Passed
Push — master ( 3c9843...962ccc )
by Doug
02:47
created

GeographicPoint::asUTMPoint()   A

Complexity

Conditions 3
Paths 4

Size

Total Lines 21
Code Lines 15

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 16
CRAP Score 3

Importance

Changes 0
Metric Value
cc 3
eloc 15
nc 4
nop 0
dl 0
loc 21
ccs 16
cts 16
cp 1
crap 3
rs 9.7666
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function implode;
23
use function is_nan;
24
use function log;
25
use const M_E;
26
use const M_PI;
27
use function max;
28
use PHPCoord\CoordinateOperation\AutoConversion;
29
use PHPCoord\CoordinateOperation\ComplexNumber;
30
use PHPCoord\CoordinateOperation\ConvertiblePoint;
31
use PHPCoord\CoordinateOperation\GeocentricValue;
32
use PHPCoord\CoordinateOperation\GeographicValue;
33
use PHPCoord\CoordinateReferenceSystem\Compound;
34
use PHPCoord\CoordinateReferenceSystem\Geocentric;
35
use PHPCoord\CoordinateReferenceSystem\Geographic;
36
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
37
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
38
use PHPCoord\CoordinateReferenceSystem\Projected;
39
use PHPCoord\CoordinateSystem\Axis;
40
use PHPCoord\CoordinateSystem\Cartesian;
41
use PHPCoord\Datum\Ellipsoid;
42
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
43
use PHPCoord\Exception\UnknownAxisException;
44
use PHPCoord\Geometry\GeographicPolygon;
45
use PHPCoord\UnitOfMeasure\Angle\Angle;
46
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
47
use PHPCoord\UnitOfMeasure\Angle\Degree;
48
use PHPCoord\UnitOfMeasure\Angle\Radian;
49
use PHPCoord\UnitOfMeasure\Length\Length;
50
use PHPCoord\UnitOfMeasure\Length\Metre;
51
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
52
use PHPCoord\UnitOfMeasure\Scale\Scale;
53
use PHPCoord\UnitOfMeasure\Scale\Unity;
54
use function sin;
55
use function sinh;
56
use function sprintf;
57
use function sqrt;
58
use function tan;
59
use TypeError;
60
61
/**
62
 * Coordinate representing a point on an ellipsoid.
63
 */
64
class GeographicPoint extends Point implements ConvertiblePoint
65
{
66
    use AutoConversion;
67
68
    /**
69
     * Latitude.
70
     */
71
    protected Angle $latitude;
72
73
    /**
74
     * Longitude.
75
     */
76
    protected Angle $longitude;
77
78
    /**
79
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
80
     */
81
    protected ?Length $height;
82
83
    /**
84
     * Coordinate reference system.
85
     */
86
    protected Geographic $crs;
87
88
    /**
89
     * Coordinate epoch (date for which the specified coordinates represented this point).
90
     */
91
    protected ?DateTimeImmutable $epoch;
92
93 160
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
94
    {
95 160
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
96
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
97
        }
98
99 160
        if ($crs instanceof Geographic2D && $height !== null) {
100 1
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
101
        }
102
103 159
        if ($crs instanceof Geographic3D && $height === null) {
104 1
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
105
        }
106
107 158
        $this->crs = $crs;
108
109 158
        $latitude = $this->normaliseLatitude($latitude);
110 158
        $longitude = $this->normaliseLongitude($longitude);
111
112 158
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
113 158
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
114
115 158
        if ($height) {
116 20
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
117
        } else {
118 146
            $this->height = null;
119
        }
120
121 158
        if ($epoch instanceof DateTime) {
122 1
            $epoch = DateTimeImmutable::createFromMutable($epoch);
123
        }
124 158
        $this->epoch = $epoch;
125 158
    }
126
127
    /**
128
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
129
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
130
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
131
     */
132 160
    public static function create(Angle $latitude, Angle $longitude, ?Length $height = null, Geographic $crs, ?DateTimeInterface $epoch = null): self
133
    {
134 160
        return new static($latitude, $longitude, $height, $crs, $epoch);
135
    }
136
137 82
    public function getLatitude(): Angle
138
    {
139 82
        return $this->latitude;
140
    }
141
142 80
    public function getLongitude(): Angle
143
    {
144 80
        return $this->longitude;
145
    }
146
147 37
    public function getHeight(): ?Length
148
    {
149 37
        return $this->height;
150
    }
151
152 158
    public function getCRS(): Geographic
153
    {
154 158
        return $this->crs;
155
    }
156
157 18
    public function getCoordinateEpoch(): ?DateTimeImmutable
158
    {
159 18
        return $this->epoch;
160
    }
161
162 158
    protected function normaliseLatitude(Angle $latitude): Angle
163
    {
164 158
        if ($latitude->asDegrees()->getValue() > 90) {
165
            return new Degree(90);
166
        }
167 158
        if ($latitude->asDegrees()->getValue() < -90) {
168
            return new Degree(-90);
169
        }
170
171 158
        return $latitude;
172
    }
173
174 158
    protected function normaliseLongitude(Angle $longitude): Angle
175
    {
176 158
        while ($longitude->asDegrees()->getValue() > 180) {
177
            $longitude = $longitude->subtract(new Degree(360));
178
        }
179 158
        while ($longitude->asDegrees()->getValue() <= -180) {
180
            $longitude = $longitude->add(new Degree(360));
181
        }
182
183 158
        return $longitude;
184
    }
185
186
    /**
187
     * Calculate surface distance between two points.
188
     */
189 17
    public function calculateDistance(Point $to): Length
190
    {
191
        try {
192 17
            if ($to instanceof ConvertiblePoint) {
193 16
                $to = $to->convert($this->crs);
194
            }
195
        } finally {
196 17
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
197 1
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
198
            }
199
200
            /* @var GeographicPoint $to */
201 16
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
202
        }
203
    }
204
205 4
    public function __toString(): string
206
    {
207 4
        $values = [];
208 4
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
209 4
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
210 4
                $values[] = $this->latitude;
211 4
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
212 4
                $values[] = $this->longitude;
213 1
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
214 1
                $values[] = $this->height;
215
            } else {
216
                throw new UnknownAxisException(); // @codeCoverageIgnore
217
            }
218
        }
219
220 4
        return '(' . implode(', ', $values) . ')';
221
    }
222
223
    /**
224
     * Geographic/geocentric conversions
225
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
226
     * 9636 to form a geographic to geographic transformation.
227
     */
228 1
    public function geographicGeocentric(
229
        Geocentric $to
230
    ): GeocentricPoint {
231 1
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
232 1
        $asGeocentric = $geographicValue->asGeocentricValue();
233
234 1
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
235
    }
236
237
    /**
238
     * Coordinate Frame rotation (geog2D/geog3D domain)
239
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
240
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
241
     * between other CRS types.
242
     */
243 6
    public function coordinateFrameRotation(
244
        Geographic $to,
245
        Length $xAxisTranslation,
246
        Length $yAxisTranslation,
247
        Length $zAxisTranslation,
248
        Angle $xAxisRotation,
249
        Angle $yAxisRotation,
250
        Angle $zAxisRotation,
251
        Scale $scaleDifference
252
    ): self {
253 6
        return $this->coordinateFrameMolodenskyBadekas(
254 6
            $to,
255
            $xAxisTranslation,
256
            $yAxisTranslation,
257
            $zAxisTranslation,
258
            $xAxisRotation,
259
            $yAxisRotation,
260
            $zAxisRotation,
261
            $scaleDifference,
262 6
            new Metre(0),
263 6
            new Metre(0),
264 6
            new Metre(0)
265
        );
266
    }
267
268
    /**
269
     * Molodensky-Badekas (CF geog2D/geog3D domain)
270
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
271
     * opposite rotation convention in geographic 2D domain.
