Passed
Push — master ( 62b2c1...aec388 )
by Doug
48:50 queued 07:26
created

GeographicPoint::normaliseLatitude()   A

Complexity

Conditions 3
Paths 3

Size

Total Lines 10
Code Lines 5

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 4
CRAP Score 3.3332

Importance

Changes 0
Metric Value
cc 3
eloc 5
nc 3
nop 1
dl 0
loc 10
ccs 4
cts 6
cp 0.6667
crap 3.3332
rs 10
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use function count;
19
use DateTime;
20
use DateTimeImmutable;
21
use DateTimeInterface;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
34
use PHPCoord\CoordinateOperation\GeographicGrid;
35
use PHPCoord\CoordinateOperation\GeographicValue;
36
use PHPCoord\CoordinateOperation\NADCON5Grid;
37
use PHPCoord\CoordinateOperation\NADCON5Grids;
38
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
39
use PHPCoord\CoordinateReferenceSystem\Compound;
40
use PHPCoord\CoordinateReferenceSystem\Geocentric;
41
use PHPCoord\CoordinateReferenceSystem\Geographic;
42
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
43
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
44
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
45
use PHPCoord\CoordinateReferenceSystem\Vertical;
46
use PHPCoord\CoordinateSystem\Axis;
47
use PHPCoord\CoordinateSystem\Cartesian;
48
use PHPCoord\Datum\Datum;
49
use PHPCoord\Datum\Ellipsoid;
50
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
51
use PHPCoord\Exception\UnknownAxisException;
52
use PHPCoord\Geometry\BoundingArea;
53
use PHPCoord\UnitOfMeasure\Angle\Angle;
54
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
55
use PHPCoord\UnitOfMeasure\Angle\Degree;
56
use PHPCoord\UnitOfMeasure\Angle\Radian;
57
use PHPCoord\UnitOfMeasure\Length\Length;
58
use PHPCoord\UnitOfMeasure\Length\Metre;
59
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
60
use PHPCoord\UnitOfMeasure\Scale\Scale;
61
use PHPCoord\UnitOfMeasure\Scale\Unity;
62
use function sin;
63
use function sinh;
64
use function sqrt;
65
use function str_replace;
66
use function tan;
67
68
/**
69
 * Coordinate representing a point on an ellipsoid.
70
 */
71
class GeographicPoint extends Point implements ConvertiblePoint
72
{
73
    use AutoConversion;
74
75
    /**
76
     * Latitude.
77
     */
78
    protected Angle $latitude;
79
80
    /**
81
     * Longitude.
82
     */
83
    protected Angle $longitude;
84
85
    /**
86
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
87
     */
88
    protected ?Length $height;
89
90
    /**
91
     * Coordinate reference system.
92
     */
93
    protected Geographic2D|Geographic3D $crs;
94
95
    /**
96
     * Coordinate epoch (date for which the specified coordinates represented this point).
97
     */
98
    protected ?DateTimeImmutable $epoch;
99
100 1550
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
101
    {
102 1550
        if ($crs instanceof Geographic2D && $height !== null) {
103 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
104
        }
105
106 1541
        if ($crs instanceof Geographic3D && $height === null) {
107 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
108
        }
109
110 1532
        $this->crs = $crs;
111
112 1532
        $latitude = $this->normaliseLatitude($latitude);
113 1532
        $longitude = $this->normaliseLongitude($longitude);
114
115 1532
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
116 1532
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
117
118 1532
        if ($height) {
119 210
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
120
        } else {
121 1397
            $this->height = null;
122
        }
123
124 1532
        if ($epoch instanceof DateTime) {
125 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
126
        }
127 1532
        $this->epoch = $epoch;
128
    }
129
130
    /**
131
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
132
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
133
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
134
     */
135 1550
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
136
    {
137 1550
        return new static($crs, $latitude, $longitude, $height, $epoch);
138
    }
139
140 855
    public function getLatitude(): Angle
141
    {
142 855
        return $this->latitude;
143
    }
144
145 819
    public function getLongitude(): Angle
146
    {
147 819
        return $this->longitude;
148
    }
149
150 367
    public function getHeight(): ?Length
151
    {
152 367
        return $this->height;
153
    }
154
155 408
    public function getCRS(): Geographic
156
    {
157 408
        return $this->crs;
158
    }
159
160 117
    public function getCoordinateEpoch(): ?DateTimeImmutable
161
    {
162 117
        return $this->epoch;
163
    }
164
165 1532
    protected function normaliseLatitude(Angle $latitude): Angle
166
    {
167 1532
        if ($latitude->asDegrees()->getValue() > 90) {
168
            return new Degree(90);
169
        }
170 1532
        if ($latitude->asDegrees()->getValue() < -90) {
171
            return new Degree(-90);
172
        }
173
174 1532
        return $latitude;
175
    }
176
177 1532
    protected function normaliseLongitude(Angle $longitude): Angle
178
    {
179 1532
        while ($longitude->asDegrees()->getValue() > 180) {
180 9
            $longitude = $longitude->subtract(new Degree(360));
181
        }
182 1532
        while ($longitude->asDegrees()->getValue() <= -180) {
183
            $longitude = $longitude->add(new Degree(360));
184
        }
185
186 1532
        return $longitude;
187
    }
188
189
    /**
190
     * Calculate surface distance between two points.
191
     */
192 162
    public function calculateDistance(Point $to): Length
193
    {
194
        try {
195 162
            if ($to instanceof ConvertiblePoint) {
196 153
                $to = $to->convert($this->crs);
197
            }
198
        } finally {
199 162
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
200 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
201
            }
202
203
            /* @var GeographicPoint $to */
204 153
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
205
        }
206
    }
207
208 36
    public function __toString(): string
209
    {
210 36
        $values = [];
211 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
212 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
213 36
                $values[] = $this->latitude;
214 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
215 36
                $values[] = $this->longitude;
216 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
217 9
                $values[] = $this->height;
218
            } else {
219
                throw new UnknownAxisException(); // @codeCoverageIgnore
220
            }
221
        }
222
223 36
        return '(' . implode(', ', $values) . ')';
224
    }
225
226
    /**
227
     * Geographic/geocentric conversions
228
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
229
     * 9636 to form a geographic to geographic transformation.
230
     */
231 18
    public function geographicGeocentric(
232
        Geocentric $to
233
    ): GeocentricPoint {
234 18
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
235 18
        $asGeocentric = $geographicValue->asGeocentricValue();
236
237 18
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
238
    }
239
240
    /**
241
     * Coordinate Frame rotation (geog2D/geog3D domain)
242
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
243
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
244
     * between other CRS types.
245
     */
246 72
    public function coordinateFrameRotation(
247
        Geographic2D|Geographic3D $to,
248
        Length $xAxisTranslation,
249
        Length $yAxisTranslation,
250
        Length $zAxisTranslation,
251
        Angle $xAxisRotation,
252
        Angle $yAxisRotation,
253
        Angle $zAxisRotation,
254
        Scale $scaleDifference
255
    ): self {
256 72
        return $this->coordinateFrameMolodenskyBadekas(
257
            $to,
258
            $xAxisTranslation,
259
            $yAxisTranslation,
260
            $zAxisTranslation,
261
            $xAxisRotation,
262
            $yAxisRotation,
263
            $zAxisRotation,
264
            $scaleDifference,
265 72
            new Metre(0),
266 72
            new Metre(0),
267 72
            new Metre(0)
268
        );
269
    }
270
271
    /**
272
     * Molodensky-Badekas (CF geog2D/geog3D domain)
273
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
274
     * opposite rotation convention in geographic 2D domain.
