = $MO + $northing;
539 90
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
540 90
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
541
542 90
        $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2);
543 90
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5;
544
545 90
        $T = tan($latitudeCentralMeridian) ** 2;
546 90
        $D = $easting / $nu;
547
548 90
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
549 90
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
550
551 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
552
    }
553
554
    /**
555
     * Hyperbolic Cassini-Soldner.
556
     */
557 9
    public function hyperbolicCassiniSoldner(
558
        Geographic2D|Geographic3D $to,
559
        Angle $latitudeOfNaturalOrigin,
560
        Angle $longitudeOfNaturalOrigin,
561
        Length $falseEasting,
562
        Length $falseNorthing
563
    ): GeographicPoint {
564 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
565 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
566 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
567 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
568 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
569 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
570 9
        $e = $ellipsoid->getEccentricity();
571 9
        $e2 = $ellipsoid->getEccentricitySquared();
572 9
        $e4 = $e ** 4;
573 9
        $e6 = $e ** 6;
574
575 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
576 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
577
578 9
        $latitude1 = $latitudeOrigin + $northing / 1567446;
579
580 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2);
581 9
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5;
582
583 9
        $qPrime = $northing ** 3 / (6 * $rho * $nu);
584 9
        $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu);
585 9
        $M = $MO + $northing + $q;
586
587 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
588 9
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
589
590 9
        $T = tan($latitudeCentralMeridian) ** 2;
591 9
        $D = $easting / $nu;
592
593 9
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
594 9
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
595
596 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
597
    }
598
599
    /**
600
     * Colombia Urban.
601
     */
602 9
    public function columbiaUrban(
603
        Geographic2D|Geographic3D $to,
604
        Angle $latitudeOfNaturalOrigin,
605
        Angle $longitudeOfNaturalOrigin,
606
        Length $falseEasting,
607
        Length $falseNorthing,
608
        Length $projectionPlaneOriginHeight
609
    ): GeographicPoint {
610 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
611 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
612 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
613 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
614 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
615 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
616 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
617 9
        $e2 = $ellipsoid->getEccentricitySquared();
618
619 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5;
620
621 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
622
623 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
624 9
        $C = 1 + $heightOrigin / $a;
625 9
        $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2)));
626
627 9
        $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2;
628 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
629 9
        $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude));
630
631 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
632
    }
633
634
    /**
635
     * Equal Earth.
636
     */
637 9
    public function equalEarth(
638
        Geographic2D|Geographic3D $to,
639
        Angle $longitudeOfNaturalOrigin,
640
        Length $falseEasting,
641
        Length $falseNorthing
642
    ): GeographicPoint {
643 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
644 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
645 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
646 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
647 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
648 9
        $e = $ellipsoid->getEccentricity();
649 9
        $e2 = $ellipsoid->getEccentricitySquared();
650 9
        $e4 = $e ** 4;
651 9
        $e6 = $e ** 6;
652
653 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
654 9
        $Rq = $a * sqrt($qP / 2);
655
656 9
        $theta = $northing / $Rq;
657
        do {
658 9
            $thetaN = $theta;
659 9
            $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2));
660 9
            $theta = $theta - $correctionFactor;
661 9
        } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA);
662
663 9
        $beta = self::asin(2 * sin($theta) / sqrt(3));
664
665 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
666 9
        $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta));
667
668 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
669
    }
670
671
    /**
672
     * Equidistant Cylindrical
673
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
674
     */
675 9
    public function equidistantCylindrical(
676
        Geographic2D|Geographic3D $to,
677
        Angle $latitudeOf1stStandardParallel,
678
        Angle $longitudeOfNaturalOrigin,
679
        Length $falseEasting,
680
        Length $falseNorthing
681
    ): GeographicPoint {
682 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
683 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
684 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
685 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
686 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
687 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
688 9
        $e = $ellipsoid->getEccentricity();
689 9
        $e2 = $ellipsoid->getEccentricitySquared();
690 9
        $e4 = $e ** 4;
691 9
        $e6 = $e ** 6;
692 9
        $e8 = $e ** 8;
693 9
        $e10 = $e ** 10;
694 9
        $e12 = $e ** 12;
695 9
        $e14 = $e ** 14;
696
697 9
        $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
698 9
        $n2 = $n ** 2;
699 9
        $n3 = $n ** 3;
700 9
        $n4 = $n ** 4;
701 9
        $n5 = $n ** 5;
702 9
        $n6 = $n ** 6;
703 9
        $n7 = $n ** 7;
704 9
        $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14));
705
706 9
        $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu)
707 9
            + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu)
708 9
            + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu)
709 9
            + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu)
710 9
            + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu)
711 9
            + (293393 / 61440 * $n6) * sin(12 * $mu)
712 9
            + (6845701 / 860160 * $n7) * sin(14 * $mu);
713
714 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel));
715
716 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
717
    }
718
719
    /**
720
     * Guam Projection
721
     * Simplified form of Oblique Azimuthal Equidistant projection method.
722
     */
723 9
    public function guamProjection(
724
        Geographic2D|Geographic3D $to,
725
        Angle $latitudeOfNaturalOrigin,
726
        Angle $longitudeOfNaturalOrigin,
727
        Length $falseEasting,
728
        Length $falseNorthing
729
    ): GeographicPoint {
730 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
731 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
732 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
733 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
734 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
735 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
736 9
        $e = $ellipsoid->getEccentricity();
737 9
        $e2 = $ellipsoid->getEccentricitySquared();
738 9
        $e4 = $e ** 4;
739 9
        $e6 = $e ** 6;
740
741 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
742 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
743 9
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
744
745 9
        $latitude = $latitudeOrigin;
746
        do {
747 9
            $latitudeN = $latitude;
748 9
            $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
749 9
            $mu = $M / ($a * $i);
750 9
            $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
751 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
752
753 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude));
754
755 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
756
    }
757
758
    /**
759
     * Krovak.
