Passed
Push — master ( 140fc1...a234d9 )
by Doug
12:58
created

geocentricTranslationByGridInterpolationIGNF()   A

Complexity

Conditions 2
Paths 2

Size

Total Lines 10
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 4
CRAP Score 2

Importance

Changes 0
Metric Value
cc 2
eloc 3
c 0
b 0
f 0
nc 2
nop 3
dl 0
loc 10
ccs 4
cts 4
cp 1
crap 2
rs 10
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicValue;
34
use PHPCoord\CoordinateOperation\IGNGeocentricTranslationGrid;
35
use PHPCoord\CoordinateOperation\NADCON5Grid;
36
use PHPCoord\CoordinateOperation\NTv2Grid;
37
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
38
use PHPCoord\CoordinateReferenceSystem\Compound;
39
use PHPCoord\CoordinateReferenceSystem\Geocentric;
40
use PHPCoord\CoordinateReferenceSystem\Geographic;
41
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
42
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
43
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
44
use PHPCoord\CoordinateReferenceSystem\Vertical;
45
use PHPCoord\CoordinateSystem\Axis;
46
use PHPCoord\CoordinateSystem\Cartesian;
47
use PHPCoord\Datum\Datum;
48
use PHPCoord\Datum\Ellipsoid;
49
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
50
use PHPCoord\Exception\UnknownAxisException;
51
use PHPCoord\Geometry\BoundingArea;
52
use PHPCoord\UnitOfMeasure\Angle\Angle;
53
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
54
use PHPCoord\UnitOfMeasure\Angle\Degree;
55
use PHPCoord\UnitOfMeasure\Angle\Radian;
56
use PHPCoord\UnitOfMeasure\Length\Length;
57
use PHPCoord\UnitOfMeasure\Length\Metre;
58
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
59
use PHPCoord\UnitOfMeasure\Scale\Scale;
60
use PHPCoord\UnitOfMeasure\Scale\Unity;
61
use function sin;
62
use function sinh;
63
use function sprintf;
64
use function sqrt;
65
use function tan;
66
use TypeError;
67
68
/**
69
 * Coordinate representing a point on an ellipsoid.
70
 */
71
class GeographicPoint extends Point implements ConvertiblePoint
72
{
73
    use AutoConversion;
74
75
    /**
76
     * Latitude.
77
     */
78
    protected Angle $latitude;
79
80
    /**
81
     * Longitude.
82
     */
83
    protected Angle $longitude;
84
85
    /**
86
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
87
     */
88
    protected ?Length $height;
89
90
    /**
91
     * Coordinate reference system.
92
     */
93
    protected Geographic $crs;
94
95
    /**
96
     * Coordinate epoch (date for which the specified coordinates represented this point).
97
     */
98
    protected ?DateTimeImmutable $epoch;
99
100 1493
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
101
    {
102 1493
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
103
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
104
        }
105
106 1493
        if ($crs instanceof Geographic2D && $height !== null) {
107 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
108
        }
109
110 1484
        if ($crs instanceof Geographic3D && $height === null) {
111 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
112
        }
113
114 1475
        $this->crs = $crs;
115
116 1475
        $latitude = $this->normaliseLatitude($latitude);
117 1475
        $longitude = $this->normaliseLongitude($longitude);
118
119 1475
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
120 1475
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
121
122 1475
        if ($height) {
123 167
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
124
        } else {
125 1364
            $this->height = null;
126
        }
127
128 1475
        if ($epoch instanceof DateTime) {
129 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
130
        }
131 1475
        $this->epoch = $epoch;
132 1475
    }
133
134
    /**
135
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
136
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
137
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
138
     */
139 1493
    public static function create(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null): self
140
    {
141 1493
        return new static($latitude, $longitude, $height, $crs, $epoch);
142
    }
143
144 798
    public function getLatitude(): Angle
145
    {
146 798
        return $this->latitude;
147
    }
148
149 762
    public function getLongitude(): Angle
150
    {
151 762
        return $this->longitude;
152
    }
153
154 348
    public function getHeight(): ?Length
155
    {
156 348
        return $this->height;
157
    }
158
159 1475
    public function getCRS(): Geographic
160
    {
161 1475
        return $this->crs;
162
    }
163
164 201
    public function getCoordinateEpoch(): ?DateTimeImmutable
165
    {
166 201
        return $this->epoch;
167
    }
168
169 1475
    protected function normaliseLatitude(Angle $latitude): Angle
170
    {
171 1475
        if ($latitude->asDegrees()->getValue() > 90) {
172
            return new Degree(90);
173
        }
174 1475
        if ($latitude->asDegrees()->getValue() < -90) {
175
            return new Degree(-90);
176
        }
177
178 1475
        return $latitude;
179
    }
180
181 1475
    protected function normaliseLongitude(Angle $longitude): Angle
182
    {
183 1475
        while ($longitude->asDegrees()->getValue() > 180) {
184 9
            $longitude = $longitude->subtract(new Degree(360));
185
        }
186 1475
        while ($longitude->asDegrees()->getValue() <= -180) {
187
            $longitude = $longitude->add(new Degree(360));
188
        }
189
190 1475
        return $longitude;
191
    }
192
193
    /**
194
     * Calculate surface distance between two points.
195
     */
196 153
    public function calculateDistance(Point $to): Length
197
    {
198
        try {
199 153
            if ($to instanceof ConvertiblePoint) {
200 144
                $to = $to->convert($this->crs);
201
            }
202
        } finally {
203 153
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
204 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
205
            }
206
207
            /* @var GeographicPoint $to */
208 144
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
209
        }
210
    }
211
212 36
    public function __toString(): string
213
    {
214 36
        $values = [];
215 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
216 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
217 36
                $values[] = $this->latitude;
218 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
219 36
                $values[] = $this->longitude;
220 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
221 9
                $values[] = $this->height;
222
            } else {
223
                throw new UnknownAxisException(); // @codeCoverageIgnore
224
            }
225
        }
226
227 36
        return '(' . implode(', ', $values) . ')';
228
    }
229
230
    /**
231
     * Geographic/geocentric conversions
232
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
233
     * 9636 to form a geographic to geographic transformation.
234
     */
235 9
    public function geographicGeocentric(
236
        Geocentric $to
237
    ): GeocentricPoint {
238 9
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
239 9
        $asGeocentric = $geographicValue->asGeocentricValue();
240
241 9
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
242
    }
243
244
    /**
245
     * Coordinate Frame rotation (geog2D/geog3D domain)
246
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
247
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
248
     * between other CRS types.
249
     */
250 54
    public function coordinateFrameRotation(
251
        Geographic $to,
252
        Length $xAxisTranslation,
253
        Length $yAxisTranslation,
254
        Length $zAxisTranslation,
255
        Angle $xAxisRotation,
256
        Angle $yAxisRotation,
257
        Angle $zAxisRotation,
258
        Scale $scaleDifference
259
    ): self {
260 54
        return $this->coordinateFrameMolodenskyBadekas(
261 54
            $to,
262
            $xAxisTranslation,
263
            $yAxisTranslation,
264
            $zAxisTranslation,
265
            $xAxisRotation,
266
            $yAxisRotation,
267
            $zAxisRotation,
268
            $scaleDifference,
269 54
            new Metre(0),
270 54
            new Metre(0),
271 54
            new Metre(0)
272
        );
273
    }
274
275
    /**
276
     * Molodensky-Badekas (CF geog2D/geog3D domain)
277
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
278
     * opposite rotation convention in geographic 2D domain.