275
     */
276 108
    public function coordinateFrameMolodenskyBadekas(
277
        Geographic2D|Geographic3D $to,
278
        Length $xAxisTranslation,
279
        Length $yAxisTranslation,
280
        Length $zAxisTranslation,
281
        Angle $xAxisRotation,
282
        Angle $yAxisRotation,
283
        Angle $zAxisRotation,
284
        Scale $scaleDifference,
285
        Length $ordinate1OfEvaluationPoint,
286
        Length $ordinate2OfEvaluationPoint,
287
        Length $ordinate3OfEvaluationPoint
288
    ): self {
289 108
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
290 108
        $asGeocentric = $geographicValue->asGeocentricValue();
291
292 108
        $xs = $asGeocentric->getX()->asMetres()->getValue();
293 108
        $ys = $asGeocentric->getY()->asMetres()->getValue();
294 108
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
295 108
        $tx = $xAxisTranslation->asMetres()->getValue();
296 108
        $ty = $yAxisTranslation->asMetres()->getValue();
297 108
        $tz = $zAxisTranslation->asMetres()->getValue();
298 108
        $rx = $xAxisRotation->asRadians()->getValue();
299 108
        $ry = $yAxisRotation->asRadians()->getValue();
300 108
        $rz = $zAxisRotation->asRadians()->getValue();
301 108
        $M = 1 + $scaleDifference->asUnity()->getValue();
302 108
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
303 108
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
304 108
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
305
306 108
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
307 108
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
308 108
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
309 108
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
310 108
        $newGeographic = $newGeocentric->asGeographicValue();
311
312 108
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
313
    }
314
315
    /**
316
     * Position Vector transformation (geog2D/geog3D domain)
317
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
318
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
319
     * operating between other CRS types.
320
     */
321 185
    public function positionVectorTransformation(
322
        Geographic2D|Geographic3D $to,
323
        Length $xAxisTranslation,
324
        Length $yAxisTranslation,
325
        Length $zAxisTranslation,
326
        Angle $xAxisRotation,
327
        Angle $yAxisRotation,
328
        Angle $zAxisRotation,
329
        Scale $scaleDifference
330
    ): self {
331 185
        return $this->positionVectorMolodenskyBadekas(
332
            $to,
333
            $xAxisTranslation,
334
            $yAxisTranslation,
335
            $zAxisTranslation,
336
            $xAxisRotation,
337
            $yAxisRotation,
338
            $zAxisRotation,
339
            $scaleDifference,
340 185
            new Metre(0),
341 185
            new Metre(0),
342 185
            new Metre(0)
343
        );
344
    }
345
346
    /**
347
     * Molodensky-Badekas (PV geog2D/geog3D domain)
348
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
349
     * rotation in geographic 2D/3D domain.
350
     */
351 203
    public function positionVectorMolodenskyBadekas(
352
        Geographic2D|Geographic3D $to,
353
        Length $xAxisTranslation,
354
        Length $yAxisTranslation,
355
        Length $zAxisTranslation,
356
        Angle $xAxisRotation,
357
        Angle $yAxisRotation,
358
        Angle $zAxisRotation,
359
        Scale $scaleDifference,
360
        Length $ordinate1OfEvaluationPoint,
361
        Length $ordinate2OfEvaluationPoint,
362
        Length $ordinate3OfEvaluationPoint
363
    ): self {
364 203
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
365 203
        $asGeocentric = $geographicValue->asGeocentricValue();
366
367 203
        $xs = $asGeocentric->getX()->asMetres()->getValue();
368 203
        $ys = $asGeocentric->getY()->asMetres()->getValue();
369 203
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
370 203
        $tx = $xAxisTranslation->asMetres()->getValue();
371 203
        $ty = $yAxisTranslation->asMetres()->getValue();
372 203
        $tz = $zAxisTranslation->asMetres()->getValue();
373 203
        $rx = $xAxisRotation->asRadians()->getValue();
374 203
        $ry = $yAxisRotation->asRadians()->getValue();
375 203
        $rz = $zAxisRotation->asRadians()->getValue();
376 203
        $M = 1 + $scaleDifference->asUnity()->getValue();
377 203
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
378 203
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
379 203
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
380
381 203
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
382 203
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
383 203
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
384 203
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
385 203
        $newGeographic = $newGeocentric->asGeographicValue();
386
387 203
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
388
    }
389
390
    /**
391
     * Geocentric translations
392
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
393
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
394
     * operating between other CRSs types.
395
     */
396 115
    public function geocentricTranslation(
397
        Geographic2D|Geographic3D $to,
398
        Length $xAxisTranslation,
399
        Length $yAxisTranslation,
400
        Length $zAxisTranslation
401
    ): self {
402 115
        return $this->positionVectorTransformation(
403
            $to,
404
            $xAxisTranslation,
405
            $yAxisTranslation,
406
            $zAxisTranslation,
407 115
            new Radian(0),
408 115
            new Radian(0),
409 115
            new Radian(0),
410 115
            new Unity(0)
411
        );
412
    }
413
414
    /**
415
     * Abridged Molodensky
416
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
417
     * systems, modelled as a set of geocentric translations.
418
     */
419 18
    public function abridgedMolodensky(
420
        Geographic2D|Geographic3D $to,
421
        Length $xAxisTranslation,
422
        Length $yAxisTranslation,
423
        Length $zAxisTranslation,
424
        Length $differenceInSemiMajorAxis,
425
        Scale $differenceInFlattening
426
    ): self {
427 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
428 18
        $latitude = $this->latitude->asRadians()->getValue();
429 18
        $longitude = $this->longitude->asRadians()->getValue();
430 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
431 18
        $tx = $xAxisTranslation->asMetres()->getValue();
432 18
        $ty = $yAxisTranslation->asMetres()->getValue();
433 18
        $tz = $zAxisTranslation->asMetres()->getValue();
434 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
435 18
        $df = $differenceInFlattening->asUnity()->getValue();
436
437 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
438 18
        $e2 = $ellipsoid->getEccentricitySquared();
439
440 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
441 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
442
443 18
        $f = $ellipsoid->getFlattening();
444
445 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
446 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
447 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
448
449 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
450 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
451 18
        $toHeight = $fromHeight + $dHeight;
452
453 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
454
    }
455
456
    /**
457
     * Molodensky
458
     * See Abridged Molodensky.
459
     */
460 18
    public function molodensky(
461
        Geographic2D|Geographic3D $to,
462
        Length $xAxisTranslation,
463
        Length $yAxisTranslation,
464
        Length $zAxisTranslation,
465
        Length $differenceInSemiMajorAxis,
466
        Scale $differenceInFlattening
467
    ): self {
468 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
469 18
        $latitude = $this->latitude->asRadians()->getValue();
470 18
        $longitude = $this->longitude->asRadians()->getValue();
471 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
472 18
        $tx = $xAxisTranslation->asMetres()->getValue();
473 18
        $ty = $yAxisTranslation->asMetres()->getValue();
474 18
        $tz = $zAxisTranslation->asMetres()->getValue();
475 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
476 18
        $df = $differenceInFlattening->asUnity()->getValue();
477
478 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
479 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
480 18
        $e2 = $ellipsoid->getEccentricitySquared();
481
482 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
483 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
484
485 18
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
486
487 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
488 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
489 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
490
491 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
492 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
493 18
        $toHeight = $fromHeight + $dHeight;
494
495 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
496
    }
497
498
    /**
499
     * Albers Equal Area.
500
     */
501 18
    public function albersEqualArea(
502
        Projected $to,
503
        Angle $latitudeOfFalseOrigin,
504
        Angle $longitudeOfFalseOrigin,
505
        Angle $latitudeOf1stStandardParallel,
506
        Angle $latitudeOf2ndStandardParallel,
507
        Length $eastingAtFalseOrigin,
508
        Length $northingAtFalseOrigin
509
    ): ProjectedPoint {
510 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
511 18
        $latitude = $this->latitude->asRadians()->getValue();
512 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
513 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
514 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
515 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
516 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
517 18
        $e = $ellipsoid->getEccentricity();
518 18
        $e2 = $ellipsoid->getEccentricitySquared();
519
520 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
521 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
522
523 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
524 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
525 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
526 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
527
528 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
529 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
530 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
531 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
532 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
533
534 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
535 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
536
537 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
538
    }
539
540
    /**
541
     * American Polyconic.