760
     */
761 36
    public function krovak(
762
        Geographic2D|Geographic3D $to,
763
        Angle $latitudeOfProjectionCentre,
764
        Angle $longitudeOfOrigin,
765
        Angle $coLatitudeOfConeAxis,
766
        Angle $latitudeOfPseudoStandardParallel,
767
        Scale $scaleFactorOnPseudoStandardParallel,
768
        Length $falseEasting,
769
        Length $falseNorthing
770
    ): GeographicPoint {
771 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
772 36
        $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
773 36
        $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
774 36
        $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
775 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
776 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
777 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
778 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
779 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
780 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
781 36
        $e = $ellipsoid->getEccentricity();
782 36
        $e2 = $ellipsoid->getEccentricitySquared();
783
784 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
785 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
786 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
787 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
788 36
        $n = sin($latitudeP);
789 36
        $rO = $kP * $A / tan($latitudeP);
790
791 36
        $r = hypot($southing, $westing) ?: 1;
792 36
        $theta = atan2($westing, $southing);
793 36
        $D = $theta / sin($latitudeP);
794 36
        $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4);
795 36
        $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D));
796 36
        $V = self::asin(cos($T) * sin($D) / cos($U));
797
798 36
        $latitude = $U;
799
        do {
800 36
            $latitudeN = $latitude;
801 36
            $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4);
802 36
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
803
804 36
        $longitude = $longitudeO + $longitudeOffset - $V / $B;
805
806 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
807
    }
808
809
    /**
810
     * Krovak Modified
811
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
812
     * to be a map projection.
813
     */
814 18
    public function krovakModified(
815
        Geographic2D|Geographic3D $to,
816
        Angle $latitudeOfProjectionCentre,
817
        Angle $longitudeOfOrigin,
818
        Angle $coLatitudeOfConeAxis,
819
        Angle $latitudeOfPseudoStandardParallel,
820
        Scale $scaleFactorOnPseudoStandardParallel,
821
        Length $falseEasting,
822
        Length $falseNorthing,
823
        Length $ordinate1OfEvaluationPoint,
824
        Length $ordinate2OfEvaluationPoint,
825
        Coefficient $C1,
826
        Coefficient $C2,
827
        Coefficient $C3,
828
        Coefficient $C4,
829
        Coefficient $C5,
830
        Coefficient $C6,
831
        Coefficient $C7,
832
        Coefficient $C8,
833
        Coefficient $C9,
834
        Coefficient $C10
835
    ): GeographicPoint {
836 18
        $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue();
837 18
        $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue();
838 18
        $c1 = $C1->asUnity()->getValue();
839 18
        $c2 = $C2->asUnity()->getValue();
840 18
        $c3 = $C3->asUnity()->getValue();
841 18
        $c4 = $C4->asUnity()->getValue();
842 18
        $c5 = $C5->asUnity()->getValue();
843 18
        $c6 = $C6->asUnity()->getValue();
844 18
        $c7 = $C7->asUnity()->getValue();
845 18
        $c8 = $C8->asUnity()->getValue();
846 18
        $c9 = $C9->asUnity()->getValue();
847 18
        $c10 = $C10->asUnity()->getValue();
848
849 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
850 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
851
852 18
        $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX;
853 18
        $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY;
854
855 18
        $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch);
856
857 18
        return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
858
    }
859
860
    /**
861
     * Lambert Azimuthal Equal Area
862
     * This is the ellipsoidal form of the projection.
863
     */
864 54
    public function lambertAzimuthalEqualArea(
865
        Geographic2D|Geographic3D $to,
866
        Angle $latitudeOfNaturalOrigin,
867
        Angle $longitudeOfNaturalOrigin,
868
        Length $falseEasting,
869
        Length $falseNorthing
870
    ): GeographicPoint {
871 54
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
872 54
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
873 54
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
874 54
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
875 54
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
876 54
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
877 54
        $e = $ellipsoid->getEccentricity();
878 54
        $e2 = $ellipsoid->getEccentricitySquared();
879 54
        $e4 = $e ** 4;
880 54
        $e6 = $e ** 6;
881
882 54
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
883 54
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
884 54
        $betaO = self::asin($qO / $qP);
885 54
        $Rq = $a * sqrt($qP / 2);
886 54
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
887 54
        $rho = hypot($easting / $D, $D * $northing) ?: 1;
888 54
        $C = 2 * self::asin($rho / (2 * $Rq));
889 54
        $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho);
890
891 54
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
892 54
        $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C));
893
894 54
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
895
    }
896
897
    /**
898
     * Lambert Azimuthal Equal Area (Spherical)
899
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
900
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
901
     * methods.
902
     */
903 9
    public function lambertAzimuthalEqualAreaSpherical(
904
        Geographic2D|Geographic3D $to,
905
        Angle $latitudeOfNaturalOrigin,
906
        Angle $longitudeOfNaturalOrigin,
907
        Length $falseEasting,
908
        Length $falseNorthing
909
    ): GeographicPoint {
910 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
911 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
912 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
913 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
914 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
915 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
916
917 9
        $rho = hypot($easting, $northing) ?: 1;
918 9
        $c = 2 * self::asin($rho / (2 * $a));
919
920 9
        $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho));
921
922 9
        if ($latitudeOrigin === 90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 90 is always false.
Loading history...
923
            $longitude = $longitudeOrigin + atan($easting / -$northing);
924 9
        } elseif ($latitudeOrigin === -90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === -90 is always false.
Loading history...
925
            $longitude = $longitudeOrigin + atan($easting / $northing);
926
        } else {
927 9
            $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c));
928 9
            $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator);
929 9
            if ($longitudeDenominator < 0) {
930 9
                $longitude += M_PI;
931
            }
932
        }
933
934 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
935
    }
936
937
    /**
938
     * Lambert Conic Conformal (1SP).
939
     */
940 180
    public function lambertConicConformal1SP(
941
        Geographic2D|Geographic3D $to,
942
        Angle $latitudeOfNaturalOrigin,
943
        Angle $longitudeOfNaturalOrigin,
944
        Scale $scaleFactorAtNaturalOrigin,
945
        Length $falseEasting,
946
        Length $falseNorthing
947
    ): GeographicPoint {
948 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
949 180
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
950 180
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
951 180
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
952 180
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
953 180
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
954 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
955 180
        $e = $ellipsoid->getEccentricity();
956 180
        $e2 = $ellipsoid->getEccentricitySquared();
957
958 180
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
959 180
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
960 180
        $n = sin($latitudeOrigin);
961 180
        $F = $mO / ($n * $tO ** $n);
962 180
        $rO = $a * $F * $tO ** $n * $scaleFactorOrigin;
963 180
        $r = hypot($easting, $rO - $northing);
964 180
        if ($n >= 0) {
965 180
            $theta = atan2($easting, $rO - $northing);
966
        } else {
967
            $r = -$r;
968
            $theta = atan2(-$easting, -($rO - $northing));
969
        }
970
971 180
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
972
973 180
        $latitude = M_PI / (2 - 2 * atan($t));
974
        do {
975 180
            $latitudeN = $latitude;
976 180
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
977 180
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
978
979 180
        $longitude = $theta / $n + $longitudeOrigin;
980
981 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
982
    }
983
984
    /**
985
     * Lambert Conic Conformal (west orientated).