279
     */
280 72
    public function coordinateFrameMolodenskyBadekas(
281
        Geographic $to,
282
        Length $xAxisTranslation,
283
        Length $yAxisTranslation,
284
        Length $zAxisTranslation,
285
        Angle $xAxisRotation,
286
        Angle $yAxisRotation,
287
        Angle $zAxisRotation,
288
        Scale $scaleDifference,
289
        Length $ordinate1OfEvaluationPoint,
290
        Length $ordinate2OfEvaluationPoint,
291
        Length $ordinate3OfEvaluationPoint
292
    ): self {
293 72
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
294 72
        $asGeocentric = $geographicValue->asGeocentricValue();
295
296 72
        $xs = $asGeocentric->getX()->asMetres()->getValue();
297 72
        $ys = $asGeocentric->getY()->asMetres()->getValue();
298 72
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
299 72
        $tx = $xAxisTranslation->asMetres()->getValue();
300 72
        $ty = $yAxisTranslation->asMetres()->getValue();
301 72
        $tz = $zAxisTranslation->asMetres()->getValue();
302 72
        $rx = $xAxisRotation->asRadians()->getValue();
303 72
        $ry = $yAxisRotation->asRadians()->getValue();
304 72
        $rz = $zAxisRotation->asRadians()->getValue();
305 72
        $M = 1 + $scaleDifference->asUnity()->getValue();
306 72
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
307 72
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
308 72
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
309
310 72
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
311 72
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
312 72
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
313 72
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
314 72
        $newGeographic = $newGeocentric->asGeographicValue();
315
316 72
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
317
    }
318
319
    /**
320
     * Position Vector transformation (geog2D/geog3D domain)
321
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
322
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
323
     * operating between other CRS types.
324
     */
325 198
    public function positionVectorTransformation(
326
        Geographic $to,
327
        Length $xAxisTranslation,
328
        Length $yAxisTranslation,
329
        Length $zAxisTranslation,
330
        Angle $xAxisRotation,
331
        Angle $yAxisRotation,
332
        Angle $zAxisRotation,
333
        Scale $scaleDifference
334
    ): self {
335 198
        return $this->positionVectorMolodenskyBadekas(
336 198
            $to,
337
            $xAxisTranslation,
338
            $yAxisTranslation,
339
            $zAxisTranslation,
340
            $xAxisRotation,
341
            $yAxisRotation,
342
            $zAxisRotation,
343
            $scaleDifference,
344 198
            new Metre(0),
345 198
            new Metre(0),
346 198
            new Metre(0)
347
        );
348
    }
349
350
    /**
351
     * Molodensky-Badekas (PV geog2D/geog3D domain)
352
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
353
     * rotation in geographic 2D/3D domain.
354
     */
355 216
    public function positionVectorMolodenskyBadekas(
356
        Geographic $to,
357
        Length $xAxisTranslation,
358
        Length $yAxisTranslation,
359
        Length $zAxisTranslation,
360
        Angle $xAxisRotation,
361
        Angle $yAxisRotation,
362
        Angle $zAxisRotation,
363
        Scale $scaleDifference,
364
        Length $ordinate1OfEvaluationPoint,
365
        Length $ordinate2OfEvaluationPoint,
366
        Length $ordinate3OfEvaluationPoint
367
    ): self {
368 216
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
369 216
        $asGeocentric = $geographicValue->asGeocentricValue();
370
371 216
        $xs = $asGeocentric->getX()->asMetres()->getValue();
372 216
        $ys = $asGeocentric->getY()->asMetres()->getValue();
373 216
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
374 216
        $tx = $xAxisTranslation->asMetres()->getValue();
375 216
        $ty = $yAxisTranslation->asMetres()->getValue();
376 216
        $tz = $zAxisTranslation->asMetres()->getValue();
377 216
        $rx = $xAxisRotation->asRadians()->getValue();
378 216
        $ry = $yAxisRotation->asRadians()->getValue();
379 216
        $rz = $zAxisRotation->asRadians()->getValue();
380 216
        $M = 1 + $scaleDifference->asUnity()->getValue();
381 216
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
382 216
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
383 216
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
384
385 216
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
386 216
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
387 216
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
388 216
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
389 216
        $newGeographic = $newGeocentric->asGeographicValue();
390
391 216
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
392
    }
393
394
    /**
395
     * Geocentric translations
396
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
397
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
398
     * operating between other CRSs types.
399
     */
400 95
    public function geocentricTranslation(
401
        Geographic $to,
402
        Length $xAxisTranslation,
403
        Length $yAxisTranslation,
404
        Length $zAxisTranslation
405
    ): self {
406 95
        return $this->positionVectorTransformation(
407 95
            $to,
408
            $xAxisTranslation,
409
            $yAxisTranslation,
410
            $zAxisTranslation,
411 95
            new Radian(0),
412 95
            new Radian(0),
413 95
            new Radian(0),
414 95
            new Unity(0)
415
        );
416
    }
417
418
    /**
419
     * Abridged Molodensky
420
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
421
     * systems, modelled as a set of geocentric translations.
422
     */
423 18
    public function abridgedMolodensky(
424
        Geographic $to,
425
        Length $xAxisTranslation,
426
        Length $yAxisTranslation,
427
        Length $zAxisTranslation,
428
        Length $differenceInSemiMajorAxis,
429
        Scale $differenceInFlattening
430
    ): self {
431 18
        $latitude = $this->latitude->asRadians()->getValue();
432 18
        $longitude = $this->longitude->asRadians()->getValue();
433 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
434 18
        $tx = $xAxisTranslation->asMetres()->getValue();
435 18
        $ty = $yAxisTranslation->asMetres()->getValue();
436 18
        $tz = $zAxisTranslation->asMetres()->getValue();
437 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
438 18
        $df = $differenceInFlattening->asUnity()->getValue();
439
440 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
441 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
442
443 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
444 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
445
446 18
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
447
448 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
449 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
450 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
451
452 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
453 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
454 18
        $toHeight = $fromHeight + $dHeight;
455
456 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
457
    }
458
459
    /**
460
     * Molodensky
461
     * See Abridged Molodensky.
462
     */
463 18
    public function molodensky(
464
        Geographic $to,
465
        Length $xAxisTranslation,
466
        Length $yAxisTranslation,
467
        Length $zAxisTranslation,
468
        Length $differenceInSemiMajorAxis,
469
        Scale $differenceInFlattening
470
    ): self {
471 18
        $latitude = $this->latitude->asRadians()->getValue();
472 18
        $longitude = $this->longitude->asRadians()->getValue();
473 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
474 18
        $tx = $xAxisTranslation->asMetres()->getValue();
475 18
        $ty = $yAxisTranslation->asMetres()->getValue();
476 18
        $tz = $zAxisTranslation->asMetres()->getValue();
477 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
478 18
        $df = $differenceInFlattening->asUnity()->getValue();
479
480 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
481 18
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
482 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
483
484 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
485 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
486
487 18
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
488
489 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
490 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
491 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
492
493 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
494 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
495 18
        $toHeight = $fromHeight + $dHeight;
496
497 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
498
    }
499
500
    /**
501
     * Albers Equal Area.
502
     */
503 18
    public function albersEqualArea(
504
        Projected $to,
505
        Angle $latitudeOfFalseOrigin,
506
        Angle $longitudeOfFalseOrigin,
507
        Angle $latitudeOf1stStandardParallel,
508
        Angle $latitudeOf2ndStandardParallel,
509
        Length $eastingAtFalseOrigin,
510
        Length $northingAtFalseOrigin
511
    ): ProjectedPoint {
512 18
        $latitude = $this->latitude->asRadians()->getValue();
513 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
514 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
515 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
516 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
517 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
518 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
519 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
520
521 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
522 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
523
524 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
525 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
526 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
527 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
528
529 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
530 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
531 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
532 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
533 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
534
535 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
536 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
537
538 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
539
    }
540
541
    /**
542
     * American Polyconic.