542
     */
543 9
    public function americanPolyconic(
544
        Projected $to,
545
        Angle $latitudeOfNaturalOrigin,
546
        Angle $longitudeOfNaturalOrigin,
547
        Length $falseEasting,
548
        Length $falseNorthing
549
    ): ProjectedPoint {
550 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
551 9
        $latitude = $this->latitude->asRadians()->getValue();
552 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
553 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
554 9
        $e = $ellipsoid->getEccentricity();
555 9
        $e2 = $ellipsoid->getEccentricitySquared();
556 9
        $e4 = $e ** 4;
557 9
        $e6 = $e ** 6;
558
559 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
560 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
561
562 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
563
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
564
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
565
        } else {
566 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
567 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
568
569 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
570 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
571
        }
572
573 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
574
    }
575
576
    /**
577
     * Bonne.
578
     */
579 9
    public function bonne(
580
        Projected $to,
581
        Angle $latitudeOfNaturalOrigin,
582
        Angle $longitudeOfNaturalOrigin,
583
        Length $falseEasting,
584
        Length $falseNorthing
585
    ): ProjectedPoint {
586 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
587 9
        $latitude = $this->latitude->asRadians()->getValue();
588 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
589 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
590 9
        $e = $ellipsoid->getEccentricity();
591 9
        $e2 = $ellipsoid->getEccentricitySquared();
592 9
        $e4 = $e ** 4;
593 9
        $e6 = $e ** 6;
594
595 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
596 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
597
598 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
599 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
600
601 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
602 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
603
604 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
605 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
606
607 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
608
    }
609
610
    /**
611
     * Bonne South Orientated.
612
     */
613 9
    public function bonneSouthOrientated(
614
        Projected $to,
615
        Angle $latitudeOfNaturalOrigin,
616
        Angle $longitudeOfNaturalOrigin,
617
        Length $falseEasting,
618
        Length $falseNorthing
619
    ): ProjectedPoint {
620 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
621 9
        $latitude = $this->latitude->asRadians()->getValue();
622 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
623 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
624 9
        $e = $ellipsoid->getEccentricity();
625 9
        $e2 = $ellipsoid->getEccentricitySquared();
626 9
        $e4 = $e ** 4;
627 9
        $e6 = $e ** 6;
628
629 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
630 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
631
632 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
633 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
634
635 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
636 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
637
638 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
639 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
640
641 9
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
642
    }
643
644
    /**
645
     * Cassini-Soldner.
646
     */
647 9
    public function cassiniSoldner(
648
        Projected $to,
649
        Angle $latitudeOfNaturalOrigin,
650
        Angle $longitudeOfNaturalOrigin,
651
        Length $falseEasting,
652
        Length $falseNorthing
653
    ): ProjectedPoint {
654 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
655 9
        $latitude = $this->latitude->asRadians()->getValue();
656 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
657 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
658 9
        $e = $ellipsoid->getEccentricity();
659 9
        $e2 = $ellipsoid->getEccentricitySquared();
660 9
        $e4 = $e ** 4;
661 9
        $e6 = $e ** 6;
662
663 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
664 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
665
666 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
667 9
        $T = tan($latitude) ** 2;
668 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
669 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
670 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
671
672 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
673 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
674
675 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
676
    }
677
678
    /**
679
     * Hyperbolic Cassini-Soldner.
680
     */
681 18
    public function hyperbolicCassiniSoldner(
682
        Projected $to,
683
        Angle $latitudeOfNaturalOrigin,
684
        Angle $longitudeOfNaturalOrigin,
685
        Length $falseEasting,
686
        Length $falseNorthing
687
    ): ProjectedPoint {
688 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
689 18
        $latitude = $this->latitude->asRadians()->getValue();
690 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
691 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
692 18
        $e = $ellipsoid->getEccentricity();
693 18
        $e2 = $ellipsoid->getEccentricitySquared();
694 18
        $e4 = $e ** 4;
695 18
        $e6 = $e ** 6;
696
697 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
698 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
699
700 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
701 18
        $T = tan($latitude) ** 2;
702 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
703 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
704 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
705 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
706
707 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
708 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
709
710 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
711
    }
712
713
    /**
714
     * Colombia Urban.
715
     */
716 9
    public function columbiaUrban(
717
        Projected $to,
718
        Angle $latitudeOfNaturalOrigin,
719
        Angle $longitudeOfNaturalOrigin,
720
        Length $falseEasting,
721
        Length $falseNorthing,
722
        Length $projectionPlaneOriginHeight
723
    ): ProjectedPoint {
724 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
725 9
        $latitude = $this->latitude->asRadians()->getValue();
726 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
727 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
728 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
729 9
        $e2 = $ellipsoid->getEccentricitySquared();
730
731 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
732 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
733
734 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
735 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
736
737 9
        $A = 1 + $heightOrigin / $nuOrigin;
738 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
739 9
        $G = 1 + $heightOrigin / $rhoMid;
740
741 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
742 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
743
744 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
745
    }
746
747
    /**
748
     * Equal Earth.
749
     */
750 9
    public function equalEarth(
751
        Projected $to,
752
        Angle $longitudeOfNaturalOrigin,
753
        Length $falseEasting,
754
        Length $falseNorthing
755
    ): ProjectedPoint {
756 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
757 9
        $latitude = $this->latitude->asRadians()->getValue();
758 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
759 9
        $e = $ellipsoid->getEccentricity();
760 9
        $e2 = $ellipsoid->getEccentricitySquared();
761
762 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
763 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
764 9
        $beta = self::asin($q / $qP);
765 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
766 9
        $Rq = $a * sqrt($qP / 2);
767
768 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
769 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
770
771 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
772
    }
773
774
    /**
775
     * Equidistant Cylindrical
776
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
777
     */
778 9
    public function equidistantCylindrical(
779
        Projected $to,
780
        Angle $latitudeOf1stStandardParallel,
781
        Angle $longitudeOfNaturalOrigin,
782
        Length $falseEasting,
783
        Length $falseNorthing
784
    ): ProjectedPoint {
785 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
786 9
        $latitude = $this->latitude->asRadians()->getValue();
787 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
788 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
789 9
        $e = $ellipsoid->getEccentricity();
790 9
        $e2 = $ellipsoid->getEccentricitySquared();
791 9
        $e4 = $e ** 4;
792 9
        $e6 = $e ** 6;
793 9
        $e8 = $e ** 8;
794 9
        $e10 = $e ** 10;
795 9
        $e12 = $e ** 12;
796 9
        $e14 = $e ** 14;
797
798 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
799
800 9
        $M = $a * (
801 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
802 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
803 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
804 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
805 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
806 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
807 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
808 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
809
        );
810
811 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
812 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
813
814 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
815
    }
816
817
    /**
818
     * Guam Projection
819
     * Simplified form of Oblique Azimuthal Equidistant projection method.
820
     */
821 9
    public function guamProjection(
822
        Projected $to,
823
        Angle $latitudeOfNaturalOrigin,
824
        Angle $longitudeOfNaturalOrigin,
825
        Length $falseEasting,
826
        Length $falseNorthing
827
    ): ProjectedPoint {
828 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
829 9
        $latitude = $this->latitude->asRadians()->getValue();
830 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
831 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
832 9
        $e = $ellipsoid->getEccentricity();
833 9
        $e2 = $ellipsoid->getEccentricitySquared();
834 9
        $e4 = $e ** 4;
835 9
        $e6 = $e ** 6;
836
837 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
838 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
839 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
840
841 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
842 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
843
844 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
845
    }
846
847
    /**
848
     * Krovak.
849
     */
850 36
    public function krovak(
851
        Projected $to,
852
        Angle $latitudeOfProjectionCentre,
853
        Angle $longitudeOfOrigin,
854
        Angle $coLatitudeOfConeAxis,
855
        Angle $latitudeOfPseudoStandardParallel,
856
        Scale $scaleFactorOnPseudoStandardParallel,
857
        Length $falseEasting,
858
        Length $falseNorthing
859
    ): ProjectedPoint {
860 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
861 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
862 36
        $latitude = $this->latitude->asRadians()->getValue();
863 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
864 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
865 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
866 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
867 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
868 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
869 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
870 36
        $e = $ellipsoid->getEccentricity();
871 36
        $e2 = $ellipsoid->getEccentricitySquared();
872
873 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
874 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
875 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
876 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
877 36
        $n = sin($latitudeP);
878 36
        $rO = $kP * $A / tan($latitudeP);
879
880 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
881 36
        $V = $B * ($longitudeO - $longitude);
882 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
883 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
884 36
        $theta = $n * $D;
885 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
886 36
        $X = $r * cos($theta);
887 36
        $Y = $r * sin($theta);
888
889 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
890 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
891
892 36
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
893
    }
894
895
    /**
896
     * Krovak Modified
897
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
898
     * to be a map projection.