986
     */
987
    public function lambertConicConformalWestOrientated(
988
        Geographic2D|Geographic3D $to,
989
        Angle $latitudeOfNaturalOrigin,
990
        Angle $longitudeOfNaturalOrigin,
991
        Scale $scaleFactorAtNaturalOrigin,
992
        Length $falseEasting,
993
        Length $falseNorthing
994
    ): GeographicPoint {
995
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
996
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
997
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
998
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
999
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1000
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1001
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1002
        $e = $ellipsoid->getEccentricity();
1003
        $e2 = $ellipsoid->getEccentricitySquared();
1004
1005
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1006
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1007
        $n = sin($latitudeOrigin);
1008
        $F = $mO / ($n * $tO ** $n);
1009
        $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin;
1010
        $r = hypot($westing, $rO - $northing);
1011
        if ($n >= 0) {
1012
            $theta = atan2($westing, $rO - $northing);
1013
        } else {
1014
            $r = -$r;
1015
            $theta = atan2(-$westing, -($rO - $northing));
1016
        }
1017
1018
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1019
1020
        $latitude = M_PI / (2 - 2 * atan($t));
1021
        do {
1022
            $latitudeN = $latitude;
1023
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1024
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1025
1026
        $longitude = $theta / $n + $longitudeOrigin;
1027
1028
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1029
    }
1030
1031
    /**
1032
     * Lambert Conic Conformal (1SP) Variant B.
1033
     */
1034
    public function lambertConicConformal1SPVariantB(
1035
        Geographic2D|Geographic3D $to,
1036
        Angle $latitudeOfNaturalOrigin,
1037
        Scale $scaleFactorAtNaturalOrigin,
1038
        Angle $latitudeOfFalseOrigin,
1039
        Angle $longitudeOfFalseOrigin,
1040
        Length $eastingAtFalseOrigin,
1041
        Length $northingAtFalseOrigin
1042
    ): GeographicPoint {
1043
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1044
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1045
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1046
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1047
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1048
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1049
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1050
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1051
        $e = $ellipsoid->getEccentricity();
1052
        $e2 = $ellipsoid->getEccentricitySquared();
1053
1054
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1055
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1056
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1057
        $n = sin($latitudeNaturalOrigin);
1058
        $F = $mO / ($n * $tO ** $n);
1059
        $rF = $a * $F * $tF ** $n * $scaleFactorOrigin;
1060
        $r = hypot($easting, $rF - $northing);
1061
        if ($n >= 0) {
1062
            $theta = atan2($easting, $rF - $northing);
1063
        } else {
1064
            $r = -$r;
1065
            $theta = atan2(-$easting, -($rF - $northing));
1066
        }
1067
1068
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1069
1070
        $latitude = M_PI / (2 - 2 * atan($t));
1071
        do {
1072
            $latitudeN = $latitude;
1073
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1074
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1075
1076
        $longitude = $theta / $n + $longitudeFalseOrigin;
1077
1078
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1079
    }
1080
1081
    /**
1082
     * Lambert Conic Conformal (2SP).
1083
     */
1084 199
    public function lambertConicConformal2SP(
1085
        Geographic2D|Geographic3D $to,
1086
        Angle $latitudeOfFalseOrigin,
1087
        Angle $longitudeOfFalseOrigin,
1088
        Angle $latitudeOf1stStandardParallel,
1089
        Angle $latitudeOf2ndStandardParallel,
1090
        Length $eastingAtFalseOrigin,
1091
        Length $northingAtFalseOrigin
1092
    ): GeographicPoint {
1093 199
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1094 199
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1095 199
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1096 199
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1097 199
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1098 199
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1099 199
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1100 199
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1101 199
        $e = $ellipsoid->getEccentricity();
1102 199
        $e2 = $ellipsoid->getEccentricitySquared();
1103
1104 199
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1105 199
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1106 199
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1107 199
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1108 199
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1109 199
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1110 199
        $F = $m1 / ($n * $t1 ** $n);
1111 199
        $rF = $a * $F * $tF ** $n;
1112 199
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1113 199
        $t = ($r / ($a * $F)) ** (1 / $n);
1114 199
        if ($n >= 0) {
1115 199
            $theta = atan2($easting, $rF - $northing);
1116
        } else {
1117
            $theta = atan2(-$easting, -($rF - $northing));
1118
        }
1119
1120 199
        $latitude = M_PI / 2 - 2 * atan($t);
1121
        do {
1122 199
            $latitudeN = $latitude;
1123 199
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1124 199
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1125
1126 199
        $longitude = $theta / $n + $lambdaOrigin;
1127
1128 199
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1129
    }
1130
1131
    /**
1132
     * Lambert Conic Conformal (2SP Michigan).
1133
     */
1134 9
    public function lambertConicConformal2SPMichigan(
1135
        Geographic2D|Geographic3D $to,
1136
        Angle $latitudeOfFalseOrigin,
1137
        Angle $longitudeOfFalseOrigin,
1138
        Angle $latitudeOf1stStandardParallel,
1139
        Angle $latitudeOf2ndStandardParallel,
1140
        Length $eastingAtFalseOrigin,
1141
        Length $northingAtFalseOrigin,
1142
        Scale $ellipsoidScalingFactor
1143
    ): GeographicPoint {
1144 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1145 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1146 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1147 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1148 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1149 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1150 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1151 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1152 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1153 9
        $e = $ellipsoid->getEccentricity();
1154 9
        $e2 = $ellipsoid->getEccentricitySquared();
1155
1156 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1157 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1158 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1159 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1160 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1161 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1162 9
        $F = $m1 / ($n * $t1 ** $n);
1163 9
        $rF = $a * $K * $F * $tF ** $n;
1164 9
        $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n);
1165 9
        $t = ($r / ($a * $K * $F)) ** (1 / $n);
1166 9
        if ($n >= 0) {
1167 9
            $theta = atan2($easting, $rF - $northing);
1168
        } else {
1169
            $theta = atan2(-$easting, -($rF - $northing));
1170
        }
1171
1172 9
        $latitude = M_PI / 2 - 2 * atan($t);
1173
        do {
1174 9
            $latitudeN = $latitude;
1175 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1176 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1177
1178 9
        $longitude = $theta / $n + $lambdaOrigin;
1179
1180 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1181
    }
1182
1183
    /**
1184
     * Lambert Conic Conformal (2SP Belgium)
1185
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1186
     * with appropriately modified parameter values.