543
     */
544 9
    public function americanPolyconic(
545
        Projected $to,
546
        Angle $latitudeOfNaturalOrigin,
547
        Angle $longitudeOfNaturalOrigin,
548
        Length $falseEasting,
549
        Length $falseNorthing
550
    ): ProjectedPoint {
551 9
        $latitude = $this->latitude->asRadians()->getValue();
552 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
553 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
554 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
555 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
556 9
        $e4 = $e ** 4;
557 9
        $e6 = $e ** 6;
558
559 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
560 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
561
562 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
563
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
564
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
565
        } else {
566 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
567 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
568
569 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
570 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
571
        }
572
573 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
574
    }
575
576
    /**
577
     * Bonne.
578
     */
579 9
    public function bonne(
580
        Projected $to,
581
        Angle $latitudeOfNaturalOrigin,
582
        Angle $longitudeOfNaturalOrigin,
583
        Length $falseEasting,
584
        Length $falseNorthing
585
    ): ProjectedPoint {
586 9
        $latitude = $this->latitude->asRadians()->getValue();
587 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
588 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
589 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
590 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
591 9
        $e4 = $e ** 4;
592 9
        $e6 = $e ** 6;
593
594 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
595 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
596
597 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
598 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
599
600 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
601 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
602
603 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
604 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
605
606 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
607
    }
608
609
    /**
610
     * Bonne South Orientated.
611
     */
612 9
    public function bonneSouthOrientated(
613
        Projected $to,
614
        Angle $latitudeOfNaturalOrigin,
615
        Angle $longitudeOfNaturalOrigin,
616
        Length $falseEasting,
617
        Length $falseNorthing
618
    ): ProjectedPoint {
619 9
        $latitude = $this->latitude->asRadians()->getValue();
620 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
621 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
622 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
623 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
624 9
        $e4 = $e ** 4;
625 9
        $e6 = $e ** 6;
626
627 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
628 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
629
630 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
631 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
632
633 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
634 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
635
636 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
637 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
638
639 9
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
640
    }
641
642
    /**
643
     * Cassini-Soldner.
644
     */
645 9
    public function cassiniSoldner(
646
        Projected $to,
647
        Angle $latitudeOfNaturalOrigin,
648
        Angle $longitudeOfNaturalOrigin,
649
        Length $falseEasting,
650
        Length $falseNorthing
651
    ): ProjectedPoint {
652 9
        $latitude = $this->latitude->asRadians()->getValue();
653 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
654 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
655 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
656 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
657 9
        $e4 = $e ** 4;
658 9
        $e6 = $e ** 6;
659
660 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
661 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
662
663 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
664 9
        $T = tan($latitude) ** 2;
665 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
666 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
667 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
668
669 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
670 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
671
672 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
673
    }
674
675
    /**
676
     * Hyperbolic Cassini-Soldner.
677
     */
678 18
    public function hyperbolicCassiniSoldner(
679
        Projected $to,
680
        Angle $latitudeOfNaturalOrigin,
681
        Angle $longitudeOfNaturalOrigin,
682
        Length $falseEasting,
683
        Length $falseNorthing
684
    ): ProjectedPoint {
685 18
        $latitude = $this->latitude->asRadians()->getValue();
686 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
687 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
688 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
689 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
690 18
        $e4 = $e ** 4;
691 18
        $e6 = $e ** 6;
692
693 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
694 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
695
696 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
697 18
        $T = tan($latitude) ** 2;
698 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
699 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
700 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
701 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
702
703 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
704 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
705
706 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
707
    }
708
709
    /**
710
     * Colombia Urban.
711
     */
712 9
    public function columbiaUrban(
713
        Projected $to,
714
        Angle $latitudeOfNaturalOrigin,
715
        Angle $longitudeOfNaturalOrigin,
716
        Length $falseEasting,
717
        Length $falseNorthing,
718
        Length $projectionPlaneOriginHeight
719
    ): ProjectedPoint {
720 9
        $latitude = $this->latitude->asRadians()->getValue();
721 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
722 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
723 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
724 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
725
726 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
727 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
728
729 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
730 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
731
732 9
        $A = 1 + $heightOrigin / $nuOrigin;
733 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
734 9
        $G = 1 + $heightOrigin / $rhoMid;
735
736 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
737 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
738
739 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
740
    }
741
742
    /**
743
     * Equal Earth.
744
     */
745 9
    public function equalEarth(
746
        Projected $to,
747
        Angle $longitudeOfNaturalOrigin,
748
        Length $falseEasting,
749
        Length $falseNorthing
750
    ): ProjectedPoint {
751 9
        $latitude = $this->latitude->asRadians()->getValue();
752 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
753 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
754 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
755
756 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
757 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
758 9
        $beta = self::asin($q / $qP);
759 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
760 9
        $Rq = $a * sqrt($qP / 2);
761
762 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
763 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
764
765 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
766
    }
767
768
    /**
769
     * Equidistant Cylindrical
770
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
771
     */
772 9
    public function equidistantCylindrical(
773
        Projected $to,
774
        Angle $latitudeOf1stStandardParallel,
775
        Angle $longitudeOfNaturalOrigin,
776
        Length $falseEasting,
777
        Length $falseNorthing
778
    ): ProjectedPoint {
779 9
        $latitude = $this->latitude->asRadians()->getValue();
780 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
781 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
782 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
783 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
784 9
        $e4 = $e ** 4;
785 9
        $e6 = $e ** 6;
786 9
        $e8 = $e ** 8;
787 9
        $e10 = $e ** 10;
788 9
        $e12 = $e ** 12;
789 9
        $e14 = $e ** 14;
790
791 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
792
793
        $M = $a * (
794 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
795 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
796 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
797 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
798 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
799 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
800 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
801 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
802
        );
803
804 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
805 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
806
807 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
808
    }
809
810
    /**
811
     * Guam Projection
812
     * Simplified form of Oblique Azimuthal Equidistant projection method.
813
     */
814 9
    public function guamProjection(
815
        Projected $to,
816
        Angle $latitudeOfNaturalOrigin,
817
        Angle $longitudeOfNaturalOrigin,
818
        Length $falseEasting,
819
        Length $falseNorthing
820
    ): ProjectedPoint {
821 9
        $latitude = $this->latitude->asRadians()->getValue();
822 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
823 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
824 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
825 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
826 9
        $e4 = $e ** 4;
827 9
        $e6 = $e ** 6;
828
829 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
830 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
831 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
832
833 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
834 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
835
836 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
837
    }
838
839
    /**
840
     * Krovak.
841
     */
842 36
    public function krovak(
843
        Projected $to,
844
        Angle $latitudeOfProjectionCentre,
845
        Angle $longitudeOfOrigin,
846
        Angle $coLatitudeOfConeAxis,
847
        Angle $latitudeOfPseudoStandardParallel,
848
        Scale $scaleFactorOnPseudoStandardParallel,
849
        Length $falseEasting,
850
        Length $falseNorthing
851
    ): ProjectedPoint {
852 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
853 36
        $latitude = $this->latitude->asRadians()->getValue();
854 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
855 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
856 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
857 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
858 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
859 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
860 36
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
861 36
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
862 36
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
863
864 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
865 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
866 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
867 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
868 36
        $n = sin($latitudeP);
869 36
        $rO = $kP * $A / tan($latitudeP);
870
871 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
872 36
        $V = $B * ($longitudeO - $longitude);
873 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
874 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
875 36
        $theta = $n * $D;
876 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
877 36
        $X = $r * cos($theta);
878 36
        $Y = $r * sin($theta);
879
880 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
881 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
882
883 36
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
884
    }
885
886
    /**
887
     * Krovak Modified
888
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
889
     * to be a map projection.