899
     */
900 18
    public function krovakModified(
901
        Projected $to,
902
        Angle $latitudeOfProjectionCentre,
903
        Angle $longitudeOfOrigin,
904
        Angle $coLatitudeOfConeAxis,
905
        Angle $latitudeOfPseudoStandardParallel,
906
        Scale $scaleFactorOnPseudoStandardParallel,
907
        Length $falseEasting,
908
        Length $falseNorthing,
909
        Length $ordinate1OfEvaluationPoint,
910
        Length $ordinate2OfEvaluationPoint,
911
        Coefficient $C1,
912
        Coefficient $C2,
913
        Coefficient $C3,
914
        Coefficient $C4,
915
        Coefficient $C5,
916
        Coefficient $C6,
917
        Coefficient $C7,
918
        Coefficient $C8,
919
        Coefficient $C9,
920
        Coefficient $C10
921
    ): ProjectedPoint {
922 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
923
924 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
925 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
926 18
        $c1 = $C1->asUnity()->getValue();
927 18
        $c2 = $C2->asUnity()->getValue();
928 18
        $c3 = $C3->asUnity()->getValue();
929 18
        $c4 = $C4->asUnity()->getValue();
930 18
        $c5 = $C5->asUnity()->getValue();
931 18
        $c6 = $C6->asUnity()->getValue();
932 18
        $c7 = $C7->asUnity()->getValue();
933 18
        $c8 = $C8->asUnity()->getValue();
934 18
        $c9 = $C9->asUnity()->getValue();
935 18
        $c10 = $C10->asUnity()->getValue();
936
937 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
938 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
939
940 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
941 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
942
943 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
944 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
945
946 18
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
947
    }
948
949
    /**
950
     * Lambert Azimuthal Equal Area
951
     * This is the ellipsoidal form of the projection.
952
     */
953 9
    public function lambertAzimuthalEqualArea(
954
        Projected $to,
955
        Angle $latitudeOfNaturalOrigin,
956
        Angle $longitudeOfNaturalOrigin,
957
        Length $falseEasting,
958
        Length $falseNorthing
959
    ): ProjectedPoint {
960 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
961 9
        $latitude = $this->latitude->asRadians()->getValue();
962 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
963 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
964 9
        $e = $ellipsoid->getEccentricity();
965 9
        $e2 = $ellipsoid->getEccentricitySquared();
966
967 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
968 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
969 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
970 9
        $beta = self::asin($q / $qP);
971 9
        $betaO = self::asin($qO / $qP);
972 9
        $Rq = $a * sqrt($qP / 2);
973 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
974 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
975
976 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
977 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
978
979 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
980
    }
981
982
    /**
983
     * Lambert Azimuthal Equal Area (Spherical)
984
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
985
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
986
     * methods.
987
     */
988 9
    public function lambertAzimuthalEqualAreaSpherical(
989
        Projected $to,
990
        Angle $latitudeOfNaturalOrigin,
991
        Angle $longitudeOfNaturalOrigin,
992
        Length $falseEasting,
993
        Length $falseNorthing
994
    ): ProjectedPoint {
995 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
996 9
        $latitude = $this->latitude->asRadians()->getValue();
997 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
998 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
999
1000 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1001
1002 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1003 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1004
1005 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1006
    }
1007
1008
    /**
1009
     * Lambert Conic Conformal (1SP).
1010
     */
1011 9
    public function lambertConicConformal1SP(
1012
        Projected $to,
1013
        Angle $latitudeOfNaturalOrigin,
1014
        Angle $longitudeOfNaturalOrigin,
1015
        Scale $scaleFactorAtNaturalOrigin,
1016
        Length $falseEasting,
1017
        Length $falseNorthing
1018
    ): ProjectedPoint {
1019 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1020 9
        $latitude = $this->latitude->asRadians()->getValue();
1021 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1022 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1023 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1024 9
        $e = $ellipsoid->getEccentricity();
1025 9
        $e2 = $ellipsoid->getEccentricitySquared();
1026
1027 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1028 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1029 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1030 9
        $n = sin($latitudeOrigin);
1031 9
        $F = $mO / ($n * $tO ** $n);
1032 9
        $rO = $a * $F * $tO ** $n * $kO;
1033 9
        $r = $a * $F * $t ** $n * $kO;
1034 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1035
1036 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1037 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1038
1039 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1040
    }
1041
1042
    /**
1043
     * Lambert Conic Conformal (1SP) Variant B.
1044
     */
1045
    public function lambertConicConformal1SPVariantB(
1046
        Projected $to,
1047
        Angle $latitudeOfNaturalOrigin,
1048
        Scale $scaleFactorAtNaturalOrigin,
1049
        Angle $latitudeOfFalseOrigin,
1050
        Angle $longitudeOfFalseOrigin,
1051
        Length $eastingAtFalseOrigin,
1052
        Length $northingAtFalseOrigin
1053
    ): ProjectedPoint {
1054
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1055
        $latitude = $this->latitude->asRadians()->getValue();
1056
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1057
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1058
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1059
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1060
        $e = $ellipsoid->getEccentricity();
1061
        $e2 = $ellipsoid->getEccentricitySquared();
1062
1063
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1064
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1065
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1066
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1067
        $n = sin($latitudeNaturalOrigin);
1068
        $F = $mO / ($n * $tO ** $n);
1069
        $rF = $a * $F * $tF ** $n * $kO;
1070
        $r = $a * $F * $t ** $n * $kO;
1071
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1072
1073
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1074
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1075
1076
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1077
    }
1078
1079
    /**
1080
     * Lambert Conic Conformal (2SP Belgium)
1081
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1082
     * with appropriately modified parameter values.
1083
     */
1084 9
    public function lambertConicConformal2SPBelgium(
1085
        Projected $to,
1086
        Angle $latitudeOfFalseOrigin,
1087
        Angle $longitudeOfFalseOrigin,
1088
        Angle $latitudeOf1stStandardParallel,
1089
        Angle $latitudeOf2ndStandardParallel,
1090
        Length $eastingAtFalseOrigin,
1091
        Length $northingAtFalseOrigin
1092
    ): ProjectedPoint {
1093 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1094 9
        $latitude = $this->latitude->asRadians()->getValue();
1095 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1096 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1097 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1098 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1099 9
        $e = $ellipsoid->getEccentricity();
1100 9
        $e2 = $ellipsoid->getEccentricitySquared();
1101
1102 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1103 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1104 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1105 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1106 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1107 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1108 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1109 9
        $F = $m1 / ($n * $t1 ** $n);
1110 9
        $r = $a * $F * $t ** $n;
1111 9
        $rF = $a * $F * $tF ** $n;
1112 9
        if (is_nan($rF)) {
1113 9
            $rF = 0;
1114
        }
1115 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1116
1117 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1118 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1119
1120 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1121
    }
1122
1123
    /**
1124
     * Lambert Conic Conformal (2SP Michigan).
1125
     */
1126 9
    public function lambertConicConformal2SPMichigan(
1127
        Projected $to,
1128
        Angle $latitudeOfFalseOrigin,
1129
        Angle $longitudeOfFalseOrigin,
1130
        Angle $latitudeOf1stStandardParallel,
1131
        Angle $latitudeOf2ndStandardParallel,
1132
        Length $eastingAtFalseOrigin,
1133
        Length $northingAtFalseOrigin,
1134
        Scale $ellipsoidScalingFactor
1135
    ): ProjectedPoint {
1136 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1137 9
        $latitude = $this->latitude->asRadians()->getValue();
1138 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1139 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1140 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1141 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1142 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1143 9
        $e = $ellipsoid->getEccentricity();
1144 9
        $e2 = $ellipsoid->getEccentricitySquared();
1145
1146 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1147 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1148 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1149 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1150 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1151 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1152 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1153 9
        $F = $m1 / ($n * $t1 ** $n);
1154 9
        $r = $a * $K * $F * $t ** $n;
1155 9
        $rF = $a * $K * $F * $tF ** $n;
1156 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1157
1158 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1159 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1160
1161 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1162
    }
1163
1164
    /**
1165
     * Lambert Conic Conformal (2SP).