272
     */
273 8
    public function coordinateFrameMolodenskyBadekas(
274
        Geographic $to,
275
        Length $xAxisTranslation,
276
        Length $yAxisTranslation,
277
        Length $zAxisTranslation,
278
        Angle $xAxisRotation,
279
        Angle $yAxisRotation,
280
        Angle $zAxisRotation,
281
        Scale $scaleDifference,
282
        Length $ordinate1OfEvaluationPoint,
283
        Length $ordinate2OfEvaluationPoint,
284
        Length $ordinate3OfEvaluationPoint
285
    ): self {
286 8
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
287 8
        $asGeocentric = $geographicValue->asGeocentricValue();
288
289 8
        $xs = $asGeocentric->getX()->asMetres()->getValue();
290 8
        $ys = $asGeocentric->getY()->asMetres()->getValue();
291 8
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
292 8
        $tx = $xAxisTranslation->asMetres()->getValue();
293 8
        $ty = $yAxisTranslation->asMetres()->getValue();
294 8
        $tz = $zAxisTranslation->asMetres()->getValue();
295 8
        $rx = $xAxisRotation->asRadians()->getValue();
296 8
        $ry = $yAxisRotation->asRadians()->getValue();
297 8
        $rz = $zAxisRotation->asRadians()->getValue();
298 8
        $M = 1 + $scaleDifference->asUnity()->getValue();
299 8
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
300 8
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
301 8
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
302
303 8
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
304 8
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
305 8
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
306 8
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
307 8
        $newGeographic = $newGeocentric->asGeographicValue();
308
309 8
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
310
    }
311
312
    /**
313
     * Position Vector transformation (geog2D/geog3D domain)
314
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
315
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
316
     * operating between other CRS types.
317
     */
318 18
    public function positionVectorTransformation(
319
        Geographic $to,
320
        Length $xAxisTranslation,
321
        Length $yAxisTranslation,
322
        Length $zAxisTranslation,
323
        Angle $xAxisRotation,
324
        Angle $yAxisRotation,
325
        Angle $zAxisRotation,
326
        Scale $scaleDifference
327
    ): self {
328 18
        return $this->positionVectorMolodenskyBadekas(
329 18
            $to,
330
            $xAxisTranslation,
331
            $yAxisTranslation,
332
            $zAxisTranslation,
333
            $xAxisRotation,
334
            $yAxisRotation,
335
            $zAxisRotation,
336
            $scaleDifference,
337 18
            new Metre(0),
338 18
            new Metre(0),
339 18
            new Metre(0)
340
        );
341
    }
342
343
    /**
344
     * Molodensky-Badekas (PV geog2D/geog3D domain)
345
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
346
     * rotation in geographic 2D/3D domain.
347
     */
348 20
    public function positionVectorMolodenskyBadekas(
349
        Geographic $to,
350
        Length $xAxisTranslation,
351
        Length $yAxisTranslation,
352
        Length $zAxisTranslation,
353
        Angle $xAxisRotation,
354
        Angle $yAxisRotation,
355
        Angle $zAxisRotation,
356
        Scale $scaleDifference,
357
        Length $ordinate1OfEvaluationPoint,
358
        Length $ordinate2OfEvaluationPoint,
359
        Length $ordinate3OfEvaluationPoint
360
    ): self {
361 20
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
362 20
        $asGeocentric = $geographicValue->asGeocentricValue();
363
364 20
        $xs = $asGeocentric->getX()->asMetres()->getValue();
365 20
        $ys = $asGeocentric->getY()->asMetres()->getValue();
366 20
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
367 20
        $tx = $xAxisTranslation->asMetres()->getValue();
368 20
        $ty = $yAxisTranslation->asMetres()->getValue();
369 20
        $tz = $zAxisTranslation->asMetres()->getValue();
370 20
        $rx = $xAxisRotation->asRadians()->getValue();
371 20
        $ry = $yAxisRotation->asRadians()->getValue();
372 20
        $rz = $zAxisRotation->asRadians()->getValue();
373 20
        $M = 1 + $scaleDifference->asUnity()->getValue();
374 20
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
375 20
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
376 20
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
377
378 20
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
379 20
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
380 20
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
381 20
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
382 20
        $newGeographic = $newGeocentric->asGeographicValue();
383
384 20
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
385
    }
386
387
    /**
388
     * Geocentric translations
389
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
390
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
391
     * operating between other CRSs types.
392
     */
393 6
    public function geocentricTranslation(
394
        Geographic $to,
395
        Length $xAxisTranslation,
396
        Length $yAxisTranslation,
397
        Length $zAxisTranslation
398
    ): self {
399 6
        return $this->positionVectorTransformation(
400 6
            $to,
401
            $xAxisTranslation,
402
            $yAxisTranslation,
403
            $zAxisTranslation,
404 6
            new Radian(0),
405 6
            new Radian(0),
406 6
            new Radian(0),
407 6
            new Unity(0)
408
        );
409
    }
410
411
    /**
412
     * Abridged Molodensky
413
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
414
     * systems, modelled as a set of geocentric translations.
415
     */
416 2
    public function abridgedMolodensky(
417
        Geographic $to,
418
        Length $xAxisTranslation,
419
        Length $yAxisTranslation,
420
        Length $zAxisTranslation,
421
        Length $differenceInSemiMajorAxis,
422
        Scale $differenceInFlattening
423
    ): self {
424 2
        $latitude = $this->latitude->asRadians()->getValue();
425 2
        $longitude = $this->longitude->asRadians()->getValue();
426 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
427 2
        $tx = $xAxisTranslation->asMetres()->getValue();
428 2
        $ty = $yAxisTranslation->asMetres()->getValue();
429 2
        $tz = $zAxisTranslation->asMetres()->getValue();
430 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
431 2
        $df = $differenceInFlattening->asUnity()->getValue();
432
433 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
434 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
435
436 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
437 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
438
439 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
440
441 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
442 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
443 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
444
445 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
446 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
447 2
        $toHeight = $fromHeight + $dHeight;
448
449 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
450
    }
451
452
    /**
453
     * Molodensky
454
     * See Abridged Molodensky.
455
     */
456 2
    public function molodensky(
457
        Geographic $to,
458
        Length $xAxisTranslation,
459
        Length $yAxisTranslation,
460
        Length $zAxisTranslation,
461
        Length $differenceInSemiMajorAxis,
462
        Scale $differenceInFlattening
463
    ): self {
464 2
        $latitude = $this->latitude->asRadians()->getValue();
465 2
        $longitude = $this->longitude->asRadians()->getValue();
466 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
467 2
        $tx = $xAxisTranslation->asMetres()->getValue();
468 2
        $ty = $yAxisTranslation->asMetres()->getValue();
469 2
        $tz = $zAxisTranslation->asMetres()->getValue();
470 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
471 2
        $df = $differenceInFlattening->asUnity()->getValue();
472
473 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
474 2
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
475 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
476
477 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
478 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
479
480 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
481
482 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
483 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
484 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
485
486 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
487 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
488 2
        $toHeight = $fromHeight + $dHeight;
489
490 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
491
    }
492
493
    /**
494
     * Albers Equal Area.
495
     */
496 2
    public function albersEqualArea(
497
        Projected $to,
498
        Angle $latitudeOfFalseOrigin,
499
        Angle $longitudeOfFalseOrigin,
500
        Angle $latitudeOf1stStandardParallel,
501
        Angle $latitudeOf2ndStandardParallel,
502
        Length $eastingAtFalseOrigin,
503
        Length $northingAtFalseOrigin
504
    ): ProjectedPoint {
505 2
        $latitude = $this->latitude->asRadians()->getValue();
506 2
        $longitude = $this->longitude->asRadians()->getValue();
507 2
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
508 2
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
509 2
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
510 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
511 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
512 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
513
514 2
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
515 2
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
516
517 2
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
518 2
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
519 2
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
520 2
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
521
522 2
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
523 2
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
524 2
        $theta = $n * ($longitude - $longitudeOfFalseOrigin->asRadians()->getValue());
525 2
        $rho = $a * sqrt($C - $n * $alpha) / $n;
526 2
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
527
528 2
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
529 2
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
530
531 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
532
    }
533
534
    /**
535
     * American Polyconic.