1187
     */
1188 9
    public function lambertConicConformal2SPBelgium(
1189
        Geographic2D|Geographic3D $to,
1190
        Angle $latitudeOfFalseOrigin,
1191
        Angle $longitudeOfFalseOrigin,
1192
        Angle $latitudeOf1stStandardParallel,
1193
        Angle $latitudeOf2ndStandardParallel,
1194
        Length $eastingAtFalseOrigin,
1195
        Length $northingAtFalseOrigin
1196
    ): GeographicPoint {
1197 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1198 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1199 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1200 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1201 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1202 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1203 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1204 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1205 9
        $e = $ellipsoid->getEccentricity();
1206 9
        $e2 = $ellipsoid->getEccentricitySquared();
1207
1208 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1209 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1210 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1211 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1212 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1213 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1214 9
        $F = $m1 / ($n * $t1 ** $n);
1215 9
        $rF = $a * $F * $tF ** $n;
1216 9
        if (is_nan($rF)) {
1217 9
            $rF = 0;
1218
        }
1219 9
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1220 9
        $t = ($r / ($a * $F)) ** (1 / $n);
1221 9
        if ($n >= 0) {
1222 9
            $theta = atan2($easting, $rF - $northing);
1223
        } else {
1224
            $theta = atan2(-$easting, -($rF - $northing));
1225
        }
1226
1227 9
        $latitude = M_PI / 2 - 2 * atan($t);
1228
        do {
1229 9
            $latitudeN = $latitude;
1230 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1231 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1232
1233 9
        $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin;
1234
1235 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1236
    }
1237
1238
    /**
1239
     * Lambert Conic Near-Conformal
1240
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1241
     * series expansion of the projection formulae.
1242
     */
1243 9
    public function lambertConicNearConformal(
1244
        Geographic2D|Geographic3D $to,
1245
        Angle $latitudeOfNaturalOrigin,
1246
        Angle $longitudeOfNaturalOrigin,
1247
        Scale $scaleFactorAtNaturalOrigin,
1248
        Length $falseEasting,
1249
        Length $falseNorthing
1250
    ): GeographicPoint {
1251 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1252 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1253 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1254 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1255 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1256 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1257 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1258 9
        $e2 = $ellipsoid->getEccentricitySquared();
1259 9
        $f = $ellipsoid->getFlattening();
1260
1261 9
        $n = $f / (2 - $f);
1262 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1263 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1264 9
        $A = 1 / (6 * $rhoO * $nuO);
1265 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1266 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1267 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1268 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1269 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1270 9
        $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin);
1271 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1272
1273 9
        $theta = atan2($easting, $rO - $northing);
1274 9
        $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin);
1275 9
        $M = $rO - $r;
1276
1277 9
        $m = $M;
1278
        do {
1279 9
            $mN = $m;
1280 9
            $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2);
1281 9
        } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA);
1282
1283 9
        $latitude = $latitudeOrigin + $m / $A;
1284
        do {
1285 9
            $latitudeN = $latitude;
1286 9
            $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime;
1287 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1288
1289 9
        $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin);
1290
1291 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1292
    }
1293
1294
    /**
1295
     * Lambert Cylindrical Equal Area
1296
     * This is the ellipsoidal form of the projection.
1297
     */
1298 9
    public function lambertCylindricalEqualArea(
1299
        Geographic2D|Geographic3D $to,
1300
        Angle $latitudeOf1stStandardParallel,
1301
        Angle $longitudeOfNaturalOrigin,
1302
        Length $falseEasting,
1303
        Length $falseNorthing
1304
    ): GeographicPoint {
1305 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1306 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1307 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1308 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1309 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1310 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1311 9
        $e = $ellipsoid->getEccentricity();
1312 9
        $e2 = $ellipsoid->getEccentricitySquared();
1313 9
        $e4 = $e ** 4;
1314 9
        $e6 = $e ** 6;
1315
1316 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1317 9
        $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2))));
1318 9
        $beta = self::asin(2 * $northing * $k / ($a * $qP));
1319
1320 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
1321 9
        $longitude = $longitudeOrigin + $easting / ($a * $k);
1322
1323 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1324
    }
1325
1326
    /**
1327
     * Modified Azimuthal Equidistant
1328
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1329
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1330
     */
1331 9
    public function modifiedAzimuthalEquidistant(
1332
        Geographic2D|Geographic3D $to,
1333
        Angle $latitudeOfNaturalOrigin,
1334
        Angle $longitudeOfNaturalOrigin,
1335
        Length $falseEasting,
1336
        Length $falseNorthing
1337
    ): GeographicPoint {
1338 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1339 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1340 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1341 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1342 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1343 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1344 9
        $e2 = $ellipsoid->getEccentricitySquared();
1345
1346 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1347 9
        $c = hypot($easting, $northing);
1348 9
        $alpha = atan2($easting, $northing);
1349 9
        $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2);
1350 9
        $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2);
1351 9
        $D = $c / $nuO;
1352 9
        $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24);
1353 9
        $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6);
1354 9
        $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha));
1355
1356 9
        $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2));
1357 9
        $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi));
1358
1359 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1360
    }
1361
1362
    /**
1363
     * Oblique Stereographic
1364
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1365
     * Projections - A Working Manual" by John P. Snyder.