1166
     */
1167 10
    public function lambertConicConformal2SP(
1168
        Projected $to,
1169
        Angle $latitudeOfFalseOrigin,
1170
        Angle $longitudeOfFalseOrigin,
1171
        Angle $latitudeOf1stStandardParallel,
1172
        Angle $latitudeOf2ndStandardParallel,
1173
        Length $eastingAtFalseOrigin,
1174
        Length $northingAtFalseOrigin
1175
    ): ProjectedPoint {
1176 10
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1177 10
        $latitude = $this->latitude->asRadians()->getValue();
1178 10
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1179 10
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1180 10
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1181 10
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1182 10
        $e = $ellipsoid->getEccentricity();
1183 10
        $e2 = $ellipsoid->getEccentricitySquared();
1184
1185 10
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1186 10
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1187 10
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1188 10
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1189 10
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1190 10
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1191 10
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1192 10
        $F = $m1 / ($n * $t1 ** $n);
1193 10
        $r = $a * $F * $t ** $n;
1194 10
        $rF = $a * $F * $tF ** $n;
1195 10
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1196
1197 10
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1198 10
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1199
1200 10
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1201
    }
1202
1203
    /**
1204
     * Lambert Conic Conformal (West Orientated).
1205
     */
1206
    public function lambertConicConformalWestOrientated(
1207
        Projected $to,
1208
        Angle $latitudeOfNaturalOrigin,
1209
        Angle $longitudeOfNaturalOrigin,
1210
        Scale $scaleFactorAtNaturalOrigin,
1211
        Length $falseEasting,
1212
        Length $falseNorthing
1213
    ): ProjectedPoint {
1214
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1215
        $latitude = $this->latitude->asRadians()->getValue();
1216
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1217
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1218
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1219
        $e = $ellipsoid->getEccentricity();
1220
        $e2 = $ellipsoid->getEccentricitySquared();
1221
1222
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1223
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1224
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1225
        $n = sin($latitudeOrigin);
1226
        $F = $mO / ($n * $tO ** $n);
1227
        $rO = $a * $F * $tO ** $n ** $kO;
1228
        $r = $a * $F * $t ** $n ** $kO;
1229
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1230
1231
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1232
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1233
1234
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1235
    }
1236
1237
    /**
1238
     * Lambert Conic Near-Conformal
1239
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1240
     * series expansion of the projection formulae.
1241
     */
1242 9
    public function lambertConicNearConformal(
1243
        Projected $to,
1244
        Angle $latitudeOfNaturalOrigin,
1245
        Angle $longitudeOfNaturalOrigin,
1246
        Scale $scaleFactorAtNaturalOrigin,
1247
        Length $falseEasting,
1248
        Length $falseNorthing
1249
    ): ProjectedPoint {
1250 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1251 9
        $latitude = $this->latitude->asRadians()->getValue();
1252 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1253 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1254 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1255 9
        $e2 = $ellipsoid->getEccentricitySquared();
1256 9
        $f = $ellipsoid->getFlattening();
1257
1258 9
        $n = $f / (2 - $f);
1259 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1260 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1261 9
        $A = 1 / (6 * $rhoO * $nuO);
1262 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1263 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1264 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1265 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1266 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1267 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1268 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1269 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1270 9
        $m = $s - $sO;
1271 9
        $M = $kO * ($m + $A * $m ** 3);
1272 9
        $r = $rO - $M;
1273 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1274
1275 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1276 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1277
1278 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1279
    }
1280
1281
    /**
1282
     * Lambert Cylindrical Equal Area
1283
     * This is the ellipsoidal form of the projection.
1284
     */
1285 9
    public function lambertCylindricalEqualArea(
1286
        Projected $to,
1287
        Angle $latitudeOf1stStandardParallel,
1288
        Angle $longitudeOfNaturalOrigin,
1289
        Length $falseEasting,
1290
        Length $falseNorthing
1291
    ): ProjectedPoint {
1292 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1293 9
        $latitude = $this->latitude->asRadians()->getValue();
1294 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1295 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1296 9
        $e = $ellipsoid->getEccentricity();
1297 9
        $e2 = $ellipsoid->getEccentricitySquared();
1298
1299 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1300 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1301
1302 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1303 9
        $y = $a * $q / (2 * $k);
1304
1305 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1306 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1307
1308 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1309
    }
1310
1311
    /**
1312
     * Modified Azimuthal Equidistant
1313
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1314
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1315
     */
1316 9
    public function modifiedAzimuthalEquidistant(
1317
        Projected $to,
1318
        Angle $latitudeOfNaturalOrigin,
1319
        Angle $longitudeOfNaturalOrigin,
1320
        Length $falseEasting,
1321
        Length $falseNorthing
1322
    ): ProjectedPoint {
1323 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1324 9
        $latitude = $this->latitude->asRadians()->getValue();
1325 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1326 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1327 9
        $e = $ellipsoid->getEccentricity();
1328 9
        $e2 = $ellipsoid->getEccentricitySquared();
1329
1330 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1331 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1332 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1333 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1334 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1335 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1336
1337 9
        if (sin($alpha) === 0.0) {
1338
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1339
        } else {
1340 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1341
        }
1342
1343 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1344
1345 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1346 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1347
1348 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1349
    }
1350
1351
    /**
1352
     * Oblique Stereographic
1353
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1354
     * Projections - A Working Manual" by John P. Snyder.
1355
     */
1356 9
    public function obliqueStereographic(
1357
        Projected $to,
1358
        Angle $latitudeOfNaturalOrigin,
1359
        Angle $longitudeOfNaturalOrigin,
1360
        Scale $scaleFactorAtNaturalOrigin,
1361
        Length $falseEasting,
1362
        Length $falseNorthing
1363
    ): ProjectedPoint {
1364 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1365 9
        $latitude = $this->latitude->asRadians()->getValue();
1366 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1367 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1368 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1369 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1370 9
        $e = $ellipsoid->getEccentricity();
1371 9
        $e2 = $ellipsoid->getEccentricitySquared();
1372
1373 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1374 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1375 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1376
1377 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1378 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1379 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1380 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1381 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1382 9
        $w2 = $c * $w1;
1383 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1384
1385 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1386
1387 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1388 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1389 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1390 9
        $chi = self::asin(($w - 1) / ($w + 1));
1391
1392 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1393
1394 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1395 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1396
1397 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1398
    }
1399
1400
    /**
1401
     * Polar Stereographic (variant A)
1402
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1403
     */
1404 9
    public function polarStereographicVariantA(
1405
        Projected $to,
1406
        Angle $latitudeOfNaturalOrigin,
1407
        Angle $longitudeOfNaturalOrigin,
1408
        Scale $scaleFactorAtNaturalOrigin,
1409
        Length $falseEasting,
1410
        Length $falseNorthing
1411
    ): ProjectedPoint {
1412 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1413 9
        $latitude = $this->latitude->asRadians()->getValue();
1414 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1415 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1416 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1417 9
        $e = $ellipsoid->getEccentricity();
1418
1419 9
        if ($latitudeOrigin < 0) {
1420
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1421
        } else {
1422 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1423
        }
1424 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1425
1426 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1427 9
        $dE = $rho * sin($theta);
1428 9
        $dN = $rho * cos($theta);
1429
1430 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1431 9
        if ($latitudeOrigin < 0) {
1432
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1433
        } else {
1434 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1435
        }
1436
1437 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1438
    }
1439
1440
    /**
1441
     * Polar Stereographic (variant B).