890
     */
891 18
    public function krovakModified(
892
        Projected $to,
893
        Angle $latitudeOfProjectionCentre,
894
        Angle $longitudeOfOrigin,
895
        Angle $coLatitudeOfConeAxis,
896
        Angle $latitudeOfPseudoStandardParallel,
897
        Scale $scaleFactorOnPseudoStandardParallel,
898
        Length $falseEasting,
899
        Length $falseNorthing,
900
        Length $ordinate1OfEvaluationPoint,
901
        Length $ordinate2OfEvaluationPoint,
902
        Coefficient $C1,
903
        Coefficient $C2,
904
        Coefficient $C3,
905
        Coefficient $C4,
906
        Coefficient $C5,
907
        Coefficient $C6,
908
        Coefficient $C7,
909
        Coefficient $C8,
910
        Coefficient $C9,
911
        Coefficient $C10
912
    ): ProjectedPoint {
913 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
914
915 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
916 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
917 18
        $c1 = $C1->asUnity()->getValue();
918 18
        $c2 = $C2->asUnity()->getValue();
919 18
        $c3 = $C3->asUnity()->getValue();
920 18
        $c4 = $C4->asUnity()->getValue();
921 18
        $c5 = $C5->asUnity()->getValue();
922 18
        $c6 = $C6->asUnity()->getValue();
923 18
        $c7 = $C7->asUnity()->getValue();
924 18
        $c8 = $C8->asUnity()->getValue();
925 18
        $c9 = $C9->asUnity()->getValue();
926 18
        $c10 = $C10->asUnity()->getValue();
927
928 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
929 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
930
931 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
932 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
933
934 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
935 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
936
937 18
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
938
    }
939
940
    /**
941
     * Lambert Azimuthal Equal Area
942
     * This is the ellipsoidal form of the projection.
943
     */
944 9
    public function lambertAzimuthalEqualArea(
945
        Projected $to,
946
        Angle $latitudeOfNaturalOrigin,
947
        Angle $longitudeOfNaturalOrigin,
948
        Length $falseEasting,
949
        Length $falseNorthing
950
    ): ProjectedPoint {
951 9
        $latitude = $this->latitude->asRadians()->getValue();
952 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
953 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
954 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
955 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
956
957 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
958 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
959 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
960 9
        $beta = self::asin($q / $qP);
961 9
        $betaO = self::asin($qO / $qP);
962 9
        $Rq = $a * sqrt($qP / 2);
963 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
964 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
965
966 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
967 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
968
969 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
970
    }
971
972
    /**
973
     * Lambert Azimuthal Equal Area (Spherical)
974
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
975
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
976
     * methods.
977
     */
978 9
    public function lambertAzimuthalEqualAreaSpherical(
979
        Projected $to,
980
        Angle $latitudeOfNaturalOrigin,
981
        Angle $longitudeOfNaturalOrigin,
982
        Length $falseEasting,
983
        Length $falseNorthing
984
    ): ProjectedPoint {
985 9
        $latitude = $this->latitude->asRadians()->getValue();
986 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
987 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
988
989 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
990
991 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
992 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
993
994 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
995
    }
996
997
    /**
998
     * Lambert Conic Conformal (1SP).
999
     */
1000 9
    public function lambertConicConformal1SP(
1001
        Projected $to,
1002
        Angle $latitudeOfNaturalOrigin,
1003
        Angle $longitudeOfNaturalOrigin,
1004
        Scale $scaleFactorAtNaturalOrigin,
1005
        Length $falseEasting,
1006
        Length $falseNorthing
1007
    ): ProjectedPoint {
1008 9
        $latitude = $this->latitude->asRadians()->getValue();
1009 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1010 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1011 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1012 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1013 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1014
1015 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1016 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1017 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1018 9
        $n = sin($latitudeOrigin);
1019 9
        $F = $mO / ($n * $tO ** $n);
1020 9
        $rO = $a * $F * $tO ** $n * $kO;
1021 9
        $r = $a * $F * $t ** $n * $kO;
1022 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1023
1024 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1025 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1026
1027 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1028
    }
1029
1030
    /**
1031
     * Lambert Conic Conformal (1SP) Variant B.
1032
     */
1033
    public function lambertConicConformal1SPVariantB(
1034
        Projected $to,
1035
        Angle $latitudeOfNaturalOrigin,
1036
        Scale $scaleFactorAtNaturalOrigin,
1037
        Angle $latitudeOfFalseOrigin,
1038
        Angle $longitudeOfFalseOrigin,
1039
        Length $eastingAtFalseOrigin,
1040
        Length $northingAtFalseOrigin
1041
    ): ProjectedPoint {
1042
        $latitude = $this->latitude->asRadians()->getValue();
1043
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1044
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1045
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1046
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1047
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1048
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1049
1050
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1051
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1052
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1053
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1054
        $n = sin($latitudeNaturalOrigin);
1055
        $F = $mO / ($n * $tO ** $n);
1056
        $rF = $a * $F * $tF ** $n * $kO;
1057
        $r = $a * $F * $t ** $n * $kO;
1058
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1059
1060
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1061
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1062
1063
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1064
    }
1065
1066
    /**
1067
     * Lambert Conic Conformal (2SP Belgium)
1068
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1069
     * with appropriately modified parameter values.
1070
     */
1071 9
    public function lambertConicConformal2SPBelgium(
1072
        Projected $to,
1073
        Angle $latitudeOfFalseOrigin,
1074
        Angle $longitudeOfFalseOrigin,
1075
        Angle $latitudeOf1stStandardParallel,
1076
        Angle $latitudeOf2ndStandardParallel,
1077
        Length $eastingAtFalseOrigin,
1078
        Length $northingAtFalseOrigin
1079
    ): ProjectedPoint {
1080 9
        $latitude = $this->latitude->asRadians()->getValue();
1081 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1082 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1083 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1084 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1085 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1086 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1087
1088 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1089 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1090 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1091 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1092 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1093 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1094 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1095 9
        $F = $m1 / ($n * $t1 ** $n);
1096 9
        $r = $a * $F * $t ** $n;
1097 9
        $rF = $a * $F * $tF ** $n;
1098 9
        if (is_nan($rF)) {
1099 9
            $rF = 0;
1100
        }
1101 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1102
1103 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1104 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1105
1106 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1107
    }
1108
1109
    /**
1110
     * Lambert Conic Conformal (2SP Michigan).
1111
     */
1112 9
    public function lambertConicConformal2SPMichigan(
1113
        Projected $to,
1114
        Angle $latitudeOfFalseOrigin,
1115
        Angle $longitudeOfFalseOrigin,
1116
        Angle $latitudeOf1stStandardParallel,
1117
        Angle $latitudeOf2ndStandardParallel,
1118
        Length $eastingAtFalseOrigin,
1119
        Length $northingAtFalseOrigin,
1120
        Scale $ellipsoidScalingFactor
1121
    ): ProjectedPoint {
1122 9
        $latitude = $this->latitude->asRadians()->getValue();
1123 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1124 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1125 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1126 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1127 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1128 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1129 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1130
1131 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1132 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1133 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1134 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1135 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1136 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1137 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1138 9
        $F = $m1 / ($n * $t1 ** $n);
1139 9
        $r = $a * $K * $F * $t ** $n;
1140 9
        $rF = $a * $K * $F * $tF ** $n;
1141 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1142
1143 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1144 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1145
1146 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1147
    }
1148
1149
    /**
1150
     * Lambert Conic Conformal (2SP).