536
     */
537 1
    public function americanPolyconic(
538
        Projected $to,
539
        Angle $latitudeOfNaturalOrigin,
540
        Angle $longitudeOfNaturalOrigin,
541
        Length $falseEasting,
542
        Length $falseNorthing
543
    ): ProjectedPoint {
544 1
        $latitude = $this->latitude->asRadians()->getValue();
545 1
        $longitude = $this->longitude->asRadians()->getValue();
546 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
547 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
548 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
549 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
550 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
551 1
        $e4 = $e ** 4;
552 1
        $e6 = $e ** 6;
553
554 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
555 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
556
557 1
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
558
            $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
559
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
560
        } else {
561 1
            $L = ($longitude - $longitudeOrigin) * sin($latitude);
562 1
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
563
564 1
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
565 1
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
566
        }
567
568 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
569
    }
570
571
    /**
572
     * Bonne.
573
     */
574 1
    public function bonne(
575
        Projected $to,
576
        Angle $latitudeOfNaturalOrigin,
577
        Angle $longitudeOfNaturalOrigin,
578
        Length $falseEasting,
579
        Length $falseNorthing
580
    ): ProjectedPoint {
581 1
        $latitude = $this->latitude->asRadians()->getValue();
582 1
        $longitude = $this->longitude->asRadians()->getValue();
583 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
584 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
585 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
586 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
587 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
588 1
        $e4 = $e ** 4;
589 1
        $e6 = $e ** 6;
590
591 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
592 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
593
594 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
595 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
596
597 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
598 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
599
600 1
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
601 1
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
602
603 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
604
    }
605
606
    /**
607
     * Bonne South Orientated.
608
     */
609 1
    public function bonneSouthOrientated(
610
        Projected $to,
611
        Angle $latitudeOfNaturalOrigin,
612
        Angle $longitudeOfNaturalOrigin,
613
        Length $falseEasting,
614
        Length $falseNorthing
615
    ): ProjectedPoint {
616 1
        $latitude = $this->latitude->asRadians()->getValue();
617 1
        $longitude = $this->longitude->asRadians()->getValue();
618 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
619 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
620 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
621 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
622 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
623 1
        $e4 = $e ** 4;
624 1
        $e6 = $e ** 6;
625
626 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
627 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
628
629 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
630 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
631
632 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
633 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
634
635 1
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
636 1
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
637
638 1
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
639
    }
640
641
    /**
642
     * Cassini-Soldner.
643
     */
644 1
    public function cassiniSoldner(
645
        Projected $to,
646
        Angle $latitudeOfNaturalOrigin,
647
        Angle $longitudeOfNaturalOrigin,
648
        Length $falseEasting,
649
        Length $falseNorthing
650
    ): ProjectedPoint {
651 1
        $latitude = $this->latitude->asRadians()->getValue();
652 1
        $longitude = $this->longitude->asRadians()->getValue();
653 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
654 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
655 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
656 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
657 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
658 1
        $e4 = $e ** 4;
659 1
        $e6 = $e ** 6;
660
661 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
662 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
663
664 1
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
665 1
        $T = tan($latitude) ** 2;
666 1
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
667 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
668 1
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
669
670 1
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
671 1
        $northing = $falseNorthing->asMetres()->getValue() + $X;
672
673 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
674
    }
675
676
    /**
677
     * Hyperbolic Cassini-Soldner.
678
     */
679 2
    public function hyperbolicCassiniSoldner(
680
        Projected $to,
681
        Angle $latitudeOfNaturalOrigin,
682
        Angle $longitudeOfNaturalOrigin,
683
        Length $falseEasting,
684
        Length $falseNorthing
685
    ): ProjectedPoint {
686 2
        $latitude = $this->latitude->asRadians()->getValue();
687 2
        $longitude = $this->longitude->asRadians()->getValue();
688 2
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
689 2
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
690 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
691 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
692 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
693 2
        $e4 = $e ** 4;
694 2
        $e6 = $e ** 6;
695
696 2
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
697 2
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
698
699 2
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
700 2
        $T = tan($latitude) ** 2;
701 2
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
702 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
703 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
704 2
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
705
706 2
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
707 2
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
708
709 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
710
    }
711
712
    /**
713
     * Colombia Urban.
714
     */
715 1
    public function columbiaUrban(
716
        Projected $to,
717
        Angle $latitudeOfNaturalOrigin,
718
        Angle $longitudeOfNaturalOrigin,
719
        Length $falseEasting,
720
        Length $falseNorthing,
721
        Length $projectionPlaneOriginHeight
722
    ): ProjectedPoint {
723 1
        $latitude = $this->latitude->asRadians()->getValue();
724 1
        $longitude = $this->longitude->asRadians()->getValue();
725 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
726 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
727 1
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
728 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
729 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
730
731 1
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
0 ignored issues
show
Unused Code introduced by
The assignment to $rho is dead and can be removed.
Loading history...
732 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
733 1
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
734
735 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
736 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
737
738 1
        $A = 1 + $heightOrigin / $nuOrigin;
739 1
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
740 1
        $G = 1 + $heightOrigin / $rhoMid;
741
742 1
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * ($longitude - $longitudeOrigin);
743 1
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * ($longitude - $longitudeOrigin) ** 2 * $nu ** 2 * cos($latitude) ** 2));
744
745 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
746
    }
747
748
    /**
749
     * Equal Earth.
750
     */
751 1
    public function equalEarth(
752
        Projected $to,
753
        Angle $longitudeOfNaturalOrigin,
754
        Length $falseEasting,
755
        Length $falseNorthing
756
    ): ProjectedPoint {
757 1
        $latitude = $this->latitude->asRadians()->getValue();
758 1
        $longitude = $this->longitude->asRadians()->getValue();
759 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
760 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
761 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
762 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
763
764 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
765 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
766 1
        $beta = self::asin($q / $qP);
767 1
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
768 1
        $Rq = $a * sqrt($qP / 2);
769
770 1
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * ($longitude - $longitudeOrigin) * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
771 1
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
772
773 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
774
    }
775
776
    /**
777
     * Equidistant Cylindrical
778
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
779
     */
780 1
    public function equidistantCylindrical(
781
        Projected $to,
782
        Angle $latitudeOf1stStandardParallel,
783
        Angle $longitudeOfNaturalOrigin,
784
        Length $falseEasting,
785
        Length $falseNorthing
786
    ): ProjectedPoint {
787 1
        $latitude = $this->latitude->asRadians()->getValue();
788 1
        $longitude = $this->longitude->asRadians()->getValue();
789 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
790 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
791 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
792 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
793 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
794 1
        $e4 = $e ** 4;
795 1
        $e6 = $e ** 6;
796 1
        $e8 = $e ** 8;
797 1
        $e10 = $e ** 10;
798 1
        $e12 = $e ** 12;
799 1
        $e14 = $e ** 14;
800
801 1
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
802
803
        $M = $a * (
804 1
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
805 1
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
806 1
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
807 1
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
808 1
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
809 1
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
810 1
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
811 1
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
812
        );
813
814 1
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * ($longitude - $longitudeOrigin);
815 1
        $northing = $falseNorthing->asMetres()->getValue() + $M;
816
817 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
818
    }
819
820
    /**
821
     * Guam Projection
822
     * Simplified form of Oblique Azimuthal Equidistant projection method.
