Passed
Push — 4.x ( 2e43a7...18aaa8 )
by Doug
06:37
created

GeographicPoint::lambertConicConformal2SPBelgium()   A

Complexity

Conditions 2
Paths 2

Size

Total Lines 37
Code Lines 24

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 25
CRAP Score 2

Importance

Changes 0
Metric Value
cc 2
eloc 24
c 0
b 0
f 0
nc 2
nop 7
dl 0
loc 37
ccs 25
cts 25
cp 1
crap 2
rs 9.536
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicValue;
34
use PHPCoord\CoordinateOperation\NADCON5Grid;
35
use PHPCoord\CoordinateOperation\NTv2Grid;
36
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
37
use PHPCoord\CoordinateReferenceSystem\Compound;
38
use PHPCoord\CoordinateReferenceSystem\Geocentric;
39
use PHPCoord\CoordinateReferenceSystem\Geographic;
40
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
41
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
42
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
43
use PHPCoord\CoordinateReferenceSystem\Vertical;
44
use PHPCoord\CoordinateSystem\Axis;
45
use PHPCoord\CoordinateSystem\Cartesian;
46
use PHPCoord\Datum\Datum;
47
use PHPCoord\Datum\Ellipsoid;
48
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
49
use PHPCoord\Exception\UnknownAxisException;
50
use PHPCoord\Geometry\BoundingArea;
51
use PHPCoord\UnitOfMeasure\Angle\Angle;
52
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
53
use PHPCoord\UnitOfMeasure\Angle\Degree;
54
use PHPCoord\UnitOfMeasure\Angle\Radian;
55
use PHPCoord\UnitOfMeasure\Length\Length;
56
use PHPCoord\UnitOfMeasure\Length\Metre;
57
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
58
use PHPCoord\UnitOfMeasure\Scale\Scale;
59
use PHPCoord\UnitOfMeasure\Scale\Unity;
60
use function sin;
61
use function sinh;
62
use function sprintf;
63
use function sqrt;
64
use function tan;
65
use TypeError;
66
67
/**
68
 * Coordinate representing a point on an ellipsoid.
69
 */
70
class GeographicPoint extends Point implements ConvertiblePoint
71
{
72
    use AutoConversion;
73
74
    /**
75
     * Latitude.
76
     */
77
    protected Angle $latitude;
78
79
    /**
80
     * Longitude.
81
     */
82
    protected Angle $longitude;
83
84
    /**
85
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
86
     */
87
    protected ?Length $height;
88
89
    /**
90
     * Coordinate reference system.
91
     */
92
    protected Geographic $crs;
93
94
    /**
95
     * Coordinate epoch (date for which the specified coordinates represented this point).
96
     */
97
    protected ?DateTimeImmutable $epoch;
98
99 1518
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
100
    {
101 1518
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
102
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
103
        }
104
105 1518
        if ($crs instanceof Geographic2D && $height !== null) {
106 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
107
        }
108
109 1509
        if ($crs instanceof Geographic3D && $height === null) {
110 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
111
        }
112
113 1500
        $this->crs = $crs;
114
115 1500
        $latitude = $this->normaliseLatitude($latitude);
116 1500
        $longitude = $this->normaliseLongitude($longitude);
117
118 1500
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
119 1500
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
120
121 1500
        if ($height) {
122 176
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
123
        } else {
124 1389
            $this->height = null;
125
        }
126
127 1500
        if ($epoch instanceof DateTime) {
128 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
129
        }
130 1500
        $this->epoch = $epoch;
131
    }
132
133
    /**
134
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
135
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
136
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
137
     */
138 1518
    public static function create(Angle $latitude, Angle $longitude, ?Length $height = null, Geographic $crs, ?DateTimeInterface $epoch = null): self
139
    {
140 1518
        return new static($latitude, $longitude, $height, $crs, $epoch);
141
    }
142
143 805
    public function getLatitude(): Angle
144
    {
145 805
        return $this->latitude;
146
    }
147
148 769
    public function getLongitude(): Angle
149
    {
150 769
        return $this->longitude;
151
    }
152
153 347
    public function getHeight(): ?Length
154
    {
155 347
        return $this->height;
156
    }
157
158 414
    public function getCRS(): Geographic
159
    {
160 414
        return $this->crs;
161
    }
162
163 42
    public function getCoordinateEpoch(): ?DateTimeImmutable
164
    {
165 42
        return $this->epoch;
166
    }
167
168 1500
    protected function normaliseLatitude(Angle $latitude): Angle
169
    {
170 1500
        if ($latitude->asDegrees()->getValue() > 90) {
171
            return new Degree(90);
172
        }
173 1500
        if ($latitude->asDegrees()->getValue() < -90) {
174
            return new Degree(-90);
175
        }
176
177 1500
        return $latitude;
178
    }
179
180 1500
    protected function normaliseLongitude(Angle $longitude): Angle
181
    {
182 1500
        while ($longitude->asDegrees()->getValue() > 180) {
183 9
            $longitude = $longitude->subtract(new Degree(360));
184
        }
185 1500
        while ($longitude->asDegrees()->getValue() <= -180) {
186
            $longitude = $longitude->add(new Degree(360));
187
        }
188
189 1500
        return $longitude;
190
    }
191
192
    /**
193
     * Calculate surface distance between two points.