1151
     */
1152 9
    public function lambertConicConformal2SP(
1153
        Projected $to,
1154
        Angle $latitudeOfFalseOrigin,
1155
        Angle $longitudeOfFalseOrigin,
1156
        Angle $latitudeOf1stStandardParallel,
1157
        Angle $latitudeOf2ndStandardParallel,
1158
        Length $eastingAtFalseOrigin,
1159
        Length $northingAtFalseOrigin
1160
    ): ProjectedPoint {
1161 9
        $latitude = $this->latitude->asRadians()->getValue();
1162 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1163 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1164 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1165 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1166 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1167 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1168
1169 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1170 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1171 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1172 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1173 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1174 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1175 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1176 9
        $F = $m1 / ($n * $t1 ** $n);
1177 9
        $r = $a * $F * $t ** $n;
1178 9
        $rF = $a * $F * $tF ** $n;
1179 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1180
1181 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1182 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1183
1184 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1185
    }
1186
1187
    /**
1188
     * Lambert Conic Conformal (West Orientated).
1189
     */
1190
    public function lambertConicConformalWestOrientated(
1191
        Projected $to,
1192
        Angle $latitudeOfNaturalOrigin,
1193
        Angle $longitudeOfNaturalOrigin,
1194
        Scale $scaleFactorAtNaturalOrigin,
1195
        Length $falseEasting,
1196
        Length $falseNorthing
1197
    ): ProjectedPoint {
1198
        $latitude = $this->latitude->asRadians()->getValue();
1199
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1200
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1201
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1202
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1203
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1204
1205
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1206
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1207
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1208
        $n = sin($latitudeOrigin);
1209
        $F = $mO / ($n * $tO ** $n);
1210
        $rO = $a * $F * $tO ** $n ** $kO;
1211
        $r = $a * $F * $t ** $n ** $kO;
1212
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1213
1214
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1215
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1216
1217
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1218
    }
1219
1220
    /**
1221
     * Lambert Conic Near-Conformal
1222
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1223
     * series expansion of the projection formulae.
1224
     */
1225 9
    public function lambertConicNearConformal(
1226
        Projected $to,
1227
        Angle $latitudeOfNaturalOrigin,
1228
        Angle $longitudeOfNaturalOrigin,
1229
        Scale $scaleFactorAtNaturalOrigin,
1230
        Length $falseEasting,
1231
        Length $falseNorthing
1232
    ): ProjectedPoint {
1233 9
        $latitude = $this->latitude->asRadians()->getValue();
1234 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1235 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1236 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1237 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1238 9
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1239
1240 9
        $n = $f / (2 - $f);
1241 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1242 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1243 9
        $A = 1 / (6 * $rhoO * $nuO);
1244 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1245 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1246 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1247 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1248 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1249 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1250 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1251 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1252 9
        $m = $s - $sO;
1253 9
        $M = $kO * ($m + $A * $m ** 3);
1254 9
        $r = $rO - $M;
1255 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1256
1257 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1258 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1259
1260 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1261
    }
1262
1263
    /**
1264
     * Lambert Cylindrical Equal Area
1265
     * This is the ellipsoidal form of the projection.
1266
     */
1267 9
    public function lambertCylindricalEqualArea(
1268
        Projected $to,
1269
        Angle $latitudeOf1stStandardParallel,
1270
        Angle $longitudeOfNaturalOrigin,
1271
        Length $falseEasting,
1272
        Length $falseNorthing
1273
    ): ProjectedPoint {
1274 9
        $latitude = $this->latitude->asRadians()->getValue();
1275 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1276 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1277 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1278 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1279
1280 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1281 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1282
1283 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1284 9
        $y = $a * $q / (2 * $k);
1285
1286 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1287 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1288
1289 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1290
    }
1291
1292
    /**
1293
     * Modified Azimuthal Equidistant
1294
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1295
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1296
     */
1297 9
    public function modifiedAzimuthalEquidistant(
1298
        Projected $to,
1299
        Angle $latitudeOfNaturalOrigin,
1300
        Angle $longitudeOfNaturalOrigin,
1301
        Length $falseEasting,
1302
        Length $falseNorthing
1303
    ): ProjectedPoint {
1304 9
        $latitude = $this->latitude->asRadians()->getValue();
1305 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1306 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1307 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1308 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1309
1310 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1311 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1312 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1313 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1314 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1315 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1316
1317 9
        if (sin($alpha) === 0.0) {
1318
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1319
        } else {
1320 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1321
        }
1322
1323 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1324
1325 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1326 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1327
1328 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1329
    }
1330
1331
    /**
1332
     * Oblique Stereographic
1333
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1334
     * Projections - A Working Manual" by John P. Snyder.
1335
     */
1336 9
    public function obliqueStereographic(
1337
        Projected $to,
1338
        Angle $latitudeOfNaturalOrigin,
1339
        Angle $longitudeOfNaturalOrigin,
1340
        Scale $scaleFactorAtNaturalOrigin,
1341
        Length $falseEasting,
1342
        Length $falseNorthing
1343
    ): ProjectedPoint {
1344 9
        $latitude = $this->latitude->asRadians()->getValue();
1345 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1346 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1347 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1348 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1349 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1350 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1351
1352 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1353 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1354 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1355
1356 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1357 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1358 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1359 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1360 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1361 9
        $w2 = $c * $w1;
1362 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1363
1364 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1365
1366 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1367 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1368 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1369 9
        $chi = self::asin(($w - 1) / ($w + 1));
1370
1371 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1372
1373 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1374 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1375
1376 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1377
    }
1378
1379
    /**
1380
     * Polar Stereographic (variant A)
1381
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1382
     */
1383 9
    public function polarStereographicVariantA(
1384
        Projected $to,
1385
        Angle $latitudeOfNaturalOrigin,
1386
        Angle $longitudeOfNaturalOrigin,
1387
        Scale $scaleFactorAtNaturalOrigin,
1388
        Length $falseEasting,
1389
        Length $falseNorthing
1390
    ): ProjectedPoint {
1391 9
        $latitude = $this->latitude->asRadians()->getValue();
1392 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1393 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1394 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1395 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1396
1397 9
        if ($latitudeOrigin < 0) {
1398
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1399
        } else {
1400 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1401
        }
1402 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1403
1404 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1405 9
        $dE = $rho * sin($theta);
1406 9
        $dN = $rho * cos($theta);
1407
1408 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1409 9
        if ($latitudeOrigin < 0) {
1410
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1411
        } else {
1412 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1413
        }
1414
1415 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1416
    }
1417
1418
    /**
1419
     * Polar Stereographic (variant B).
1420
     */
1421 9
    public function polarStereographicVariantB(
1422
        Projected $to,
1423
        Angle $latitudeOfStandardParallel,
1424
        Angle $longitudeOfOrigin,
1425
        Length $falseEasting,
1426
        Length $falseNorthing
1427
    ): ProjectedPoint {
1428 9
        $latitude = $this->latitude->asRadians()->getValue();
1429 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1430 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1431 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1432 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1433
1434 9
        if ($firstStandardParallel < 0) {
1435 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1436 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1437
        } else {
1438
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1439
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1440
        }
1441 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1442 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1443
1444 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1445
1446 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1447 9
        $dE = $rho * sin($theta);
1448 9
        $dN = $rho * cos($theta);
1449
1450 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1451 9
        if ($firstStandardParallel < 0) {
1452 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1453
        } else {
1454
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1455
        }
1456
1457 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1458
    }
1459
1460
    /**
1461
     * Polar Stereographic (variant C).