1442
     */
1443 9
    public function polarStereographicVariantB(
1444
        Projected $to,
1445
        Angle $latitudeOfStandardParallel,
1446
        Angle $longitudeOfOrigin,
1447
        Length $falseEasting,
1448
        Length $falseNorthing
1449
    ): ProjectedPoint {
1450 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1451 9
        $latitude = $this->latitude->asRadians()->getValue();
1452 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1453 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1454 9
        $e = $ellipsoid->getEccentricity();
1455 9
        $e2 = $ellipsoid->getEccentricitySquared();
1456
1457 9
        if ($firstStandardParallel < 0) {
1458 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1459 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1460
        } else {
1461
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1462
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1463
        }
1464 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1465 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1466
1467 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1468
1469 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1470 9
        $dE = $rho * sin($theta);
1471 9
        $dN = $rho * cos($theta);
1472
1473 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1474 9
        if ($firstStandardParallel < 0) {
1475 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1476
        } else {
1477
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1478
        }
1479
1480 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1481
    }
1482
1483
    /**
1484
     * Polar Stereographic (variant C).
1485
     */
1486 9
    public function polarStereographicVariantC(
1487
        Projected $to,
1488
        Angle $latitudeOfStandardParallel,
1489
        Angle $longitudeOfOrigin,
1490
        Length $eastingAtFalseOrigin,
1491
        Length $northingAtFalseOrigin
1492
    ): ProjectedPoint {
1493 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1494 9
        $latitude = $this->latitude->asRadians()->getValue();
1495 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1496 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1497 9
        $e = $ellipsoid->getEccentricity();
1498 9
        $e2 = $ellipsoid->getEccentricitySquared();
1499
1500 9
        if ($firstStandardParallel < 0) {
1501 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1502 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1503
        } else {
1504
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1505
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1506
        }
1507 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1508
1509 9
        $rhoF = $a * $mF;
1510 9
        $rho = $rhoF * $t / $tF;
1511
1512 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1513 9
        $dE = $rho * sin($theta);
1514 9
        $dN = $rho * cos($theta);
1515
1516 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1517 9
        if ($firstStandardParallel < 0) {
1518 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1519
        } else {
1520
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1521
        }
1522
1523 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1524
    }
1525
1526
    /**
1527
     * Popular Visualisation Pseudo Mercator
1528
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1529
     */
1530 9
    public function popularVisualisationPseudoMercator(
1531
        Projected $to,
1532
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1532
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1533
        Angle $longitudeOfNaturalOrigin,
1534
        Length $falseEasting,
1535
        Length $falseNorthing
1536
    ): ProjectedPoint {
1537 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1538 9
        $latitude = $this->latitude->asRadians()->getValue();
1539 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1540
1541 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1542 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1543
1544 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1545
    }
1546
1547
    /**
1548
     * Mercator (variant A)
1549
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1550
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1551
     * completeness in CRS labelling.
1552
     */
1553 18
    public function mercatorVariantA(
1554
        Projected $to,
1555
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1555
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1556
        Angle $longitudeOfNaturalOrigin,
1557
        Scale $scaleFactorAtNaturalOrigin,
1558
        Length $falseEasting,
1559
        Length $falseNorthing
1560
    ): ProjectedPoint {
1561 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1562 18
        $latitude = $this->latitude->asRadians()->getValue();
1563 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1564
1565 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1566 18
        $e = $ellipsoid->getEccentricity();
1567
1568 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1569 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1570
1571 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1572
    }
1573
1574
    /**
1575
     * Mercator (variant B)
1576
     * Used for most nautical charts.
1577
     */
1578 9
    public function mercatorVariantB(
1579
        Projected $to,
1580
        Angle $latitudeOf1stStandardParallel,
1581
        Angle $longitudeOfNaturalOrigin,
1582
        Length $falseEasting,
1583
        Length $falseNorthing
1584
    ): ProjectedPoint {
1585 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1586 9
        $latitude = $this->latitude->asRadians()->getValue();
1587 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1588 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1589 9
        $e = $ellipsoid->getEccentricity();
1590 9
        $e2 = $ellipsoid->getEccentricitySquared();
1591
1592 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1593
1594 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1595 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1596
1597 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1598
    }
1599
1600
    /**
1601
     * Longitude rotation
1602
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1603
     * value to the longitude value of the point in the source system.
1604
     */
1605 27
    public function longitudeRotation(
1606
        Geographic2D|Geographic3D $to,
1607
        Angle $longitudeOffset
1608
    ): self {
1609 27
        $newLongitude = $this->longitude->add($longitudeOffset);
1610
1611 27
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1612
    }
1613
1614
    /**
1615
     * Hotine Oblique Mercator (variant A).
1616
     */
1617 9
    public function obliqueMercatorHotineVariantA(
1618
        Projected $to,
1619
        Angle $latitudeOfProjectionCentre,
1620
        Angle $longitudeOfProjectionCentre,
1621
        Angle $azimuthOfInitialLine,
1622
        Angle $angleFromRectifiedToSkewGrid,
1623
        Scale $scaleFactorOnInitialLine,
1624
        Length $falseEasting,
1625
        Length $falseNorthing
1626
    ): ProjectedPoint {
1627 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1628 9
        $latitude = $this->latitude->asRadians()->getValue();
1629 9
        $longitude = $this->longitude->asRadians()->getValue();
1630 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1631 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1632 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1633 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1634 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1635 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1636 9
        $e = $ellipsoid->getEccentricity();
1637 9
        $e2 = $ellipsoid->getEccentricitySquared();
1638
1639 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1640 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1641 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1642 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1643 9
        $DD = max(1, $D ** 2);
1644 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1645 9
        $H = $F * ($tO) ** $B;
1646 9
        $G = ($F - 1 / $F) / 2;
1647 9
        $gammaO = self::asin(sin($alphaC) / $D);
1648 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1649
1650 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1651 9
        $Q = $H / $t ** $B;
1652 9
        $S = ($Q - 1 / $Q) / 2;
1653 9
        $T = ($Q + 1 / $Q) / 2;
1654 9
        $V = sin($B * ($longitude - $lonO));
1655 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1656 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1657 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1658
1659 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1660 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1661
1662 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1663
    }
1664
1665
    /**
1666
     * Hotine Oblique Mercator (variant B).
1667
     */
1668 9
    public function obliqueMercatorHotineVariantB(
1669
        Projected $to,
1670
        Angle $latitudeOfProjectionCentre,
1671
        Angle $longitudeOfProjectionCentre,
1672
        Angle $azimuthOfInitialLine,
1673
        Angle $angleFromRectifiedToSkewGrid,
1674
        Scale $scaleFactorOnInitialLine,
1675
        Length $eastingAtProjectionCentre,
1676
        Length $northingAtProjectionCentre
1677
    ): ProjectedPoint {
1678 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1679 9
        $latitude = $this->latitude->asRadians()->getValue();
1680 9
        $longitude = $this->longitude->asRadians()->getValue();
1681 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1682 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1683 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1684 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1685 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1686 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1687 9
        $e = $ellipsoid->getEccentricity();
1688 9
        $e2 = $ellipsoid->getEccentricitySquared();
1689
1690 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1691 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1692 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1693 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1694 9
        $DD = max(1, $D ** 2);
1695 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1696 9
        $H = $F * ($tO) ** $B;
1697 9
        $G = ($F - 1 / $F) / 2;
1698 9
        $gammaO = self::asin(sin($alphaC) / $D);
1699 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1700 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1701 9
        if ($alphaC === M_PI / 2) {
1702
            $uC = $A * ($lonC - $lonO);
1703
        } else {
1704 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1705
        }
1706
1707 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1708 9
        $Q = $H / $t ** $B;
1709 9
        $S = ($Q - 1 / $Q) / 2;
1710 9
        $T = ($Q + 1 / $Q) / 2;
1711 9
        $V = sin($B * ($longitude - $lonO));
1712 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1713 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1714
1715 9
        if ($alphaC === M_PI / 2) {
1716
            if ($longitude === $lonC) {
1717
                $u = 0;
1718
            } else {
1719
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1720
            }
1721
        } else {
1722 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1723
        }
1724
1725 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1726 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1727
1728 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1729
    }
1730
1731
    /**
1732
     * Laborde Oblique Mercator.