823
     */
824 1
    public function guamProjection(
825
        Projected $to,
826
        Angle $latitudeOfNaturalOrigin,
827
        Angle $longitudeOfNaturalOrigin,
828
        Length $falseEasting,
829
        Length $falseNorthing
830
    ): ProjectedPoint {
831 1
        $latitude = $this->latitude->asRadians()->getValue();
832 1
        $longitude = $this->longitude->asRadians()->getValue();
833 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
834 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
835 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
836 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
837 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
838 1
        $e4 = $e ** 4;
839 1
        $e6 = $e ** 6;
840
841 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
842 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
843 1
        $x = ($a * ($longitude - $longitudeOrigin) * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
844
845 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
846 1
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
847
848 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
849
    }
850
851
    /**
852
     * Krovak.
853
     */
854 4
    public function krovak(
855
        Projected $to,
856
        Angle $latitudeOfProjectionCentre,
857
        Angle $longitudeOfOrigin,
858
        Angle $coLatitudeOfConeAxis,
859
        Angle $latitudeOfPseudoStandardParallel,
860
        Scale $scaleFactorOnPseudoStandardParallel,
861
        Length $falseEasting,
862
        Length $falseNorthing
863
    ): ProjectedPoint {
864 4
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
865 4
        $latitude = $this->latitude->asRadians()->getValue();
866 4
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
867 4
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
868 4
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
869 4
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
870 4
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
871 4
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
872 4
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
873 4
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
874 4
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
875
876 4
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
877 4
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
878 4
        $upsilonO = self::asin(sin($latitudeC) / $B);
879 4
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
880 4
        $n = sin($latitudeP);
881 4
        $rO = $kP * $A / tan($latitudeP);
882
883 4
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
884 4
        $V = $B * ($longitudeO - $longitude);
885 4
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
886 4
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
887 4
        $theta = $n * $D;
888 4
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
889 4
        $X = $r * cos($theta);
890 4
        $Y = $r * sin($theta);
891
892 4
        $westing = $Y + $falseEasting->asMetres()->getValue();
893 4
        $southing = $X + $falseNorthing->asMetres()->getValue();
894
895 4
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
896
    }
897
898
    /**
899
     * Krovak Modified
900
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
901
     * to be a map projection.
902
     */
903 2
    public function krovakModified(
904
        Projected $to,
905
        Angle $latitudeOfProjectionCentre,
906
        Angle $longitudeOfOrigin,
907
        Angle $coLatitudeOfConeAxis,
908
        Angle $latitudeOfPseudoStandardParallel,
909
        Scale $scaleFactorOnPseudoStandardParallel,
910
        Length $falseEasting,
911
        Length $falseNorthing,
912
        Length $ordinate1OfEvaluationPoint,
913
        Length $ordinate2OfEvaluationPoint,
914
        Coefficient $C1,
915
        Coefficient $C2,
916
        Coefficient $C3,
917
        Coefficient $C4,
918
        Coefficient $C5,
919
        Coefficient $C6,
920
        Coefficient $C7,
921
        Coefficient $C8,
922
        Coefficient $C9,
923
        Coefficient $C10
924
    ): ProjectedPoint {
925 2
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
926
927 2
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
928 2
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
929 2
        $c1 = $C1->asUnity()->getValue();
930 2
        $c2 = $C2->asUnity()->getValue();
931 2
        $c3 = $C3->asUnity()->getValue();
932 2
        $c4 = $C4->asUnity()->getValue();
933 2
        $c5 = $C5->asUnity()->getValue();
934 2
        $c6 = $C6->asUnity()->getValue();
935 2
        $c7 = $C7->asUnity()->getValue();
936 2
        $c8 = $C8->asUnity()->getValue();
937 2
        $c9 = $C9->asUnity()->getValue();
938 2
        $c10 = $C10->asUnity()->getValue();
939
940 2
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
941 2
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
942
943 2
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
944 2
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
945
946 2
        $westing += $falseEasting->asMetres()->getValue() - $dY;
947 2
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
948
949 2
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
950
    }
951
952
    /**
953
     * Lambert Azimuthal Equal Area
954
     * This is the ellipsoidal form of the projection.
955
     */
956 1
    public function lambertAzimuthalEqualArea(
957
        Projected $to,
958
        Angle $latitudeOfNaturalOrigin,
959
        Angle $longitudeOfNaturalOrigin,
960
        Length $falseEasting,
961
        Length $falseNorthing
962
    ): ProjectedPoint {
963 1
        $latitude = $this->latitude->asRadians()->getValue();
964 1
        $longitude = $this->longitude->asRadians()->getValue();
965 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
966 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
967 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
968 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
969 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
970
971 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
972 1
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
973 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
974 1
        $beta = self::asin($q / $qP);
975 1
        $betaO = self::asin($qO / $qP);
976 1
        $Rq = $a * sqrt($qP / 2);
977 1
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($longitude - $longitudeOrigin))));
978 1
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
979
980 1
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($longitude - $longitudeOrigin)));
981 1
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($longitude - $longitudeOrigin)));
982
983 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
984
    }
985
986
    /**
987
     * Lambert Azimuthal Equal Area (Spherical)
988
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
989
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
990
     * methods.
991
     */
992 1
    public function lambertAzimuthalEqualAreaSpherical(
993
        Projected $to,
994
        Angle $latitudeOfNaturalOrigin,
995
        Angle $longitudeOfNaturalOrigin,
996
        Length $falseEasting,
997
        Length $falseNorthing
998
    ): ProjectedPoint {
999 1
        $latitude = $this->latitude->asRadians()->getValue();
1000 1
        $longitude = $this->longitude->asRadians()->getValue();
1001 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1002 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1003 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1004
1005 1
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
1006
1007 1
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($longitude - $longitudeOrigin));
1008 1
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
1009
1010 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1011
    }
1012
1013
    /**
1014
     * Lambert Conic Conformal (1SP).
1015
     */
1016 1
    public function lambertConicConformal1SP(
1017
        Projected $to,
1018
        Angle $latitudeOfNaturalOrigin,
1019
        Angle $longitudeOfNaturalOrigin,
1020
        Scale $scaleFactorAtNaturalOrigin,
1021
        Length $falseEasting,
1022
        Length $falseNorthing
1023
    ): ProjectedPoint {
1024 1
        $latitude = $this->latitude->asRadians()->getValue();
1025 1
        $longitude = $this->longitude->asRadians()->getValue();
1026 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1027 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1028 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1029 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1030 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1031 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1032
1033 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1034 1
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1035 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1036 1
        $n = sin($latitudeOrigin);
1037 1
        $F = $mO / ($n * $tO ** $n);
1038 1
        $rO = $a * $F * $tO ** $n * $kO;
1039 1
        $r = $a * $F * $t ** $n * $kO;
1040 1
        $theta = $n * ($longitude - $longitudeOrigin);
1041
1042 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1043 1
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1044
1045 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1046
    }
1047
1048
    /**
1049
     * Lambert Conic Conformal (1SP) Variant B.
1050
     */
1051
    public function lambertConicConformal1SPVariantB(
1052
        Projected $to,
1053
        Angle $latitudeOfNaturalOrigin,
1054
        Scale $scaleFactorAtNaturalOrigin,
1055
        Angle $latitudeOfFalseOrigin,
1056
        Angle $longitudeOfFalseOrigin,
1057
        Length $eastingAtFalseOrigin,
1058
        Length $northingAtFalseOrigin
1059
    ): ProjectedPoint {
1060
        $latitude = $this->latitude->asRadians()->getValue();
1061
        $longitude = $this->longitude->asRadians()->getValue();
1062
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1063
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1064
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1065
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1066
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1067
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1068
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1069
1070
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1071
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1072
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1073
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1074
        $n = sin($latitudeNaturalOrigin);
1075
        $F = $mO / ($n * $tO ** $n);
1076
        $rF = $a * $F * $tF ** $n * $kO;
1077
        $r = $a * $F * $t ** $n * $kO;
1078
        $theta = $n * ($longitude - $longitudeFalseOrigin);
1079
1080
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1081
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1082
1083
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1084
    }
1085
1086
    /**
1087
     * Lambert Conic Conformal (2SP Belgium)
1088
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1089
     * with appropriately modified parameter values.