1462
     */
1463 9
    public function polarStereographicVariantC(
1464
        Projected $to,
1465
        Angle $latitudeOfStandardParallel,
1466
        Angle $longitudeOfOrigin,
1467
        Length $eastingAtFalseOrigin,
1468
        Length $northingAtFalseOrigin
1469
    ): ProjectedPoint {
1470 9
        $latitude = $this->latitude->asRadians()->getValue();
1471 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1472 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1473 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1474 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1475
1476 9
        if ($firstStandardParallel < 0) {
1477 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1478 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1479
        } else {
1480
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1481
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1482
        }
1483 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1484
1485 9
        $rhoF = $a * $mF;
1486 9
        $rho = $rhoF * $t / $tF;
1487
1488 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1489 9
        $dE = $rho * sin($theta);
1490 9
        $dN = $rho * cos($theta);
1491
1492 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1493 9
        if ($firstStandardParallel < 0) {
1494 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1495
        } else {
1496
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1497
        }
1498
1499 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1500
    }
1501
1502
    /**
1503
     * Popular Visualisation Pseudo Mercator
1504
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1505
     */
1506 9
    public function popularVisualisationPseudoMercator(
1507
        Projected $to,
1508
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1508
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1509
        Angle $longitudeOfNaturalOrigin,
1510
        Length $falseEasting,
1511
        Length $falseNorthing
1512
    ): ProjectedPoint {
1513 9
        $latitude = $this->latitude->asRadians()->getValue();
1514 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1515
1516 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1517 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1518
1519 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1520
    }
1521
1522
    /**
1523
     * Mercator (variant A)
1524
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1525
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1526
     * completeness in CRS labelling.
1527
     */
1528 18
    public function mercatorVariantA(
1529
        Projected $to,
1530
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1530
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1531
        Angle $longitudeOfNaturalOrigin,
1532
        Scale $scaleFactorAtNaturalOrigin,
1533
        Length $falseEasting,
1534
        Length $falseNorthing
1535
    ): ProjectedPoint {
1536 18
        $latitude = $this->latitude->asRadians()->getValue();
1537 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1538
1539 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1540 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1541
1542 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1543 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1544
1545 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1546
    }
1547
1548
    /**
1549
     * Mercator (variant B)
1550
     * Used for most nautical charts.
1551
     */
1552 9
    public function mercatorVariantB(
1553
        Projected $to,
1554
        Angle $latitudeOf1stStandardParallel,
1555
        Angle $longitudeOfNaturalOrigin,
1556
        Length $falseEasting,
1557
        Length $falseNorthing
1558
    ): ProjectedPoint {
1559 9
        $latitude = $this->latitude->asRadians()->getValue();
1560 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1561 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1562 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1563 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1564
1565 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1566
1567 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1568 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1569
1570 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1571
    }
1572
1573
    /**
1574
     * Longitude rotation
1575
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1576
     * value to the longitude value of the point in the source system.
1577
     */
1578 9
    public function longitudeRotation(
1579
        Geographic $to,
1580
        Angle $longitudeOffset
1581
    ): self {
1582 9
        $newLongitude = $this->longitude->add($longitudeOffset);
1583
1584 9
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1585
    }
1586
1587
    /**
1588
     * Hotine Oblique Mercator (variant A).
1589
     */
1590 9
    public function obliqueMercatorHotineVariantA(
1591
        Projected $to,
1592
        Angle $latitudeOfProjectionCentre,
1593
        Angle $longitudeOfProjectionCentre,
1594
        Angle $azimuthOfInitialLine,
1595
        Angle $angleFromRectifiedToSkewGrid,
1596
        Scale $scaleFactorOnInitialLine,
1597
        Length $falseEasting,
1598
        Length $falseNorthing
1599
    ): ProjectedPoint {
1600 9
        $latitude = $this->latitude->asRadians()->getValue();
1601 9
        $longitude = $this->longitude->asRadians()->getValue();
1602 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1603 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1604 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1605 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1606 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1607 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1608 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1609 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1610
1611 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1612 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1613 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1614 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1615 9
        $DD = max(1, $D ** 2);
1616 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1617 9
        $H = $F * ($tO) ** $B;
1618 9
        $G = ($F - 1 / $F) / 2;
1619 9
        $gammaO = self::asin(sin($alphaC) / $D);
1620 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1621
1622 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1623 9
        $Q = $H / $t ** $B;
1624 9
        $S = ($Q - 1 / $Q) / 2;
1625 9
        $T = ($Q + 1 / $Q) / 2;
1626 9
        $V = sin($B * ($longitude - $lonO));
1627 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1628 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1629 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1630
1631 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1632 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1633
1634 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1635
    }
1636
1637
    /**
1638
     * Hotine Oblique Mercator (variant B).
1639
     */
1640 9
    public function obliqueMercatorHotineVariantB(
1641
        Projected $to,
1642
        Angle $latitudeOfProjectionCentre,
1643
        Angle $longitudeOfProjectionCentre,
1644
        Angle $azimuthOfInitialLine,
1645
        Angle $angleFromRectifiedToSkewGrid,
1646
        Scale $scaleFactorOnInitialLine,
1647
        Length $eastingAtProjectionCentre,
1648
        Length $northingAtProjectionCentre
1649
    ): ProjectedPoint {
1650 9
        $latitude = $this->latitude->asRadians()->getValue();
1651 9
        $longitude = $this->longitude->asRadians()->getValue();
1652 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1653 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1654 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1655 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1656 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1657 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1658 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1659 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1660
1661 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1662 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1663 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1664 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1665 9
        $DD = max(1, $D ** 2);
1666 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1667 9
        $H = $F * ($tO) ** $B;
1668 9
        $G = ($F - 1 / $F) / 2;
1669 9
        $gammaO = self::asin(sin($alphaC) / $D);
1670 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1671 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1672 9
        if ($alphaC === M_PI / 2) {
1673
            $uC = $A * ($lonC - $lonO);
1674
        } else {
1675 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1676
        }
1677
1678 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1679 9
        $Q = $H / $t ** $B;
1680 9
        $S = ($Q - 1 / $Q) / 2;
1681 9
        $T = ($Q + 1 / $Q) / 2;
1682 9
        $V = sin($B * ($longitude - $lonO));
1683 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1684 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1685
1686 9
        if ($alphaC === M_PI / 2) {
1687
            if ($longitude === $lonC) {
1688
                $u = 0;
1689
            } else {
1690
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1691
            }
1692
        } else {
1693 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1694
        }
1695
1696 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1697 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1698
1699 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1700
    }
1701
1702
    /**
1703
     * Laborde Oblique Mercator.
1704
     */
1705 9
    public function obliqueMercatorLaborde(
1706
        Projected $to,
1707
        Angle $latitudeOfProjectionCentre,
1708
        Angle $longitudeOfProjectionCentre,
1709
        Angle $azimuthOfInitialLine,
1710
        Scale $scaleFactorOnInitialLine,
1711
        Length $falseEasting,
1712
        Length $falseNorthing
1713
    ): ProjectedPoint {
1714 9
        $latitude = $this->latitude->asRadians()->getValue();
1715 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1716 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1717 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1718 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1719 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1720 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1721
1722 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1723 9
        $latS = self::asin(sin($latC) / $B);
1724 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1725 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1726
1727 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1728 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1729 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1730 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1731 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1732 9
        $W = cos($P) * sin($L);
1733 9
        $d = hypot($U, $V);
1734 9
        if ($d === 0.0) {
1735
            $LPrime = 0;
1736
            $PPrime = static::sign($W) * M_PI / 2;
1737
        } else {
1738 9
            $LPrime = 2 * atan($V / ($U + $d));
1739 9
            $PPrime = atan($W / $d);
1740
        }
1741 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1742 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1743
1744 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1745 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1746
1747 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1748
    }
1749
1750
    /**
1751
     * Transverse Mercator.