194
     */
195 162
    public function calculateDistance(Point $to): Length
196
    {
197
        try {
198 162
            if ($to instanceof ConvertiblePoint) {
199 153
                $to = $to->convert($this->crs);
200
            }
201
        } finally {
202 162
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
203 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
204
            }
205
206
            /* @var GeographicPoint $to */
207 153
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
208
        }
209
    }
210
211 36
    public function __toString(): string
212
    {
213 36
        $values = [];
214 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
215 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
216 36
                $values[] = $this->latitude;
217 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
218 36
                $values[] = $this->longitude;
219 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
220 9
                $values[] = $this->height;
221
            } else {
222
                throw new UnknownAxisException(); // @codeCoverageIgnore
223
            }
224
        }
225
226 36
        return '(' . implode(', ', $values) . ')';
227
    }
228
229
    /**
230
     * Geographic/geocentric conversions
231
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
232
     * 9636 to form a geographic to geographic transformation.
233
     */
234 9
    public function geographicGeocentric(
235
        Geocentric $to
236
    ): GeocentricPoint {
237 9
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
238 9
        $asGeocentric = $geographicValue->asGeocentricValue();
239
240 9
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
241
    }
242
243
    /**
244
     * Coordinate Frame rotation (geog2D/geog3D domain)
245
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
246
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
247
     * between other CRS types.
248
     */
249 72
    public function coordinateFrameRotation(
250
        Geographic $to,
251
        Length $xAxisTranslation,
252
        Length $yAxisTranslation,
253
        Length $zAxisTranslation,
254
        Angle $xAxisRotation,
255
        Angle $yAxisRotation,
256
        Angle $zAxisRotation,
257
        Scale $scaleDifference
258
    ): self {
259 72
        return $this->coordinateFrameMolodenskyBadekas(
260 72
            $to,
261 72
            $xAxisTranslation,
262 72
            $yAxisTranslation,
263 72
            $zAxisTranslation,
264 72
            $xAxisRotation,
265 72
            $yAxisRotation,
266 72
            $zAxisRotation,
267 72
            $scaleDifference,
268 72
            new Metre(0),
269 72
            new Metre(0),
270 72
            new Metre(0)
271 72
        );
272
    }
273
274
    /**
275
     * Molodensky-Badekas (CF geog2D/geog3D domain)
276
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
277
     * opposite rotation convention in geographic 2D domain.