1366
     */
1367 126
    public function obliqueStereographic(
1368
        Geographic2D|Geographic3D $to,
1369
        Angle $latitudeOfNaturalOrigin,
1370
        Angle $longitudeOfNaturalOrigin,
1371
        Scale $scaleFactorAtNaturalOrigin,
1372
        Length $falseEasting,
1373
        Length $falseNorthing
1374
    ): GeographicPoint {
1375 126
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1376 126
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1377 126
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1378 126
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1379 126
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1380 126
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1381 126
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1382 126
        $e = $ellipsoid->getEccentricity();
1383 126
        $e2 = $ellipsoid->getEccentricitySquared();
1384
1385 126
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1386 126
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1387 126
        $R = sqrt($rhoOrigin * $nuOrigin);
1388
1389 126
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1390 126
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1391 126
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1392 126
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1393 126
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1394 126
        $w2 = $c * $w1;
1395 126
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1396
1397 126
        $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2);
1398 126
        $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g;
1399 126
        $i = atan2($easting, $h + $northing);
1400 126
        $j = atan2($easting, $g - $northing) - $i;
1401 126
        $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin));
1402 126
        $lambda = $j + 2 * $i + $longitudeOrigin;
1403
1404 126
        $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin;
1405
1406 126
        $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n;
1407
1408 126
        $latitude = 2 * atan(M_E ** $psi) - M_PI / 2;
1409
        do {
1410 126
            $latitudeN = $latitude;
1411 126
            $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2));
1412 126
            $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2);
1413 126
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1414
1415 126
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1416
    }
1417
1418
    /**
1419
     * Polar Stereographic (variant A)
1420
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1421
     */
1422 9
    public function polarStereographicVariantA(
1423
        Geographic2D|Geographic3D $to,
1424
        Angle $latitudeOfNaturalOrigin,
1425
        Angle $longitudeOfNaturalOrigin,
1426
        Scale $scaleFactorAtNaturalOrigin,
1427
        Length $falseEasting,
1428
        Length $falseNorthing
1429
    ): GeographicPoint {
1430 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1431 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1432 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1433 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1434 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1435 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1436 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1437 9
        $e = $ellipsoid->getEccentricity();
1438 9
        $e2 = $ellipsoid->getEccentricitySquared();
1439 9
        $e4 = $e ** 4;
1440 9
        $e6 = $e ** 6;
1441 9
        $e8 = $e ** 8;
1442
1443 9
        $rho = hypot($easting, $northing);
1444 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin);
1445
1446 9
        if ($latitudeOrigin < 0) {
1447
            $chi = 2 * atan($t) - M_PI / 2;
1448
        } else {
1449 9
            $chi = M_PI / 2 - 2 * atan($t);
1450
        }
1451
1452 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1453
1454 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1455
            $longitude = $longitudeOrigin;
1456 9
        } elseif ($latitudeOrigin < 0) {
1457
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1458
        } else {
1459 9
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1460
        }
1461
1462 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1463
    }
1464
1465
    /**
1466
     * Polar Stereographic (variant B).
1467
     */
1468 9
    public function polarStereographicVariantB(
1469
        Geographic2D|Geographic3D $to,
1470
        Angle $latitudeOfStandardParallel,
1471
        Angle $longitudeOfOrigin,
1472
        Length $falseEasting,
1473
        Length $falseNorthing
1474
    ): GeographicPoint {
1475 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1476 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1477 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1478 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1479 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1480 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1481 9
        $e = $ellipsoid->getEccentricity();
1482 9
        $e2 = $ellipsoid->getEccentricitySquared();
1483 9
        $e4 = $e ** 4;
1484 9
        $e6 = $e ** 6;
1485 9
        $e8 = $e ** 8;
1486
1487 9
        $rho = hypot($easting, $northing);
1488 9
        if ($standardParallel < 0) {
1489 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1490
        } else {
1491
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1492
        }
1493 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1494 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1495 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO);
1496
1497 9
        if ($standardParallel < 0) {
1498 9
            $chi = 2 * atan($t) - M_PI / 2;
1499
        } else {
1500
            $chi = M_PI / 2 - 2 * atan($t);
1501
        }
1502
1503 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1504
1505 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1506
            $longitude = $longitudeOrigin;
1507 9
        } elseif ($standardParallel < 0) {
1508 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1509
        } else {
1510
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1511
        }
1512
1513 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1514
    }
1515
1516
    /**
1517
     * Polar Stereographic (variant C).
1518
     */
1519 9
    public function polarStereographicVariantC(
1520
        Geographic2D|Geographic3D $to,
1521
        Angle $latitudeOfStandardParallel,
1522
        Angle $longitudeOfOrigin,
1523
        Length $eastingAtFalseOrigin,
1524
        Length $northingAtFalseOrigin
1525
    ): GeographicPoint {
1526 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1527 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1528 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1529 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1530 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1531 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1532 9
        $e = $ellipsoid->getEccentricity();
1533 9
        $e2 = $ellipsoid->getEccentricitySquared();
1534 9
        $e4 = $e ** 4;
1535 9
        $e6 = $e ** 6;
1536 9
        $e8 = $e ** 8;
1537
1538 9
        if ($standardParallel < 0) {
1539 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1540
        } else {
1541
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1542
        }
1543 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1544 9
        $rhoF = $a * $mF;
1545 9
        if ($standardParallel < 0) {
1546 9
            $rho = hypot($easting, $northing + $rhoF);
1547 9
            $t = $rho * $tF / $rhoF;
1548 9
            $chi = 2 * atan($t) - M_PI / 2;
1549
        } else {
1550
            $rho = hypot($easting, $northing - $rhoF);
1551
            $t = $rho * $tF / $rhoF;
1552
            $chi = M_PI / 2 - 2 * atan($t);
1553
        }
1554
1555 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1556
1557 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1558
            $longitude = $longitudeOrigin;
1559 9
        } elseif ($standardParallel < 0) {
1560 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF);
1561
        } else {
1562
            $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF);
1563
        }
1564
1565 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1566
    }
1567
1568
    /**
1569
     * Popular Visualisation Pseudo Mercator
1570
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1571
     */
1572 18
    public function popularVisualisationPseudoMercator(
1573
        Geographic2D|Geographic3D $to,
1574
        Angle $latitudeOfNaturalOrigin,
1575
        Angle $longitudeOfNaturalOrigin,
1576
        Length $falseEasting,
1577
        Length $falseNorthing
1578
    ): GeographicPoint {
1579 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1580 18
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1581 18
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1582 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1583 18
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1584 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1585
1586 18
        $D = -$northing / $a;
1587 18
        $latitude = M_PI / 2 - 2 * atan(M_E ** $D);
1588 18
        $longitude = $easting / $a + $longitudeOrigin;
1589
1590 18
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1591
    }
1592
1593
    /**
1594
     * Similarity transformation
1595
     * Defined for two-dimensional coordinate systems.
1596
     */
1597 9
    public function similarityTransformation(
1598
        Projected $to,
1599
        Length $ordinate1OfEvaluationPointInTargetCRS,
1600
        Length $ordinate2OfEvaluationPointInTargetCRS,
1601
        Scale $scaleFactorForSourceCRSAxes,
1602
        Angle $rotationAngleOfSourceCRSAxes,
1603
        bool $inReverse
1604
    ): self {
1605 9
        $xs = $this->easting->asMetres()->getValue();
1606 9
        $ys = $this->northing->asMetres()->getValue();
1607 9
        $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue();
1608 9
        $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue();
1609 9
        $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue();
1610 9
        $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue();
1611
1612 9
        if ($inReverse) {
1613
            $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M;
1614
            $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M;
1615
        } else {
1616 9
            $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta);
1617 9
            $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta);
1618
        }
1619
1620 9
        return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1621
    }
1622
1623
    /**
1624
     * Mercator (variant A)
1625
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1626
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1627
     * completeness in CRS labelling.