1752
     */
1753 112
    public function transverseMercator(
1754
        Projected $to,
1755
        Angle $latitudeOfNaturalOrigin,
1756
        Angle $longitudeOfNaturalOrigin,
1757
        Scale $scaleFactorAtNaturalOrigin,
1758
        Length $falseEasting,
1759
        Length $falseNorthing
1760
    ): ProjectedPoint {
1761 112
        $latitude = $this->latitude->asRadians()->getValue();
1762 112
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1763 112
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1764 112
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1765 112
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1766 112
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1767
1768 112
        $n = $f / (2 - $f);
1769 112
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1770
1771 112
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1772 112
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1773 112
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1774 112
        $h4 = (49561 / 161280) * $n ** 4;
1775
1776 112
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1777 81
            $mO = 0;
1778 31
        } elseif ($latitudeOrigin === M_PI / 2) {
1779
            $mO = $B * M_PI / 2;
1780 31
        } elseif ($latitudeOrigin === -M_PI / 2) {
1781
            $mO = $B * -M_PI / 2;
1782
        } else {
1783 31
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1784 31
            $betaO = atan(sinh($qO));
1785 31
            $xiO0 = self::asin(sin($betaO));
1786 31
            $xiO1 = $h1 * sin(2 * $xiO0);
1787 31
            $xiO2 = $h2 * sin(4 * $xiO0);
1788 31
            $xiO3 = $h3 * sin(6 * $xiO0);
1789 31
            $xiO4 = $h4 * sin(8 * $xiO0);
1790 31
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1791 31
            $mO = $B * $xiO;
1792
        }
1793
1794 112
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1795 112
        $beta = atan(sinh($Q));
1796 112
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1797 112
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1798 112
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1799 112
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1800 112
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1801 112
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1802 112
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1803 112
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1804 112
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1805 112
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1806 112
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1807 112
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1808
1809 112
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1810 112
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1811
1812 112
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1813
    }
1814
1815
    /**
1816
     * Transverse Mercator Zoned Grid System
1817
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1818
     * each zone.
1819
     */
1820 36
    public function transverseMercatorZonedGrid(
1821
        Projected $to,
1822
        Angle $latitudeOfNaturalOrigin,
1823
        Angle $initialLongitude,
1824
        Angle $zoneWidth,
1825
        Scale $scaleFactorAtNaturalOrigin,
1826
        Length $falseEasting,
1827
        Length $falseNorthing
1828
    ): ProjectedPoint {
1829 36
        $W = $zoneWidth->asDegrees()->getValue();
1830 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1831
1832 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1833 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1834
1835 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1836
    }
1837
1838
    /**
1839
     * New Zealand Map Grid.
1840
     */
1841 27
    public function newZealandMapGrid(
1842
        Projected $to,
1843
        Angle $latitudeOfNaturalOrigin,
1844
        Angle $longitudeOfNaturalOrigin,
1845
        Length $falseEasting,
1846
        Length $falseNorthing
1847
    ): ProjectedPoint {
1848 27
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1849
1850 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1851 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1852
1853 27
        $deltaPsi = 0;
1854 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1855 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1856 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1857 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1858 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1859 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1860 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1861 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1862 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1863 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1864
1865 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1866
1867 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1868 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1869 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1870 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1871 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1872 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1873 27
        $z = new ComplexNumber(0, 0);
1874 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1875 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1876 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1877 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1878 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1879 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1880
1881 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1882 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1883
1884 27
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1885
    }
1886
1887
    /**
1888
     * Madrid to ED50 polynomial.
1889
     */
1890 9
    public function madridToED50Polynomial(
1891
        Geographic2D $to,
1892
        Scale $A0,
1893
        Scale $A1,
1894
        Scale $A2,
1895
        Scale $A3,
1896
        Angle $B00,
1897
        Scale $B0,
1898
        Scale $B1,
1899
        Scale $B2,
1900
        Scale $B3
1901
    ): self {
1902 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1903 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1904
1905 9
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1906
    }
1907
1908
    /**
1909
     * Geographic3D to 2D conversion.
1910
     */
1911 27
    public function threeDToTwoD(
1912
        Geographic $to
1913
    ): self {
1914 27
        if ($to instanceof Geographic2D) {
1915 27
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1916
        }
1917
1918
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1919
    }
1920
1921
    /**
1922
     * Geographic2D offsets.
1923
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1924
     * coordinate values of the point in the source system.
1925
     */
1926 9
    public function geographic2DOffsets(
1927
        Geographic $to,
1928
        Angle $latitudeOffset,
1929
        Angle $longitudeOffset
1930
    ): self {
1931 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1932 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1933
1934 9
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1935
    }
1936
1937
    /*
1938
     * Geographic2D with Height Offsets.
1939
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1940
     * coordinate values of the point in the source system.
1941
     */
1942
    public function geographic2DWithHeightOffsets(
1943
        Compound $to,
1944
        Angle $latitudeOffset,
1945
        Angle $longitudeOffset,
1946
        Length $geoidUndulation
1947
    ): CompoundPoint {
1948
        $toLatitude = $this->latitude->add($latitudeOffset);
1949
        $toLongitude = $this->longitude->add($longitudeOffset);
1950
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1950
        /** @scrutinizer ignore-call */ 
1951
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1951
1952
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
1953
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1953
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
1954
1955
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
1956
    }
1957
1958
    /**
1959
     * General polynomial.
1960
     * @param Coefficient[] $powerCoefficients
1961
     */
1962 18
    public function generalPolynomial(
1963
        Geographic $to,
1964
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1965
        Angle $ordinate2OfEvaluationPointInSourceCRS,
1966
        Angle $ordinate1OfEvaluationPointInTargetCRS,
1967
        Angle $ordinate2OfEvaluationPointInTargetCRS,
1968
        Scale $scalingFactorForSourceCRSCoordDifferences,
1969
        Scale $scalingFactorForTargetCRSCoordDifferences,
1970
        Scale $A0,
1971
        Scale $B0,
1972
        array $powerCoefficients
1973
    ): self {
1974 18
        $xs = $this->latitude->getValue();
1975 18
        $ys = $this->longitude->getValue();
1976
1977 18
        $t = $this->generalPolynomialUnitless(
1978 18
            $xs,
1979
            $ys,
1980
            $ordinate1OfEvaluationPointInSourceCRS,
1981
            $ordinate2OfEvaluationPointInSourceCRS,
1982
            $ordinate1OfEvaluationPointInTargetCRS,
1983
            $ordinate2OfEvaluationPointInTargetCRS,
1984
            $scalingFactorForSourceCRSCoordDifferences,
1985
            $scalingFactorForTargetCRSCoordDifferences,
1986
            $A0,
1987
            $B0,
1988
            $powerCoefficients
1989
        );
1990
1991 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
1992 18
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1993 18
            $xtUnit = Angle::EPSG_DEGREE;
1994
        }
1995 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
1996 18
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1997 18
            $ytUnit = Angle::EPSG_DEGREE;
1998
        }
1999
2000 18
        return static::create(
2001 18
            Angle::makeUnit($t['xt'], $xtUnit),
2002 18
            Angle::makeUnit($t['yt'], $ytUnit),
2003 18
            $this->height,
2004
            $to,
2005 18
            $this->epoch
2006
        );
2007
    }
2008
2009
    /**
2010
     * Reversible polynomial.