278
     */
279 90
    public function coordinateFrameMolodenskyBadekas(
280
        Geographic $to,
281
        Length $xAxisTranslation,
282
        Length $yAxisTranslation,
283
        Length $zAxisTranslation,
284
        Angle $xAxisRotation,
285
        Angle $yAxisRotation,
286
        Angle $zAxisRotation,
287
        Scale $scaleDifference,
288
        Length $ordinate1OfEvaluationPoint,
289
        Length $ordinate2OfEvaluationPoint,
290
        Length $ordinate3OfEvaluationPoint
291
    ): self {
292 90
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
293 90
        $asGeocentric = $geographicValue->asGeocentricValue();
294
295 90
        $xs = $asGeocentric->getX()->asMetres()->getValue();
296 90
        $ys = $asGeocentric->getY()->asMetres()->getValue();
297 90
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
298 90
        $tx = $xAxisTranslation->asMetres()->getValue();
299 90
        $ty = $yAxisTranslation->asMetres()->getValue();
300 90
        $tz = $zAxisTranslation->asMetres()->getValue();
301 90
        $rx = $xAxisRotation->asRadians()->getValue();
302 90
        $ry = $yAxisRotation->asRadians()->getValue();
303 90
        $rz = $zAxisRotation->asRadians()->getValue();
304 90
        $M = 1 + $scaleDifference->asUnity()->getValue();
305 90
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
306 90
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
307 90
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
308
309 90
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
310 90
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
311 90
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
312 90
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
313 90
        $newGeographic = $newGeocentric->asGeographicValue();
314
315 90
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
316
    }
317
318
    /**
319
     * Position Vector transformation (geog2D/geog3D domain)
320
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
321
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
322
     * operating between other CRS types.
323
     */
324 214
    public function positionVectorTransformation(
325
        Geographic $to,
326
        Length $xAxisTranslation,
327
        Length $yAxisTranslation,
328
        Length $zAxisTranslation,
329
        Angle $xAxisRotation,
330
        Angle $yAxisRotation,
331
        Angle $zAxisRotation,
332
        Scale $scaleDifference
333
    ): self {
334 214
        return $this->positionVectorMolodenskyBadekas(
335 214
            $to,
336 214
            $xAxisTranslation,
337 214
            $yAxisTranslation,
338 214
            $zAxisTranslation,
339 214
            $xAxisRotation,
340 214
            $yAxisRotation,
341 214
            $zAxisRotation,
342 214
            $scaleDifference,
343 214
            new Metre(0),
344 214
            new Metre(0),
345 214
            new Metre(0)
346 214
        );
347
    }
348
349
    /**
350
     * Molodensky-Badekas (PV geog2D/geog3D domain)
351
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
352
     * rotation in geographic 2D/3D domain.
353
     */
354 232
    public function positionVectorMolodenskyBadekas(
355
        Geographic $to,
356
        Length $xAxisTranslation,
357
        Length $yAxisTranslation,
358
        Length $zAxisTranslation,
359
        Angle $xAxisRotation,
360
        Angle $yAxisRotation,
361
        Angle $zAxisRotation,
362
        Scale $scaleDifference,
363
        Length $ordinate1OfEvaluationPoint,
364
        Length $ordinate2OfEvaluationPoint,
365
        Length $ordinate3OfEvaluationPoint
366
    ): self {
367 232
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
368 232
        $asGeocentric = $geographicValue->asGeocentricValue();
369
370 232
        $xs = $asGeocentric->getX()->asMetres()->getValue();
371 232
        $ys = $asGeocentric->getY()->asMetres()->getValue();
372 232
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
373 232
        $tx = $xAxisTranslation->asMetres()->getValue();
374 232
        $ty = $yAxisTranslation->asMetres()->getValue();
375 232
        $tz = $zAxisTranslation->asMetres()->getValue();
376 232
        $rx = $xAxisRotation->asRadians()->getValue();
377 232
        $ry = $yAxisRotation->asRadians()->getValue();
378 232
        $rz = $zAxisRotation->asRadians()->getValue();
379 232
        $M = 1 + $scaleDifference->asUnity()->getValue();
380 232
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
381 232
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
382 232
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
383
384 232
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
385 232
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
386 232
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
387 232
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
388 232
        $newGeographic = $newGeocentric->asGeographicValue();
389
390 232
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
391
    }
392
393
    /**
394
     * Geocentric translations
395
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
396
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
397
     * operating between other CRSs types.