1733
     */
1734 9
    public function obliqueMercatorLaborde(
1735
        Projected $to,
1736
        Angle $latitudeOfProjectionCentre,
1737
        Angle $longitudeOfProjectionCentre,
1738
        Angle $azimuthOfInitialLine,
1739
        Scale $scaleFactorOnInitialLine,
1740
        Length $falseEasting,
1741
        Length $falseNorthing
1742
    ): ProjectedPoint {
1743 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1744 9
        $latitude = $this->latitude->asRadians()->getValue();
1745 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1746 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1747 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1748 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1749 9
        $e = $ellipsoid->getEccentricity();
1750 9
        $e2 = $ellipsoid->getEccentricitySquared();
1751
1752 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1753 9
        $latS = self::asin(sin($latC) / $B);
1754 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1755 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1756
1757 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1758 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1759 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1760 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1761 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1762 9
        $W = cos($P) * sin($L);
1763 9
        $d = hypot($U, $V);
1764 9
        if ($d === 0.0) {
1765
            $LPrime = 0;
1766
            $PPrime = static::sign($W) * M_PI / 2;
1767
        } else {
1768 9
            $LPrime = 2 * atan($V / ($U + $d));
1769 9
            $PPrime = atan($W / $d);
1770
        }
1771 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1772 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1773
1774 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1775 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1776
1777 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1778
    }
1779
1780
    /**
1781
     * Transverse Mercator.
1782
     */
1783 122
    public function transverseMercator(
1784
        Projected $to,
1785
        Angle $latitudeOfNaturalOrigin,
1786
        Angle $longitudeOfNaturalOrigin,
1787
        Scale $scaleFactorAtNaturalOrigin,
1788
        Length $falseEasting,
1789
        Length $falseNorthing
1790
    ): ProjectedPoint {
1791 122
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1792 122
        $latitude = $this->latitude->asRadians()->getValue();
1793 122
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1794 122
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1795 122
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1796 122
        $e = $ellipsoid->getEccentricity();
1797 122
        $f = $ellipsoid->getFlattening();
1798
1799 122
        $n = $f / (2 - $f);
1800 122
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1801
1802 122
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1803 122
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1804 122
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1805 122
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1806 122
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1807 122
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1808 122
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1809 122
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1810
1811 122
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1812 81
            $mO = 0;
1813 41
        } elseif ($latitudeOrigin === M_PI / 2) {
1814
            $mO = $B * M_PI / 2;
1815 41
        } elseif ($latitudeOrigin === -M_PI / 2) {
1816
            $mO = $B * -M_PI / 2;
1817
        } else {
1818 41
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1819 41
            $betaO = atan(sinh($qO));
1820 41
            $xiO0 = self::asin(sin($betaO));
1821 41
            $xiO1 = $h1 * sin(2 * $xiO0);
1822 41
            $xiO2 = $h2 * sin(4 * $xiO0);
1823 41
            $xiO3 = $h3 * sin(6 * $xiO0);
1824 41
            $xiO4 = $h4 * sin(8 * $xiO0);
1825 41
            $xiO5 = $h5 * sin(10 * $xiO0);
1826 41
            $xiO6 = $h6 * sin(12 * $xiO0);
1827 41
            $xiO7 = $h7 * sin(14 * $xiO0);
1828 41
            $xiO8 = $h8 * sin(16 * $xiO0);
1829 41
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1830 41
            $mO = $B * $xiO;
1831
        }
1832
1833 122
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1834 122
        $beta = atan(sinh($Q));
1835 122
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1836 122
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1837 122
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1838 122
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1839 122
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1840 122
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1841 122
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1842 122
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1843 122
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1844 122
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1845 122
        $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0);
1846 122
        $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0);
1847 122
        $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0);
1848 122
        $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0);
1849 122
        $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0);
1850 122
        $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0);
1851 122
        $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0);
1852 122
        $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0);
1853 122
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7+ $xi8;
1854 122
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7+ $eta8;
1855
1856 122
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1857 122
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1858
1859 122
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1860
1861 122
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1862
    }
1863
1864
    /**
1865
     * Transverse Mercator Zoned Grid System
1866
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1867
     * each zone.
1868
     */
1869 36
    public function transverseMercatorZonedGrid(
1870
        Projected $to,
1871
        Angle $latitudeOfNaturalOrigin,
1872
        Angle $initialLongitude,
1873
        Angle $zoneWidth,
1874
        Scale $scaleFactorAtNaturalOrigin,
1875
        Length $falseEasting,
1876
        Length $falseNorthing
1877
    ): ProjectedPoint {
1878 36
        $W = $zoneWidth->asDegrees()->getValue();
1879 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1880
1881 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1882 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1883
1884 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1885
    }
1886
1887
    /**
1888
     * New Zealand Map Grid.
1889
     */
1890 27
    public function newZealandMapGrid(
1891
        Projected $to,
1892
        Angle $latitudeOfNaturalOrigin,
1893
        Angle $longitudeOfNaturalOrigin,
1894
        Length $falseEasting,
1895
        Length $falseNorthing
1896
    ): ProjectedPoint {
1897 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1898 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1899
1900 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1901 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1902
1903 27
        $deltaPsi = 0;
1904 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1905 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1906 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1907 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1908 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1909 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1910 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1911 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1912 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1913 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1914
1915 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1916
1917 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1918 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1919 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1920 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1921 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1922 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1923 27
        $z = new ComplexNumber(0, 0);
1924 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1925 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1926 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1927 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1928 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1929 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1930
1931 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1932 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1933
1934 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1935
    }
1936
1937
    /**
1938
     * Madrid to ED50 polynomial.
1939
     */
1940 9
    public function madridToED50Polynomial(
1941
        Geographic2D $to,
1942
        Scale $A0,
1943
        Scale $A1,
1944
        Scale $A2,
1945
        Scale $A3,
1946
        Angle $B00,
1947
        Scale $B0,
1948
        Scale $B1,
1949
        Scale $B2,
1950
        Scale $B3
1951
    ): self {
1952 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1953 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1954
1955 9
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1956
    }
1957
1958
    /**
1959
     * Geographic3D to 2D conversion.
1960
     */
1961 29
    public function threeDToTwoD(
1962
        Geographic2D|Geographic3D $to
1963
    ): self {
1964 29
        if ($to instanceof Geographic2D) {
1965 29
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1966
        }
1967
1968
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1969
    }
1970
1971
    /**
1972
     * Geographic2D offsets.
1973
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1974
     * coordinate values of the point in the source system.
1975
     */
1976 9
    public function geographic2DOffsets(
1977
        Geographic2D|Geographic3D $to,
1978
        Angle $latitudeOffset,
1979
        Angle $longitudeOffset
1980
    ): self {
1981 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1982 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1983
1984 9
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
1985
    }
1986
1987
    /*
1988
     * Geographic2D with Height Offsets.
1989
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1990
     * coordinate values of the point in the source system.
1991
     */
1992
    public function geographic2DWithHeightOffsets(
1993
        Compound $to,
1994
        Angle $latitudeOffset,
1995
        Angle $longitudeOffset,
1996
        Length $geoidUndulation
1997
    ): CompoundPoint {
1998
        $toLatitude = $this->latitude->add($latitudeOffset);
1999
        $toLongitude = $this->longitude->add($longitudeOffset);
2000
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2000
        /** @scrutinizer ignore-call */ 
2001
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
2001
2002
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2002
        $horizontal = static::create(/** @scrutinizer ignore-type */ $to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
Loading history...
2003
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2003
        $vertical = VerticalPoint::create($to->getVertical(), /** @scrutinizer ignore-type */ $toHeight, $this->epoch);
Loading history...
2004
2005
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
2006
    }
2007
2008
    /**
2009
     * General polynomial.