1628
     */
1629 351
    public function mercatorVariantA(
1630
        Geographic2D|Geographic3D $to,
1631
        Angle $latitudeOfNaturalOrigin,
1632
        Angle $longitudeOfNaturalOrigin,
1633
        Scale $scaleFactorAtNaturalOrigin,
1634
        Length $falseEasting,
1635
        Length $falseNorthing
1636
    ): GeographicPoint {
1637 351
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1638 351
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1639 351
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1640 351
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1641 351
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1642 351
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1643 351
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1644 351
        $e = $ellipsoid->getEccentricity();
1645 351
        $e2 = $ellipsoid->getEccentricitySquared();
1646 351
        $e4 = $e ** 4;
1647 351
        $e6 = $e ** 6;
1648 351
        $e8 = $e ** 8;
1649
1650 351
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1651 351
        $chi = M_PI / 2 - 2 * atan($t);
1652
1653 351
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1654 351
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1655
1656 351
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1657
    }
1658
1659
    /**
1660
     * Mercator (variant B)
1661
     * Used for most nautical charts.
1662
     */
1663 36
    public function mercatorVariantB(
1664
        Geographic2D|Geographic3D $to,
1665
        Angle $latitudeOf1stStandardParallel,
1666
        Angle $longitudeOfNaturalOrigin,
1667
        Length $falseEasting,
1668
        Length $falseNorthing
1669
    ): GeographicPoint {
1670 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1671 36
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1672 36
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1673 36
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1674 36
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1675 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1676 36
        $e = $ellipsoid->getEccentricity();
1677 36
        $e2 = $ellipsoid->getEccentricitySquared();
1678 36
        $e4 = $e ** 4;
1679 36
        $e6 = $e ** 6;
1680 36
        $e8 = $e ** 8;
1681
1682 36
        $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1683
1684 36
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1685 36
        $chi = M_PI / 2 - 2 * atan($t);
1686
1687 36
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1688 36
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1689
1690 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1691
    }
1692
1693
    /**
1694
     * Hotine Oblique Mercator (variant A).
1695
     */
1696 117
    public function obliqueMercatorHotineVariantA(
1697
        Geographic2D|Geographic3D $to,
1698
        Angle $latitudeOfProjectionCentre,
1699
        Angle $longitudeOfProjectionCentre,
1700
        Angle $azimuthOfInitialLine,
1701
        Angle $angleFromRectifiedToSkewGrid,
1702
        Scale $scaleFactorOnInitialLine,
1703
        Length $falseEasting,
1704
        Length $falseNorthing
1705
    ): GeographicPoint {
1706 117
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1707 117
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1708 117
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1709 117
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1710 117
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1711 117
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1712 117
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1713 117
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1714 117
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1715 117
        $e = $ellipsoid->getEccentricity();
1716 117
        $e2 = $ellipsoid->getEccentricitySquared();
1717 117
        $e4 = $e ** 4;
1718 117
        $e6 = $e ** 6;
1719 117
        $e8 = $e ** 8;
1720
1721 117
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1722 117
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1723 117
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1724 117
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1725 117
        $DD = max(1, $D ** 2);
1726 117
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1727 117
        $H = $F * $tO ** $B;
1728 117
        $G = ($F - 1 / $F) / 2;
1729 117
        $gammaO = self::asin(sin($alphaC) / $D);
1730 117
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1731
1732 117
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1733 117
        $u = $northing * cos($gammaC) + $easting * sin($gammaC);
1734
1735 117
        $Q = M_E ** -($B * $v / $A);
1736 117
        $S = ($Q - 1 / $Q) / 2;
1737 117
        $T = ($Q + 1 / $Q) / 2;
1738 117
        $V = sin($B * $u / $A);
1739 117
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1740 117
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1741
1742 117
        $chi = M_PI / 2 - 2 * atan($t);
1743
1744 117
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1745 117
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1746
1747 117
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1748
    }
1749
1750
    /**
1751
     * Hotine Oblique Mercator (variant B).
1752
     */
1753 180
    public function obliqueMercatorHotineVariantB(
1754
        Geographic2D|Geographic3D $to,
1755
        Angle $latitudeOfProjectionCentre,
1756
        Angle $longitudeOfProjectionCentre,
1757
        Angle $azimuthOfInitialLine,
1758
        Angle $angleFromRectifiedToSkewGrid,
1759
        Scale $scaleFactorOnInitialLine,
1760
        Length $eastingAtProjectionCentre,
1761
        Length $northingAtProjectionCentre
1762
    ): GeographicPoint {
1763 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1764 180
        $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue();
1765 180
        $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue();
1766 180
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1767 180
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1768 180
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1769 180
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1770 180
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1771 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1772 180
        $e = $ellipsoid->getEccentricity();
1773 180
        $e2 = $ellipsoid->getEccentricitySquared();
1774 180
        $e4 = $e ** 4;
1775 180
        $e6 = $e ** 6;
1776 180
        $e8 = $e ** 8;
1777
1778 180
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1779 180
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1780 180
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1781 180
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1782 180
        $DD = max(1, $D ** 2);
1783 180
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1784 180
        $H = $F * $tO ** $B;
1785 180
        $G = ($F - 1 / $F) / 2;
1786 180
        $gammaO = self::asin(sin($alphaC) / $D);
1787 180
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1788 180
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1789 180
        if ($alphaC === M_PI / 2) {
1790 54
            $uC = $A * ($lonC - $lonO);
1791
        } else {
1792 126
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1793
        }
1794
1795 180
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1796 180
        $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC));
1797
1798 180
        $Q = M_E ** -($B * $v / $A);
1799 180
        $S = ($Q - 1 / $Q) / 2;
1800 180
        $T = ($Q + 1 / $Q) / 2;
1801 180
        $V = sin($B * $u / $A);
1802 180
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1803 180
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1804
1805 180
        $chi = M_PI / 2 - 2 * atan($t);
1806
1807 180
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1808 180
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1809
1810 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1811
    }
1812
1813
    /**
1814
     * Laborde Oblique Mercator.