398
     */
399 125
    public function geocentricTranslation(
400
        Geographic $to,
401
        Length $xAxisTranslation,
402
        Length $yAxisTranslation,
403
        Length $zAxisTranslation
404
    ): self {
405 125
        return $this->positionVectorTransformation(
406 125
            $to,
407 125
            $xAxisTranslation,
408 125
            $yAxisTranslation,
409 125
            $zAxisTranslation,
410 125
            new Radian(0),
411 125
            new Radian(0),
412 125
            new Radian(0),
413 125
            new Unity(0)
414 125
        );
415
    }
416
417
    /**
418
     * Abridged Molodensky
419
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
420
     * systems, modelled as a set of geocentric translations.
421
     */
422 18
    public function abridgedMolodensky(
423
        Geographic $to,
424
        Length $xAxisTranslation,
425
        Length $yAxisTranslation,
426
        Length $zAxisTranslation,
427
        Length $differenceInSemiMajorAxis,
428
        Scale $differenceInFlattening
429
    ): self {
430 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
431 18
        $latitude = $this->latitude->asRadians()->getValue();
432 18
        $longitude = $this->longitude->asRadians()->getValue();
433 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
434 18
        $tx = $xAxisTranslation->asMetres()->getValue();
435 18
        $ty = $yAxisTranslation->asMetres()->getValue();
436 18
        $tz = $zAxisTranslation->asMetres()->getValue();
437 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
438 18
        $df = $differenceInFlattening->asUnity()->getValue();
439
440 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
441 18
        $e2 = $ellipsoid->getEccentricitySquared();
442
443 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
444 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
445
446 18
        $f = $ellipsoid->getInverseFlattening();
447
448 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
449 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
450 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
451
452 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
453 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
454 18
        $toHeight = $fromHeight + $dHeight;
455
456 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
457
    }
458
459
    /**
460
     * Molodensky
461
     * See Abridged Molodensky.
462
     */
463 18
    public function molodensky(
464
        Geographic $to,
465
        Length $xAxisTranslation,
466
        Length $yAxisTranslation,
467
        Length $zAxisTranslation,
468
        Length $differenceInSemiMajorAxis,
469
        Scale $differenceInFlattening
470
    ): self {
471 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
472 18
        $latitude = $this->latitude->asRadians()->getValue();
473 18
        $longitude = $this->longitude->asRadians()->getValue();
474 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
475 18
        $tx = $xAxisTranslation->asMetres()->getValue();
476 18
        $ty = $yAxisTranslation->asMetres()->getValue();
477 18
        $tz = $zAxisTranslation->asMetres()->getValue();
478 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
479 18
        $df = $differenceInFlattening->asUnity()->getValue();
480
481 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
482 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
483 18
        $e2 = $ellipsoid->getEccentricitySquared();
484
485 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
486 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
487
488 18
        $f = $ellipsoid->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
489
490 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
491 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
492 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
493
494 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
495 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
496 18
        $toHeight = $fromHeight + $dHeight;
497
498 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
499
    }
500
501
    /**
502
     * Albers Equal Area.
503
     */
504 18
    public function albersEqualArea(
505
        Projected $to,
506
        Angle $latitudeOfFalseOrigin,
507
        Angle $longitudeOfFalseOrigin,
508
        Angle $latitudeOf1stStandardParallel,
509
        Angle $latitudeOf2ndStandardParallel,
510
        Length $eastingAtFalseOrigin,
511
        Length $northingAtFalseOrigin
512
    ): ProjectedPoint {
513 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
514 18
        $latitude = $this->latitude->asRadians()->getValue();
515 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
516 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
517 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
518 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
519 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
520 18
        $e = $ellipsoid->getEccentricity();
521 18
        $e2 = $ellipsoid->getEccentricitySquared();
522
523 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
524 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
525
526 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
527 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
528 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
529 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
530
531 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
532 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
533 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
534 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
535 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
536
537 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
538 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
539
540 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
541
    }
542
543
    /**
544
     * American Polyconic.
545
     */
546 9
    public function americanPolyconic(
547
        Projected $to,
548
        Angle $latitudeOfNaturalOrigin,
549
        Angle $longitudeOfNaturalOrigin,
550
        Length $falseEasting,
551
        Length $falseNorthing
552
    ): ProjectedPoint {
553 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
554 9
        $latitude = $this->latitude->asRadians()->getValue();
555 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
556 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
557 9
        $e = $ellipsoid->getEccentricity();
558 9
        $e2 = $ellipsoid->getEccentricitySquared();
559 9
        $e4 = $e ** 4;
560 9
        $e6 = $e ** 6;
561
562 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
563 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
564
565 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
566
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
567
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
568
        } else {
569 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
570 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
571
572 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
573 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
574
        }
575
576 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
577
    }
578
579
    /**
580
     * Bonne.