2010
     * @param Coefficient[] $powerCoefficients
2011
     */
2012 18
    public function generalPolynomial(
2013
        Geographic2D|Geographic3D $to,
2014
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2015
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2016
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2017
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2018
        Scale $scalingFactorForSourceCRSCoordDifferences,
2019
        Scale $scalingFactorForTargetCRSCoordDifferences,
2020
        Scale $A0,
2021
        Scale $B0,
2022
        array $powerCoefficients
2023
    ): self {
2024 18
        $xs = $this->latitude->getValue();
2025 18
        $ys = $this->longitude->getValue();
2026
2027 18
        $t = $this->generalPolynomialUnitless(
2028
            $xs,
2029
            $ys,
2030
            $ordinate1OfEvaluationPointInSourceCRS,
2031
            $ordinate2OfEvaluationPointInSourceCRS,
2032
            $ordinate1OfEvaluationPointInTargetCRS,
2033
            $ordinate2OfEvaluationPointInTargetCRS,
2034
            $scalingFactorForSourceCRSCoordDifferences,
2035
            $scalingFactorForTargetCRSCoordDifferences,
2036
            $A0,
2037
            $B0,
2038
            $powerCoefficients
2039
        );
2040
2041 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2042 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2043
2044 18
        return static::create(
2045
            $to,
2046 18
            Angle::makeUnit($t['xt'], $xtUnit),
2047 18
            Angle::makeUnit($t['yt'], $ytUnit),
2048 18
            $this->height,
2049 18
            $this->epoch
2050
        );
2051
    }
2052
2053
    /**
2054
     * Reversible polynomial.
2055
     * @param Coefficient[] $powerCoefficients
2056
     */
2057 36
    public function reversiblePolynomial(
2058
        Geographic2D|Geographic3D $to,
2059
        Angle $ordinate1OfEvaluationPoint,
2060
        Angle $ordinate2OfEvaluationPoint,
2061
        Scale $scalingFactorForCoordDifferences,
2062
        Scale $A0,
2063
        Scale $B0,
2064
        $powerCoefficients
2065
    ): self {
2066 36
        $xs = $this->latitude->getValue();
2067 36
        $ys = $this->longitude->getValue();
2068
2069 36
        $t = $this->reversiblePolynomialUnitless(
2070
            $xs,
2071
            $ys,
2072
            $ordinate1OfEvaluationPoint,
2073
            $ordinate2OfEvaluationPoint,
2074
            $scalingFactorForCoordDifferences,
2075
            $A0,
2076
            $B0,
2077
            $powerCoefficients
2078
        );
2079
2080 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2081 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2082
2083 36
        return static::create(
2084
            $to,
2085 36
            Angle::makeUnit($t['xt'], $xtUnit),
2086 36
            Angle::makeUnit($t['yt'], $ytUnit),
2087 36
            $this->height,
2088 36
            $this->epoch
2089
        );
2090
    }
2091
2092
    /**
2093
     * Axis Order Reversal.
2094
     */
2095
    public function axisReversal(
2096
        Geographic2D|Geographic3D $to
2097
    ): self {
2098
        // axes are read in from the CRS, this is a book-keeping adjustment only
2099
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2100
    }
2101
2102
    /**
2103
     * Ordnance Survey National Transformation
2104
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2105
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2106
     */
2107 3
    public function OSTN15(
2108
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2108
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2109
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2110
    ): ProjectedPoint {
2111 3
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2112 3
        $etrs89NationalGrid = new Projected(
2113
            'ETRS89 / National Grid',
2114 3
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2115 3
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2116 3
            $osgb36NationalGrid->getBoundingArea()
2117
        );
2118
2119 3
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2120
2121 3
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2122
    }
2123
2124
    /**
2125
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2126
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2127
     * coordinate differences.
2128
     */
2129 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2130
        Compound $to,
2131
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2132
    ): CompoundPoint {
2133 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2134 1
        $etrs89NationalGrid = new Projected(
2135
            'ETRS89 / National Grid',
2136 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2137 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2138 1
            $osgb36NationalGrid->getBoundingArea()
2139
        );
2140
2141 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2142
2143 1
        $horizontalPoint = self::create(
2144 1
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2144
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2145 1
            $this->latitude,
2146 1
            $this->longitude,
2147
            null,
2148 1
            $this->getCoordinateEpoch()
2149
        );
2150
2151 1
        $verticalPoint = VerticalPoint::create(
2152 1
            $to->getVertical(),
2153 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2153
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2154 1
            $this->getCoordinateEpoch()
2155
        );
2156
2157 1
        return CompoundPoint::create(
2158
            $to,
2159
            $horizontalPoint,
2160
            $verticalPoint,
2161 1
            $this->getCoordinateEpoch()
2162
        );
2163
    }
2164
2165
    /**
2166
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2167
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2168
     * coordinate differences.
2169
     */
2170 1
    public function geographic3DToGravityHeightOSGM15(
2171
        Vertical $to,
2172
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2173
    ): VerticalPoint {
2174 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2175 1
        $etrs89NationalGrid = new Projected(
2176
            'ETRS89 / National Grid',
2177 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2178 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2179 1
            $osgb36NationalGrid->getBoundingArea()
2180
        );
2181
2182 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2183
2184 1
        return VerticalPoint::create(
2185
            $to,
2186 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2186
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2187 1
            $this->getCoordinateEpoch()
2188
        );
2189
    }
2190
2191
    /**
2192
     * Geog3D to Geog2D+GravityRelatedHeight.
2193
     */
2194 12
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2195
        Compound $to,
2196
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2197
    ): CompoundPoint {
2198 12
        $horizontalPoint = self::create(
2199 12
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2199
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2200 12
            $this->latitude,
2201 12
            $this->longitude,
2202
            null,
2203 12
            $this->getCoordinateEpoch()
2204
        );
2205
2206 12
        $verticalPoint = VerticalPoint::create(
2207 12
            $to->getVertical(),
2208 12
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2208
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2209 12
            $this->getCoordinateEpoch()
2210
        );
2211
2212 12
        return CompoundPoint::create(
2213
            $to,
2214
            $horizontalPoint,
2215
            $verticalPoint,
2216 12
            $this->getCoordinateEpoch()
2217
        );
2218
    }
2219
2220
    /**
2221
     * Geographic3D to GravityRelatedHeight.
2222
     */
2223 7
    public function geographic3DToGravityHeightFromGrid(
2224
        Vertical $to,
2225
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2226
    ): VerticalPoint {
2227 7
        return VerticalPoint::create(
2228
            $to,
2229 7
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2229
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2230 7
            $this->getCoordinateEpoch()
2231
        );
2232
    }
2233
2234
    /**
2235
     * NADCON5.
2236
     * @internal just a wrapper
2237
     */
2238 8
    public function offsetsFromGridNADCON5(
2239
        Geographic2D|Geographic3D $to,
2240
        NADCON5Grid $latitudeDifferenceFile,
2241
        NADCON5Grid $longitudeDifferenceFile,
2242
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2243
        bool $inReverse
2244
    ): self {
2245 8
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2246
2247 8
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2248
    }
2249
2250
    /**
2251
     * Geographic offsets from grid.
2252
     */
2253 19
    public function offsetsFromGrid(
2254
        Geographic2D|Geographic3D $to,
2255
        GeographicGrid $offsetsFile,
2256
        bool $inReverse
2257
    ): self {
2258 19
        if (!$inReverse) {
2259 13
            return $offsetsFile->applyForwardAdjustment($this, $to);
2260
        }
2261
2262 8
        return $offsetsFile->applyReverseAdjustment($this, $to);
2263
    }
2264
2265 355
    public function asGeographicValue(): GeographicValue
2266
    {
2267 355
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2268
    }
2269
2270 18
    public function asUTMPoint(): UTMPoint
2271
    {
2272 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2273
2274 18
        $initialLongitude = new Degree(-180);
2275 18
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2276
2277 18
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2278 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2279
        } else {
2280 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2281
        }
2282
2283 18
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2284
2285 18
        $projectedCRS = new Projected(
2286
            $srid,
2287 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2288 18
            $this->crs->getDatum(),
2289 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2290
        );
2291
2292 18
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2293
2294 18
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $this->crs can also be of type PHPCoord\CoordinateReferenceSystem\Geographic3D; however, parameter $crs of PHPCoord\UTMPoint::__construct() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic2D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2294
        return new UTMPoint(/** @scrutinizer ignore-type */ $this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getNorthing() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2294
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->/** @scrutinizer ignore-call */ getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getEasting() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2294
        return new UTMPoint($this->crs, $asProjected->/** @scrutinizer ignore-call */ getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
2295
    }
2296
}
2297