1090
     */
1091 1
    public function lambertConicConformal2SPBelgium(
1092
        Projected $to,
1093
        Angle $latitudeOfFalseOrigin,
1094
        Angle $longitudeOfFalseOrigin,
1095
        Angle $latitudeOf1stStandardParallel,
1096
        Angle $latitudeOf2ndStandardParallel,
1097
        Length $eastingAtFalseOrigin,
1098
        Length $northingAtFalseOrigin
1099
    ): ProjectedPoint {
1100 1
        $latitude = $this->latitude->asRadians()->getValue();
1101 1
        $longitude = $this->longitude->asRadians()->getValue();
1102 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1103 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1104 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1105 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1106 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1107 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1108 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1109
1110 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1111 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1112 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1113 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1114 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1115 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1116 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1117 1
        $F = $m1 / ($n * $t1 ** $n);
1118 1
        $r = $a * $F * $t ** $n;
1119 1
        $rF = $a * $F * $tF ** $n;
1120 1
        if (is_nan($rF)) {
1121 1
            $rF = 0;
1122
        }
1123 1
        $theta = ($n * ($longitude - $lambdaF)) - (new ArcSecond(29.2985))->asRadians()->getValue();
1124
1125 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1126 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1127
1128 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1129
    }
1130
1131
    /**
1132
     * Lambert Conic Conformal (2SP Michigan).
1133
     */
1134 1
    public function lambertConicConformal2SPMichigan(
1135
        Projected $to,
1136
        Angle $latitudeOfFalseOrigin,
1137
        Angle $longitudeOfFalseOrigin,
1138
        Angle $latitudeOf1stStandardParallel,
1139
        Angle $latitudeOf2ndStandardParallel,
1140
        Length $eastingAtFalseOrigin,
1141
        Length $northingAtFalseOrigin,
1142
        Scale $ellipsoidScalingFactor
1143
    ): ProjectedPoint {
1144 1
        $latitude = $this->latitude->asRadians()->getValue();
1145 1
        $longitude = $this->longitude->asRadians()->getValue();
1146 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1147 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1148 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1149 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1150 1
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1151 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1152 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1153 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1154
1155 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1156 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1157 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1158 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1159 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1160 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1161 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1162 1
        $F = $m1 / ($n * $t1 ** $n);
1163 1
        $r = $a * $K * $F * $t ** $n;
1164 1
        $rF = $a * $K * $F * $tF ** $n;
1165 1
        $theta = $n * ($longitude - $lambdaF);
1166
1167 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1168 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1169
1170 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1171
    }
1172
1173
    /**
1174
     * Lambert Conic Conformal (2SP).
1175
     */
1176 1
    public function lambertConicConformal2SP(
1177
        Projected $to,
1178
        Angle $latitudeOfFalseOrigin,
1179
        Angle $longitudeOfFalseOrigin,
1180
        Angle $latitudeOf1stStandardParallel,
1181
        Angle $latitudeOf2ndStandardParallel,
1182
        Length $eastingAtFalseOrigin,
1183
        Length $northingAtFalseOrigin
1184
    ): ProjectedPoint {
1185 1
        $latitude = $this->latitude->asRadians()->getValue();
1186 1
        $longitude = $this->longitude->asRadians()->getValue();
1187 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1188 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1189 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1190 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1191 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1192 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1193 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1194
1195 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1196 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1197 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1198 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1199 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1200 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1201 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1202 1
        $F = $m1 / ($n * $t1 ** $n);
1203 1
        $r = $a * $F * $t ** $n;
1204 1
        $rF = $a * $F * $tF ** $n;
1205 1
        $theta = $n * ($longitude - $lambdaF);
1206
1207 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1208 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1209
1210 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1211
    }
1212
1213
    /**
1214
     * Lambert Conic Conformal (West Orientated).
1215
     */
1216
    public function lambertConicConformalWestOrientated(
1217
        Projected $to,
1218
        Angle $latitudeOfNaturalOrigin,
1219
        Angle $longitudeOfNaturalOrigin,
1220
        Scale $scaleFactorAtNaturalOrigin,
1221
        Length $falseEasting,
1222
        Length $falseNorthing
1223
    ): ProjectedPoint {
1224
        $latitude = $this->latitude->asRadians()->getValue();
1225
        $longitude = $this->longitude->asRadians()->getValue();
1226
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1227
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1228
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1229
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1230
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1231
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1232
1233
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1234
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1235
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1236
        $n = sin($latitudeOrigin);
1237
        $F = $mO / ($n * $tO ** $n);
1238
        $rO = $a * $F * $tO ** $n ** $kO;
1239
        $r = $a * $F * $t ** $n ** $kO;
1240
        $theta = $n * ($longitude - $longitudeOrigin);
1241
1242
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1243
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1244
1245
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1246
    }
1247
1248
    /**
1249
     * Lambert Conic Near-Conformal
1250
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1251
     * series expansion of the projection formulae.
1252
     */
1253 1
    public function lambertConicNearConformal(
1254
        Projected $to,
1255
        Angle $latitudeOfNaturalOrigin,
1256
        Angle $longitudeOfNaturalOrigin,
1257
        Scale $scaleFactorAtNaturalOrigin,
1258
        Length $falseEasting,
1259
        Length $falseNorthing
1260
    ): ProjectedPoint {
1261 1
        $latitude = $this->latitude->asRadians()->getValue();
1262 1
        $longitude = $this->longitude->asRadians()->getValue();
1263 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1264 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1265 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1266 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1267 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1268 1
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1269
1270 1
        $n = $f / (2 - $f);
1271 1
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1272 1
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1273 1
        $A = 1 / (6 * $rhoO * $nuO);
1274 1
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1275 1
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1276 1
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1277 1
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1278 1
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1279 1
        $rO = $kO * $nuO / tan($latitudeOrigin);
1280 1
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1281 1
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1282 1
        $m = $s - $sO;
1283 1
        $M = $kO * ($m + $A * $m ** 3);
1284 1
        $r = $rO - $M;
1285 1
        $theta = ($longitude - $longitudeOrigin) * sin($latitudeOrigin);
1286
1287 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1288 1
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1289
1290 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1291
    }
1292
1293
    /**
1294
     * Lambert Cylindrical Equal Area
1295
     * This is the ellipsoidal form of the projection.
1296
     */
1297 1
    public function lambertCylindricalEqualArea(
1298
        Projected $to,
1299
        Angle $latitudeOf1stStandardParallel,
1300
        Angle $longitudeOfNaturalOrigin,
1301
        Length $falseEasting,
1302
        Length $falseNorthing
1303
    ): ProjectedPoint {
1304 1
        $latitude = $this->latitude->asRadians()->getValue();
1305 1
        $longitude = $this->longitude->asRadians()->getValue();
1306 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1307 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1308 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1309 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1310 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1311
1312 1
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1313 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1314
1315 1
        $x = $a * $k * ($longitude - $longitudeOrigin);
1316 1
        $y = $a * $q / (2 * $k);
1317
1318 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
1319 1
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1320
1321 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1322
    }
1323
1324
    /**
1325
     * Modified Azimuthal Equidistant
1326
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1327
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1328
     */
1329 1
    public function modifiedAzimuthalEquidistant(
1330
        Projected $to,
1331
        Angle $latitudeOfNaturalOrigin,
1332
        Angle $longitudeOfNaturalOrigin,
1333
        Length $falseEasting,
1334
        Length $falseNorthing
1335
    ): ProjectedPoint {
1336 1
        $latitude = $this->latitude->asRadians()->getValue();
1337 1
        $longitude = $this->longitude->asRadians()->getValue();
1338 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1339 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1340 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1341 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1342 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1343
1344 1
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1345 1
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1346 1
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1347 1
        $alpha = atan2(sin($longitude - $longitudeOrigin), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($longitude - $longitudeOrigin)));
1348 1
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1349 1
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1350
1351 1
        if (sin($alpha) === 0.0) {
1352
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1353
        } else {
1354 1
            $s = self::asin(sin($longitude - $longitudeOrigin) * cos($psi) / sin($alpha));
1355
        }
1356
1357 1
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1358
1359 1
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1360 1
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1361
1362 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1363
    }
1364
1365
    /**
1366
     * Oblique Stereographic
1367
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1368
     * Projections - A Working Manual" by John P. Snyder.