1815
     */
1816 9
    public function obliqueMercatorLaborde(
1817
        Geographic2D|Geographic3D $to,
1818
        Angle $latitudeOfProjectionCentre,
1819
        Angle $longitudeOfProjectionCentre,
1820
        Angle $azimuthOfInitialLine,
1821
        Scale $scaleFactorOnInitialLine,
1822
        Length $falseEasting,
1823
        Length $falseNorthing
1824
    ): GeographicPoint {
1825 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1826 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1827 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1828 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1829 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1830 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1831 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1832 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1833 9
        $e = $ellipsoid->getEccentricity();
1834 9
        $e2 = $ellipsoid->getEccentricitySquared();
1835
1836 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1837 9
        $latS = self::asin(sin($latC) / $B);
1838 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1839 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1840
1841 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1842
1843 9
        $H0 = new ComplexNumber($northing / $R, $easting / $R);
1844 9
        $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0));
1845
        do {
1846 9
            $HN = $H;
1847 9
            $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0)));
1848 9
        } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA);
1849
1850 9
        $LPrime = -1 * $H->getReal();
1851 9
        $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2;
1852 9
        $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS);
1853 9
        $V = sin($PPrime);
1854 9
        $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS);
1855
1856 9
        $d = hypot($U, $V);
1857 9
        if ($d === 0) {
1858
            $L = 0;
1859
            $P = static::sign($W) * M_PI / 2;
1860
        } else {
1861 9
            $L = 2 * atan($V / ($U + $d));
1862 9
            $P = atan($W / $d);
1863
        }
1864
1865 9
        $longitude = $lonC + ($L / $B);
1866
1867 9
        $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B;
1868
1869 9
        $latitude = 2 * atan(M_E ** $q) - M_PI / 2;
1870
        do {
1871 9
            $latitudeN = $latitude;
1872 9
            $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2;
1873 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1874
1875 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1876
    }
1877
1878
    /**
1879
     * Transverse Mercator.
1880
     */
1881 740
    public function transverseMercator(
1882
        Geographic2D|Geographic3D $to,
1883
        Angle $latitudeOfNaturalOrigin,
1884
        Angle $longitudeOfNaturalOrigin,
1885
        Scale $scaleFactorAtNaturalOrigin,
1886
        Length $falseEasting,
1887
        Length $falseNorthing
1888
    ): GeographicPoint {
1889 740
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1890 740
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1891 740
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1892 740
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1893 740
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1894 740
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1895 740
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1896 740
        $e = $ellipsoid->getEccentricity();
1897 740
        $f = $ellipsoid->getFlattening();
1898
1899 740
        $n = $f / (2 - $f);
1900 740
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1901
1902 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1903 740
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1904 740
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1905 740
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1906 740
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1907 740
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1908 740
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1909 740
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1910
1911 740
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1912 306
            $mO = 0;
1913 434
        } elseif ($latitudeOrigin === M_PI / 2) {
1914
            $mO = $B * M_PI / 2;
1915 434
        } elseif ($latitudeOrigin === -M_PI / 2) {
1916 99
            $mO = $B * -M_PI / 2;
1917
        } else {
1918 335
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1919 335
            $betaO = atan(sinh($qO));
1920 335
            $xiO0 = self::asin(sin($betaO));
1921 335
            $xiO1 = $h1 * sin(2 * $xiO0);
1922 335
            $xiO2 = $h2 * sin(4 * $xiO0);
1923 335
            $xiO3 = $h3 * sin(6 * $xiO0);
1924 335
            $xiO4 = $h4 * sin(8 * $xiO0);
1925 335
            $xiO5 = $h5 * sin(10 * $xiO0);
1926 335
            $xiO6 = $h6 * sin(12 * $xiO0);
1927 335
            $xiO7 = $h7 * sin(14 * $xiO0);
1928 335
            $xiO8 = $h8 * sin(16 * $xiO0);
1929 335
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1930 335
            $mO = $B * $xiO;
1931
        }
1932
1933 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8;
1934 740
        $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8;
1935 740
        $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8;
1936 740
        $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8;
1937 740
        $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8;
1938 740
        $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8;
1939 740
        $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8;
1940 740
        $h8 = (191773887257 / 3719607091200) * $n ** 8;
1941
1942 740
        $eta = $easting / ($B * $kO);
1943 740
        $xi = ($northing + $kO * $mO) / ($B * $kO);
1944 740
        $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta);
1945 740
        $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta);
1946 740
        $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta);
1947 740
        $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta);
1948 740
        $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta);
1949 740
        $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta);
1950 740
        $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta);
1951 740
        $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta);
1952 740
        $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta);
1953 740
        $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta);
1954 740
        $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta);
1955 740
        $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta);
1956 740
        $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta);
1957 740
        $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta);
1958 740
        $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta);
1959 740
        $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta);
1960 740
        $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8;
1961 740
        $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8;
1962
1963 740
        $beta = self::asin(sin($xi0) / cosh($eta0));
1964
1965 740
        $QPrime = asinh(tan($beta));
1966 740
        $Q = asinh(tan($beta));
1967
        do {
1968 740
            $QN = $Q;
1969 740
            $Q = $QPrime + ($e * atanh($e * tanh($Q)));
1970 740
        } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA);
1971
1972 740
        $latitude = atan(sinh($Q));
1973 740
        $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta));
1974
1975 740
        $height = $this->height && $to instanceof Geographic3D ? $this->height : null;
1976
1977 740
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch);
1978
    }
1979
1980
    /**
1981
     * Transverse Mercator Zoned Grid System
1982
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1983
     * each zone.
1984
     */
1985 18
    public function transverseMercatorZonedGrid(
1986
        Geographic2D|Geographic3D $to,
1987
        Angle $latitudeOfNaturalOrigin,
1988
        Angle $initialLongitude,
1989
        Angle $zoneWidth,
1990
        Scale $scaleFactorAtNaturalOrigin,
1991
        Length $falseEasting,
1992
        Length $falseNorthing
1993
    ): GeographicPoint {
1994 18
        $Z = substr((string) $this->easting->asMetres()->getValue(), 0, 2);
1995 18
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1996
1997 18
        $W = $zoneWidth->asDegrees()->getValue();
1998 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1999
2000 18
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2001
    }
2002
2003
    /**
2004
     * General polynomial.