2011
     * @param Coefficient[] $powerCoefficients
2012
     */
2013 36
    public function reversiblePolynomial(
2014
        Geographic $to,
2015
        Angle $ordinate1OfEvaluationPoint,
2016
        Angle $ordinate2OfEvaluationPoint,
2017
        Scale $scalingFactorForCoordDifferences,
2018
        Scale $A0,
2019
        Scale $B0,
2020
        $powerCoefficients
2021
    ): self {
2022 36
        $xs = $this->latitude->getValue();
2023 36
        $ys = $this->longitude->getValue();
2024
2025 36
        $t = $this->reversiblePolynomialUnitless(
2026 36
            $xs,
2027
            $ys,
2028
            $ordinate1OfEvaluationPoint,
2029
            $ordinate2OfEvaluationPoint,
2030
            $scalingFactorForCoordDifferences,
2031
            $A0,
2032
            $B0,
2033
            $powerCoefficients
2034
        );
2035
2036 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2037 36
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2038 36
            $xtUnit = Angle::EPSG_DEGREE;
2039
        }
2040 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2041 36
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2042 36
            $ytUnit = Angle::EPSG_DEGREE;
2043
        }
2044
2045 36
        return static::create(
2046 36
            Angle::makeUnit($t['xt'], $xtUnit),
2047 36
            Angle::makeUnit($t['yt'], $ytUnit),
2048 36
            $this->height,
2049
            $to,
2050 36
            $this->epoch
2051
        );
2052
    }
2053
2054
    /**
2055
     * Axis Order Reversal.
2056
     */
2057
    public function axisReversal(
2058
        Geographic $to
2059
    ): self {
2060
        // axes are read in from the CRS, this is a book-keeping adjustment only
2061
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2062
    }
2063
2064
    /**
2065
     * Ordnance Survey National Transformation
2066
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2067
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2068
     */
2069 2
    public function OSTN15(
2070
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2070
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2071
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2072
    ): ProjectedPoint {
2073 2
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2074 2
        $etrs89NationalGrid = new Projected(
2075 2
            'ETRS89 / National Grid',
2076 2
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2077 2
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2078 2
            $osgb36NationalGrid->getBoundingArea()
2079
        );
2080
2081 2
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2082
2083 2
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2084
    }
2085
2086
    /**
2087
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2088
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2089
     * coordinate differences.
2090
     */
2091 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2092
        Compound $to,
2093
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2094
    ): CompoundPoint {
2095 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2096 1
        $etrs89NationalGrid = new Projected(
2097 1
            'ETRS89 / National Grid',
2098 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2099 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2100 1
            $osgb36NationalGrid->getBoundingArea()
2101
        );
2102
2103 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2104
2105 1
        $horizontalPoint = self::create(
2106 1
            $this->latitude,
2107 1
            $this->longitude,
2108 1
            null,
2109 1
            $to->getHorizontal(),
2110 1
            $this->getCoordinateEpoch()
2111
        );
2112
2113 1
        $verticalPoint = VerticalPoint::create(
2114 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2114
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
Loading history...
2115 1
            $to->getVertical(),
2116 1
            $this->getCoordinateEpoch()
2117
        );
2118
2119 1
        return CompoundPoint::create(
2120 1
            $horizontalPoint,
2121 1
            $verticalPoint,
2122 1
            $to,
2123 1
            $this->getCoordinateEpoch()
2124
        );
2125
    }
2126
2127
    /**
2128
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2129
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2130
     * coordinate differences.
2131
     */
2132 1
    public function geographic3DToGravityHeightOSGM15(
2133
        Vertical $to,
2134
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2135
    ): VerticalPoint {
2136 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2137 1
        $etrs89NationalGrid = new Projected(
2138 1
            'ETRS89 / National Grid',
2139 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2140 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2141 1
            $osgb36NationalGrid->getBoundingArea()
2142
        );
2143
2144 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2145
2146 1
        return VerticalPoint::create(
2147 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2147
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
Loading history...
2148 1
            $to,
2149 1
            $this->getCoordinateEpoch()
2150
        );
2151
    }
2152
2153
    /**
2154
     * NADCON5.
2155
     * Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation.  Input
2156
     * expects longitudes to be positive east in range 0-360° (0° = Greenwich).
2157
     */
2158 7
    public function NADCON5(
2159
        Geographic $to,
2160
        NADCON5Grid $latitudeDifferenceFile,
2161
        NADCON5Grid $longitudeDifferenceFile,
2162
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2163
        bool $inReverse
2164
    ): self {
2165
        /*
2166
         * Ideally most of this logic (especially reverse case) would be in the NADCON5Grid class like the other grids,
2167
         * but NADCON5 uses different files for latitude/longitude/height that need to be combined at runtime so that
2168
         * isn't possible.
2169
         */
2170 7
        if (!$inReverse) {
2171 4
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($this));
2172 4
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($this));
2173 4
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($this)) : null;
2174
2175 4
            return self::create($this->latitude->add($latitudeAdjustment), $this->longitude->add($longitudeAdjustment), $heightAdjustment ? $this->height->add($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2176
        }
2177
2178 3
        $iteration = $this;
2179
2180
        do {
2181 3
            $prevIteration = $iteration;
2182 3
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($iteration));
2183 3
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($iteration));
2184 3
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($iteration)) : null;
2185 3
            $iteration = self::create($this->latitude->subtract($latitudeAdjustment), $this->longitude->subtract($longitudeAdjustment), $heightAdjustment ? $this->height->subtract($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2186 3
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
0 ignored issues
show
Bug introduced by
The method subtract() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2186
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->/** @scrutinizer ignore-call */ subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
Bug introduced by
It seems like $prevIteration->height can also be of type null; however, parameter $unit of PHPCoord\UnitOfMeasure\Length\Length::subtract() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2186
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract(/** @scrutinizer ignore-type */ $prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
Loading history...
2187
2188 3
        return $iteration;
2189
    }
2190
2191
    /**
2192
     * NTv2
2193
     * Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Supersedes
2194
     * NTv1 (transformation method code 9614).  Input expects longitudes to be positive west.
2195
     */
2196 5
    public function NTv2(
2197
        Geographic $to,
2198
        NTv2Grid $latitudeAndLongitudeDifferenceFile,
2199
        bool $inReverse
2200
    ): self {
2201 5
        if (!$inReverse) {
2202 3
            return $latitudeAndLongitudeDifferenceFile->applyForwardAdjustment($this, $to);
2203
        }
2204
2205 2
        return $latitudeAndLongitudeDifferenceFile->applyReverseAdjustment($this, $to);
2206
    }
2207
2208
    /**
2209
     * Geocentric translation by Grid Interpolation (IGN France).
2210
     */
2211 3
    public function geocentricTranslationByGridInterpolationIGNF(
2212
        Geographic $to,
2213
        IGNGeocentricTranslationGrid $geocentricTranslationFile,
2214
        bool $inReverse
2215
    ): self {
2216 3
        if (!$inReverse) {
2217 2
            return $geocentricTranslationFile->applyForwardAdjustment($this, $to);
2218
        }
2219
2220 1
        return $geocentricTranslationFile->applyReverseAdjustment($this, $to);
2221
    }
2222
2223 351
    public function asGeographicValue(): GeographicValue
2224
    {
2225 351
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2226
    }
2227
2228 18
    public function asUTMPoint(): UTMPoint
2229
    {
2230 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2231 18
        $latitudeOfNaturalOrigin = new Degree(0);
2232 18
        $initialLongitude = new Degree(-180);
2233 18
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2234 18
        $falseEasting = new Metre(500000);
2235 18
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2236 18
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2237 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2238
2239 18
        $projectedCRS = new Projected(
2240 18
            'UTM/' . $this->crs->getSRID(),
2241 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2242 18
            $this->crs->getDatum(),
2243 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter
2244
        );
2245
2246 18
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2247
2248 18
        return new UTMPoint($asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->crs, $this->epoch);
2249
    }
2250
}
2251