1369
     */
1370 1
    public function obliqueStereographic(
1371
        Projected $to,
1372
        Angle $latitudeOfNaturalOrigin,
1373
        Angle $longitudeOfNaturalOrigin,
1374
        Scale $scaleFactorAtNaturalOrigin,
1375
        Length $falseEasting,
1376
        Length $falseNorthing
1377
    ): ProjectedPoint {
1378 1
        $latitude = $this->latitude->asRadians()->getValue();
1379 1
        $longitude = $this->longitude->asRadians()->getValue();
1380 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1381 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1382 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1383 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1384 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1385 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1386
1387 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1388 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1389 1
        $R = sqrt($rhoOrigin * $nuOrigin);
1390
1391 1
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1392 1
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1393 1
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1394 1
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1395 1
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1396 1
        $w2 = $c * $w1;
1397 1
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1398
1399 1
        $lambda = $n * ($longitude - $longitudeOrigin) + $longitudeOrigin;
1400
1401 1
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1402 1
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1403 1
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1404 1
        $chi = self::asin(($w - 1) / ($w + 1));
1405
1406 1
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1407
1408 1
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1409 1
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1410
1411 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1412
    }
1413
1414
    /**
1415
     * Polar Stereographic (variant A)
1416
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1417
     */
1418 1
    public function polarStereographicVariantA(
1419
        Projected $to,
1420
        Angle $latitudeOfNaturalOrigin,
1421
        Angle $longitudeOfNaturalOrigin,
1422
        Scale $scaleFactorAtNaturalOrigin,
1423
        Length $falseEasting,
1424
        Length $falseNorthing
1425
    ): ProjectedPoint {
1426 1
        $latitude = $this->latitude->asRadians()->getValue();
1427 1
        $longitude = $this->longitude->asRadians()->getValue();
1428 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1429 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1430 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1431 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1432 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1433
1434 1
        if ($latitudeOrigin < 0) {
1435
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1436
        } else {
1437 1
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1438
        }
1439 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1440
1441 1
        $theta = $longitude - $longitudeOrigin;
1442 1
        $dE = $rho * sin($theta);
1443 1
        $dN = $rho * cos($theta);
1444
1445 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1446 1
        if ($latitudeOrigin < 0) {
1447
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1448
        } else {
1449 1
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1450
        }
1451
1452 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1453
    }
1454
1455
    /**
1456
     * Polar Stereographic (variant B).
1457
     */
1458 1
    public function polarStereographicVariantB(
1459
        Projected $to,
1460
        Angle $latitudeOfStandardParallel,
1461
        Angle $longitudeOfOrigin,
1462
        Length $falseEasting,
1463
        Length $falseNorthing
1464
    ): ProjectedPoint {
1465 1
        $latitude = $this->latitude->asRadians()->getValue();
1466 1
        $longitude = $this->longitude->asRadians()->getValue();
1467 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1468 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1469 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1470 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1471 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1472
1473 1
        if ($firstStandardParallel < 0) {
1474 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1475 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1476
        } else {
1477
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1478
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1479
        }
1480 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1481 1
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1482
1483 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1484
1485 1
        $theta = $longitude - $longitudeOrigin;
1486 1
        $dE = $rho * sin($theta);
1487 1
        $dN = $rho * cos($theta);
1488
1489 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1490 1
        if ($firstStandardParallel < 0) {
1491 1
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1492
        } else {
1493
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1494
        }
1495
1496 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1497
    }
1498
1499
    /**
1500
     * Polar Stereographic (variant C).
1501
     */
1502 1
    public function polarStereographicVariantC(
1503
        Projected $to,
1504
        Angle $latitudeOfStandardParallel,
1505
        Angle $longitudeOfOrigin,
1506
        Length $eastingAtFalseOrigin,
1507
        Length $northingAtFalseOrigin
1508
    ): ProjectedPoint {
1509 1
        $latitude = $this->latitude->asRadians()->getValue();
1510 1
        $longitude = $this->longitude->asRadians()->getValue();
1511 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1512 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1513 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1514 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1515 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1516
1517 1
        if ($firstStandardParallel < 0) {
1518 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1519 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1520
        } else {
1521
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1522
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1523
        }
1524 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1525
1526 1
        $rhoF = $a * $mF;
1527 1
        $rho = $rhoF * $t / $tF;
1528
1529 1
        $theta = $longitude - $longitudeOrigin;
1530 1
        $dE = $rho * sin($theta);
1531 1
        $dN = $rho * cos($theta);
1532
1533 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1534 1
        if ($firstStandardParallel < 0) {
1535 1
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1536
        } else {
1537
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1538
        }
1539
1540 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1541
    }
1542
1543
    /**
1544
     * Popular Visualisation Pseudo Mercator
1545
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1546
     */
1547 1
    public function popularVisualisationPseudoMercator(
1548
        Projected $to,
1549
        Angle $latitudeOfNaturalOrigin,
1550
        Angle $longitudeOfNaturalOrigin,
1551
        Length $falseEasting,
1552
        Length $falseNorthing
1553
    ): ProjectedPoint {
1554 1
        $latitude = $this->latitude->asRadians()->getValue();
1555 1
        $longitude = $this->longitude->asRadians()->getValue();
1556 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1557 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1558 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1559
1560 1
        $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
1561 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1562
1563 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1564
    }
1565
1566
    /**
1567
     * Mercator (variant A)
1568
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1569
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1570
     * completeness in CRS labelling.
1571
     */
1572 2
    public function mercatorVariantA(
1573
        Projected $to,
1574
        Angle $latitudeOfNaturalOrigin,
1575
        Angle $longitudeOfNaturalOrigin,
1576
        Scale $scaleFactorAtNaturalOrigin,
1577
        Length $falseEasting,
1578
        Length $falseNorthing
1579
    ): ProjectedPoint {
1580 2
        $latitude = $this->latitude->asRadians()->getValue();
1581 2
        $longitude = $this->longitude->asRadians()->getValue();
1582
1583 2
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1584 2
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1585 2
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1586
1587 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1588 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1589
1590 2
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1591 2
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1592
1593 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1594
    }
1595
1596
    /**
1597
     * Mercator (variant B)
1598
     * Used for most nautical charts.
1599
     */
1600 1
    public function mercatorVariantB(
1601
        Projected $to,
1602
        Angle $latitudeOf1stStandardParallel,
1603
        Angle $longitudeOfNaturalOrigin,
1604
        Length $falseEasting,
1605
        Length $falseNorthing
1606
    ): ProjectedPoint {
1607 1
        $latitude = $this->latitude->asRadians()->getValue();
1608 1
        $longitude = $this->longitude->asRadians()->getValue();
1609 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1610 1
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1611 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1612 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1613 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1614
1615 1
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1616
1617 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1618 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1619
1620 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1621
    }
1622
1623
    /**
1624
     * Longitude rotation
1625
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1626
     * value to the longitude value of the point in the source system.
1627
     */
1628 1
    public function longitudeRotation(
1629
        Geographic $to,
1630
        Angle $longitudeOffset
1631
    ): self {
1632 1
        $newLongitude = $this->longitude->add($longitudeOffset);
1633
1634 1
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1635
    }
1636
1637
    /**
1638
     * Hotine Oblique Mercator (variant A).