2005
     * @param Coefficient[] $powerCoefficients
2006
     */
2007
    public function generalPolynomial(
2008
        Projected $to,
2009
        Length $ordinate1OfEvaluationPointInSourceCRS,
2010
        Length $ordinate2OfEvaluationPointInSourceCRS,
2011
        Length $ordinate1OfEvaluationPointInTargetCRS,
2012
        Length $ordinate2OfEvaluationPointInTargetCRS,
2013
        Scale $scalingFactorForSourceCRSCoordDifferences,
2014
        Scale $scalingFactorForTargetCRSCoordDifferences,
2015
        Scale $A0,
2016
        Scale $B0,
2017
        array $powerCoefficients
2018
    ): self {
2019
        $xs = $this->easting->getValue();
2020
        $ys = $this->northing->getValue();
2021
2022
        $t = $this->generalPolynomialUnitless(
2023
            $xs,
2024
            $ys,
2025
            $ordinate1OfEvaluationPointInSourceCRS,
2026
            $ordinate2OfEvaluationPointInSourceCRS,
2027
            $ordinate1OfEvaluationPointInTargetCRS,
2028
            $ordinate2OfEvaluationPointInTargetCRS,
2029
            $scalingFactorForSourceCRSCoordDifferences,
2030
            $scalingFactorForTargetCRSCoordDifferences,
2031
            $A0,
2032
            $B0,
2033
            $powerCoefficients
2034
        );
2035
2036
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2037
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2038
2039
        return static::createFromEastingNorthing(
2040
            $to,
2041
            Length::makeUnit($t['xt'], $xtUnit),
2042
            Length::makeUnit($t['yt'], $ytUnit),
2043
            $this->epoch
2044
        );
2045
    }
2046
2047
    /**
2048
     * New Zealand Map Grid.
2049
     */
2050 27
    public function newZealandMapGrid(
2051
        Geographic2D|Geographic3D $to,
2052
        Angle $latitudeOfNaturalOrigin,
2053
        Angle $longitudeOfNaturalOrigin,
2054
        Length $falseEasting,
2055
        Length $falseNorthing
2056
    ): GeographicPoint {
2057 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2058 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2059
2060 27
        $z = new ComplexNumber(
2061 27
            $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(),
2062 27
            $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(),
2063 27
        );
2064
2065 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
2066 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
2067 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
2068 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
2069 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
2070 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
2071 27
        $b1 = new ComplexNumber(1.3231270439, 0.0);
2072 27
        $b2 = new ComplexNumber(-0.577245789, -0.007809598);
2073 27
        $b3 = new ComplexNumber(0.508307513, -0.112208952);
2074 27
        $b4 = new ComplexNumber(-0.15094762, 0.18200602);
2075 27
        $b5 = new ComplexNumber(1.01418179, 1.64497696);
2076 27
        $b6 = new ComplexNumber(1.9660549, 2.5127645);
2077
2078 27
        $zeta = new ComplexNumber(0, 0);
2079 27
        $zeta = $zeta->add($b1->multiply($z->pow(1)));
2080 27
        $zeta = $zeta->add($b2->multiply($z->pow(2)));
2081 27
        $zeta = $zeta->add($b3->multiply($z->pow(3)));
2082 27
        $zeta = $zeta->add($b4->multiply($z->pow(4)));
2083 27
        $zeta = $zeta->add($b5->multiply($z->pow(5)));
2084 27
        $zeta = $zeta->add($b6->multiply($z->pow(6)));
2085
2086 27
        for ($iterations = 0; $iterations < 2; ++$iterations) {
2087 27
            $numerator = $z;
2088 27
            $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0)));
2089 27
            $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0)));
2090 27
            $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0)));
2091 27
            $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0)));
2092 27
            $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0)));
2093
2094 27
            $denominator = $B1;
2095 27
            $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0)));
2096 27
            $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0)));
2097 27
            $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0)));
2098 27
            $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0)));
2099 27
            $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0)));
2100
2101 27
            $zeta = $numerator->divide($denominator);
2102
        }
2103
2104 27
        $deltaPsi = $zeta->getReal();
2105 27
        $deltaLatitudeToOrigin = 0;
2106 27
        $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1;
2107 27
        $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2;
2108 27
        $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3;
2109 27
        $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4;
2110 27
        $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5;
2111 27
        $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6;
2112 27
        $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7;
2113 27
        $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8;
2114 27
        $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9;
2115
2116 27
        $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001));
2117 27
        $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary()));
2118
2119 27
        return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch);
2120
    }
2121
2122
    /**
2123
     * Complex polynomial.
2124
     * Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients
2125
     * and leads to a smaller number of coefficients than the general polynomials.
2126
     */
2127 9
    public function complexPolynomial(
2128
        Projected $to,
2129
        Length $ordinate1OfEvaluationPointInSourceCRS,
2130
        Length $ordinate2OfEvaluationPointInSourceCRS,
2131
        Length $ordinate1OfEvaluationPointInTargetCRS,
2132
        Length $ordinate2OfEvaluationPointInTargetCRS,
2133
        Scale $scalingFactorForSourceCRSCoordDifferences,
2134
        Scale $scalingFactorForTargetCRSCoordDifferences,
2135
        Scale $A1,
2136
        Scale $A2,
2137
        Scale $A3,
2138
        Scale $A4,
2139
        Scale $A5,
2140
        Scale $A6,
2141
        ?Scale $A7 = null,
2142
        ?Scale $A8 = null
2143
    ): self {
2144 9
        $xs = $this->easting->getValue();
2145 9
        $ys = $this->northing->getValue();
2146 9
        $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue();
2147 9
        $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue();
2148 9
        $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue();
2149 9
        $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue();
2150
2151 9
        $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso);
2152 9
        $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso);
2153
2154 9
        $mTdXdY = new ComplexNumber(0, 0);
2155 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1));
2156 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2)));
2157 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3)));
2158 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4)));
2159
2160 9
        $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2161 9
        $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2162
2163 9
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2164 9
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2165
2166 9
        return static::createFromEastingNorthing(
2167 9
            $to,
2168 9
            Length::makeUnit($xt, $xtUnit),
2169 9
            Length::makeUnit($yt, $ytUnit),
2170 9
            $this->epoch
2171 9
        );
2172
    }
2173
2174
    /**
2175
     * Ordnance Survey National Transformation
2176
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2177
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2178
     */
2179 2
    public function OSTN15(
2180
        Geographic2D $to,
2181
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2182
    ): GeographicPoint {
2183 2
        $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this);
2184
2185 2
        return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2186
    }
2187
}
2188