1639
     */
1640 1
    public function obliqueMercatorHotineVariantA(
1641
        Projected $to,
1642
        Angle $latitudeOfProjectionCentre,
1643
        Angle $longitudeOfProjectionCentre,
1644
        Angle $azimuthOfInitialLine,
1645
        Angle $angleFromRectifiedToSkewGrid,
1646
        Scale $scaleFactorOnInitialLine,
1647
        Length $falseEasting,
1648
        Length $falseNorthing
1649
    ): ProjectedPoint {
1650 1
        $latitude = $this->latitude->asRadians()->getValue();
1651 1
        $longitude = $this->longitude->asRadians()->getValue();
1652 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1653 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1654 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1655 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1656 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1657 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1658 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1659 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1660
1661 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1662 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1663 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1664 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1665 1
        $DD = max(1, $D ** 2);
1666 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1667 1
        $H = $F * ($tO) ** $B;
1668 1
        $G = ($F - 1 / $F) / 2;
1669 1
        $gammaO = self::asin(sin($alphaC) / $D);
1670 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1671
1672 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1673 1
        $Q = $H / $t ** $B;
1674 1
        $S = ($Q - 1 / $Q) / 2;
1675 1
        $T = ($Q + 1 / $Q) / 2;
1676 1
        $V = sin($B * ($longitude - $lonO));
1677 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1678 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1679 1
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1680
1681 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1682 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1683
1684 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1685
    }
1686
1687
    /**
1688
     * Hotine Oblique Mercator (variant B).
1689
     */
1690 1
    public function obliqueMercatorHotineVariantB(
1691
        Projected $to,
1692
        Angle $latitudeOfProjectionCentre,
1693
        Angle $longitudeOfProjectionCentre,
1694
        Angle $azimuthOfInitialLine,
1695
        Angle $angleFromRectifiedToSkewGrid,
1696
        Scale $scaleFactorOnInitialLine,
1697
        Length $eastingAtProjectionCentre,
1698
        Length $northingAtProjectionCentre
1699
    ): ProjectedPoint {
1700 1
        $latitude = $this->latitude->asRadians()->getValue();
1701 1
        $longitude = $this->longitude->asRadians()->getValue();
1702 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1703 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1704 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1705 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1706 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1707 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1708 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1709 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1710
1711 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1712 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1713 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1714 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1715 1
        $DD = max(1, $D ** 2);
1716 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1717 1
        $H = $F * ($tO) ** $B;
1718 1
        $G = ($F - 1 / $F) / 2;
1719 1
        $gammaO = self::asin(sin($alphaC) / $D);
1720 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1721 1
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1722 1
        if ($alphaC === M_PI / 2) {
1723
            $uC = $A * ($lonC - $lonO);
1724
        } else {
1725 1
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1726
        }
1727
1728 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1729 1
        $Q = $H / $t ** $B;
1730 1
        $S = ($Q - 1 / $Q) / 2;
1731 1
        $T = ($Q + 1 / $Q) / 2;
1732 1
        $V = sin($B * ($longitude - $lonO));
1733 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1734 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1735
1736 1
        if ($alphaC === M_PI / 2) {
1737
            if ($longitude === $lonC) {
1738
                $u = 0;
1739
            } else {
1740
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1741
            }
1742
        } else {
1743 1
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1744
        }
1745
1746 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1747 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1748
1749 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1750
    }
1751
1752
    /**
1753
     * Laborde Oblique Mercator.
1754
     */
1755 1
    public function obliqueMercatorLaborde(
1756
        Projected $to,
1757
        Angle $latitudeOfProjectionCentre,
1758
        Angle $longitudeOfProjectionCentre,
1759
        Angle $azimuthOfInitialLine,
1760
        Scale $scaleFactorOnInitialLine,
1761
        Length $falseEasting,
1762
        Length $falseNorthing
1763
    ): ProjectedPoint {
1764 1
        $latitude = $this->latitude->asRadians()->getValue();
1765 1
        $longitude = $this->longitude->asRadians()->getValue();
1766 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1767 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1768 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1769 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1770 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1771 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1772 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1773
1774 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1775 1
        $latS = self::asin(sin($latC) / $B);
1776 1
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1777 1
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1778
1779 1
        $L = $B * ($longitude - $lonC);
1780 1
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1781 1
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1782 1
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1783 1
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1784 1
        $W = cos($P) * sin($L);
1785 1
        $d = sqrt($U ** 2 + $V ** 2);
1786 1
        if ($d === 0.0) {
1787
            $LPrime = 0;
1788
            $PPrime = static::sign($W) * M_PI / 2;
1789
        } else {
1790 1
            $LPrime = 2 * atan($V / ($U + $d));
1791 1
            $PPrime = atan($W / $d);
1792
        }
1793 1
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1794 1
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1795
1796 1
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1797 1
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1798
1799 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1800
    }
1801
1802
    /**
1803
     * Transverse Mercator.
1804
     */
1805 11
    public function transverseMercator(
1806
        Projected $to,
1807
        Angle $latitudeOfNaturalOrigin,
1808
        Angle $longitudeOfNaturalOrigin,
1809
        Scale $scaleFactorAtNaturalOrigin,
1810
        Length $falseEasting,
1811
        Length $falseNorthing
1812
    ): ProjectedPoint {
1813 11
        $latitude = $this->latitude->asRadians()->getValue();
1814 11
        $longitude = $this->longitude->asRadians()->getValue();
1815 11
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1816 11
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1817 11
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1818 11
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1819 11
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1820 11
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1821
1822 11
        $n = $f / (2 - $f);
1823 11
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1824
1825 11
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1826 11
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1827 11
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1828 11
        $h4 = (49561 / 161280) * $n ** 4;
1829
1830 11
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1831 9
            $mO = 0;
1832 2
        } elseif ($latitudeOrigin === M_PI / 2) {
1833
            $mO = $B * M_PI / 2;
1834 2
        } elseif ($latitudeOrigin === -M_PI / 2) {
1835
            $mO = $B * -M_PI / 2;
1836
        } else {
1837 2
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1838 2
            $betaO = atan(sinh($qO));
1839 2
            $xiO0 = self::asin(sin($betaO));
1840 2
            $xiO1 = $h1 * sin(2 * $xiO0);
1841 2
            $xiO2 = $h2 * sin(4 * $xiO0);
1842 2
            $xiO3 = $h3 * sin(6 * $xiO0);
1843 2
            $xiO4 = $h4 * sin(8 * $xiO0);
1844 2
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1845 2
            $mO = $B * $xiO;
1846
        }
1847
1848 11
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1849 11
        $beta = atan(sinh($Q));
1850 11
        $eta0 = atanh(cos($beta) * sin($longitude - $longitudeOrigin));
1851 11
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1852 11
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1853 11
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1854 11
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1855 11
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1856 11
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1857 11
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1858 11
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1859 11
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1860 11
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1861 11
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1862
1863 11
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1864 11
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1865
1866 11
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1867
    }
1868
1869
    /**
1870
     * Transverse Mercator Zoned Grid System
1871
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1872
     * each zone.
1873
     */
1874 4
    public function transverseMercatorZonedGrid(
1875
        Projected $to,
1876
        Angle $latitudeOfNaturalOrigin,
1877
        Angle $initialLongitude,
1878
        Angle $zoneWidth,
1879
        Scale $scaleFactorAtNaturalOrigin,
1880
        Length $falseEasting,
1881
        Length $falseNorthing
1882
    ): ProjectedPoint {
1883 4
        $W = $zoneWidth->asDegrees()->getValue();
1884 4
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1;
1885
1886 4
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1887 4
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1888
1889 4
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1890
    }
1891
1892
    /**
1893
     * New Zealand Map Grid.
1894
     */
1895 3
    public function newZealandMapGrid(
1896
        Projected $to,
1897
        Angle $latitudeOfNaturalOrigin,
1898
        Angle $longitudeOfNaturalOrigin,
1899
        Length $falseEasting,
1900
        Length $falseNorthing
1901
    ): ProjectedPoint {
1902 3
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1903
1904 3
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1905 3
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1906
1907 3
        $deltaPsi = 0;
1908 3
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1909 3
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1910 3
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1911 3
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1912 3
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1913 3
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1914 3
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1915 3
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1916 3
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1917 3
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1918
1919 3
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1920
1921 3
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1922 3
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1923 3
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1924 3
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1925 3
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1926 3
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1927 3
        $z = new ComplexNumber(0, 0);
1928 3
        $z = $z->add($B1->multiply($zeta->pow(1)));
1929 3
        $z = $z->add($B2->multiply($zeta->pow(2)));
1930 3
        $z = $z->add($B3->multiply($zeta->pow(3)));
1931 3
        $z = $z->add($B4->multiply($zeta->pow(4)));
1932 3
        $z = $z->add($B5->multiply($zeta->pow(5)));
1933 3
        $z = $z->add($B6->multiply($zeta->pow(6)));
1934
1935 3
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1936 3
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1937
1938 3
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1939
    }
1940
1941
    /**
1942
     * Madrid to ED50 polynomial.
1943
     */
1944 1
    public function madridToED50Polynomial(
1945
        Geographic2D $to,
1946
        Scale $A0,
1947
        Scale $A1,
1948
        Scale $A2,
1949
        Scale $A3,
1950
        Angle $B00,
1951
        Scale $B0,
1952
        Scale $B1,
1953
        Scale $B2,
1954
        Scale $B3
1955
    ): self {
1956 1
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1957 1
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1958
1959 1
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1960
    }
1961
1962
    /**
1963
     * Geographic3D to 2D conversion.
1964
     */
1965 5
    public function threeDToTwoD(
1966
        Geographic $to
1967
    ): self {
1968 5
        if ($to instanceof Geographic2D) {
1969 5
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1970
        }
1971
1972
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1973
    }
1974
1975
    /**
1976
     * Geographic2D offsets.
1977
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1978
     * coordinate values of the point in the source system.
1979
     */
1980 1
    public function geographic2DOffsets(
1981
        Geographic $to,
1982
        Angle $latitudeOffset,
1983
        Angle $longitudeOffset
1984
    ): self {
1985 1
        $toLatitude = $this->latitude->add($latitudeOffset);
1986 1
        $toLongitude = $this->longitude->add($longitudeOffset);
1987
1988 1
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1989
    }
1990
1991
    /*
1992
     * Geographic2D with Height Offsets.
1993
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1994
     * coordinate values of the point in the source system.
1995
     */
1996
    public function geographic2DWithHeightOffsets(
1997
        Compound $to,
1998
        Angle $latitudeOffset,
1999
        Angle $longitudeOffset,
2000
        Length $geoidUndulation
2001
    ): CompoundPoint {
2002
        $toLatitude = $this->latitude->add($latitudeOffset);
2003
        $toLongitude = $this->longitude->add($longitudeOffset);
2004
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2004
        /** @scrutinizer ignore-call */ 
2005
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
2005
2006
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
2007
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2007
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
2008
2009
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
2010
    }
2011
2012
    /**
2013
     * General polynomial.
2014
     * @param Coefficient[] $powerCoefficients
2015
     */
2016 2
    public function generalPolynomial(
2017
        Geographic $to,
2018
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2019
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2020
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2021
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2022
        Scale $scalingFactorForSourceCRSCoordDifferences,
2023
        Scale $scalingFactorForTargetCRSCoordDifferences,
2024
        Scale $A0,
2025
        Scale $B0,
2026
        array $powerCoefficients
2027
    ): self {
2028 2
        $xs = $this->latitude->getValue();
2029 2
        $ys = $this->longitude->getValue();
2030
2031 2
        $t = $this->generalPolynomialUnitless(
2032 2
            $xs,
2033
            $ys,
2034
            $ordinate1OfEvaluationPointInSourceCRS,
2035
            $ordinate2OfEvaluationPointInSourceCRS,
2036
            $ordinate1OfEvaluationPointInTargetCRS,
2037
            $ordinate2OfEvaluationPointInTargetCRS,
2038
            $scalingFactorForSourceCRSCoordDifferences,
2039
            $scalingFactorForTargetCRSCoordDifferences,
2040
            $A0,
2041
            $B0,
2042
            $powerCoefficients
2043
        );
2044
2045 2
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2046 2
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2047 2
            $xtUnit = Angle::EPSG_DEGREE;
2048
        }
2049 2
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2050 2
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2051 2
            $ytUnit = Angle::EPSG_DEGREE;
2052
        }
2053
2054 2
        return static::create(
2055 2
            Angle::makeUnit($t['xt'], $xtUnit),
2056 2
            Angle::makeUnit($t['yt'], $ytUnit),
2057 2
            $this->height,
2058
            $to,
2059 2
            $this->epoch
2060
        );
2061
    }
2062
2063
    /**
2064
     * Reversible polynomial.
2065
     * @param Coefficient[] $powerCoefficients
2066
     */
2067 4
    public function reversiblePolynomial(
2068
        Geographic $to,
2069
        Angle $ordinate1OfEvaluationPoint,
2070
        Angle $ordinate2OfEvaluationPoint,
2071
        Scale $scalingFactorForCoordDifferences,
2072
        Scale $A0,
2073
        Scale $B0,
2074
        $powerCoefficients
2075
    ): self {
2076 4
        $xs = $this->latitude->getValue();
2077 4
        $ys = $this->longitude->getValue();
2078
2079 4
        $t = $this->reversiblePolynomialUnitless(
2080 4
            $xs,
2081
            $ys,
2082
            $ordinate1OfEvaluationPoint,
2083
            $ordinate2OfEvaluationPoint,
2084
            $scalingFactorForCoordDifferences,
2085
            $A0,
2086
            $B0,
2087
            $powerCoefficients
2088
        );
2089
2090 4
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2091 4
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2092 4
            $xtUnit = Angle::EPSG_DEGREE;
2093
        }
2094 4
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2095 4
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2096 4
            $ytUnit = Angle::EPSG_DEGREE;
2097
        }
2098
2099 4
        return static::create(
2100 4
            Angle::makeUnit($t['xt'], $xtUnit),
2101 4
            Angle::makeUnit($t['yt'], $ytUnit),
2102 4
            $this->height,
2103
            $to,
2104 4
            $this->epoch
2105
        );
2106
    }
2107
2108
    /**
2109
     * Axis Order Reversal.
2110
     */
2111
    public function axisReversal(
2112
        Geographic $to
2113
    ) {
2114
        // axes are read in from the CRS, this is a book-keeping adjustment only
2115
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2116
    }
2117
2118 37
    public function asGeographicValue(): GeographicValue
2119
    {
2120 37
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2121
    }
2122
2123 2
    public function asUTMPoint(): UTMPoint
2124
    {
2125 2
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2126 2
        $latitudeOfNaturalOrigin = new Degree(0);
2127 2
        $initialLongitude = new Degree(-180);
2128 2
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2129 2
        $falseEasting = new Metre(500000);
2130 2
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2131 2
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2132 2
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2133
2134 2
        $projectedCRS = new Projected(
2135 2
            'UTM/' . $this->crs->getSRID(),
2136 2
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2137 2
            $this->crs->getDatum(),
2138 2
            GeographicPolygon::createWorld() // this is a dummy CRS for the transform only, details don't matter
2139
        );
2140
2141 2
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2142
2143 2
        return new UTMPoint($asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->crs, $this->epoch);
2144
    }
2145
}
2146