581
     */
582 9
    public function bonne(
583
        Projected $to,
584
        Angle $latitudeOfNaturalOrigin,
585
        Angle $longitudeOfNaturalOrigin,
586
        Length $falseEasting,
587
        Length $falseNorthing
588
    ): ProjectedPoint {
589 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
590 9
        $latitude = $this->latitude->asRadians()->getValue();
591 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
592 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
593 9
        $e = $ellipsoid->getEccentricity();
594 9
        $e2 = $ellipsoid->getEccentricitySquared();
595 9
        $e4 = $e ** 4;
596 9
        $e6 = $e ** 6;
597
598 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
599 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
600
601 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
602 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
603
604 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
605 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
606
607 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
608 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
609
610 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
611
    }
612
613
    /**
614
     * Bonne South Orientated.
615
     */
616 9
    public function bonneSouthOrientated(
617
        Projected $to,
618
        Angle $latitudeOfNaturalOrigin,
619
        Angle $longitudeOfNaturalOrigin,
620
        Length $falseEasting,
621
        Length $falseNorthing
622
    ): ProjectedPoint {
623 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
624 9
        $latitude = $this->latitude->asRadians()->getValue();
625 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
626 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
627 9
        $e = $ellipsoid->getEccentricity();
628 9
        $e2 = $ellipsoid->getEccentricitySquared();
629 9
        $e4 = $e ** 4;
630 9
        $e6 = $e ** 6;
631
632 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
633 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
634
635 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
636 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
637
638 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
639 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
640
641 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
642 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
643
644 9
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
645
    }
646
647
    /**
648
     * Cassini-Soldner.
649
     */
650 9
    public function cassiniSoldner(
651
        Projected $to,
652
        Angle $latitudeOfNaturalOrigin,
653
        Angle $longitudeOfNaturalOrigin,
654
        Length $falseEasting,
655
        Length $falseNorthing
656
    ): ProjectedPoint {
657 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
658 9
        $latitude = $this->latitude->asRadians()->getValue();
659 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
660 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
661 9
        $e = $ellipsoid->getEccentricity();
662 9
        $e2 = $ellipsoid->getEccentricitySquared();
663 9
        $e4 = $e ** 4;
664 9
        $e6 = $e ** 6;
665
666 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
667 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
668
669 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
670 9
        $T = tan($latitude) ** 2;
671 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
672 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
673 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
674
675 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
676 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
677
678 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
679
    }
680
681
    /**
682
     * Hyperbolic Cassini-Soldner.
683
     */
684 18
    public function hyperbolicCassiniSoldner(
685
        Projected $to,
686
        Angle $latitudeOfNaturalOrigin,
687
        Angle $longitudeOfNaturalOrigin,
688
        Length $falseEasting,
689
        Length $falseNorthing
690
    ): ProjectedPoint {
691 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
692 18
        $latitude = $this->latitude->asRadians()->getValue();
693 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
694 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
695 18
        $e = $ellipsoid->getEccentricity();
696 18
        $e2 = $ellipsoid->getEccentricitySquared();
697 18
        $e4 = $e ** 4;
698 18
        $e6 = $e ** 6;
699
700 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
701 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
702
703 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
704 18
        $T = tan($latitude) ** 2;
705 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
706 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
707 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
708 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
709
710 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
711 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
712
713 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
714
    }
715
716
    /**
717
     * Colombia Urban.
718
     */
719 9
    public function columbiaUrban(
720
        Projected $to,
721
        Angle $latitudeOfNaturalOrigin,
722
        Angle $longitudeOfNaturalOrigin,
723
        Length $falseEasting,
724
        Length $falseNorthing,
725
        Length $projectionPlaneOriginHeight
726
    ): ProjectedPoint {
727 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
728 9
        $latitude = $this->latitude->asRadians()->getValue();
729 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
730 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
731 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
732 9
        $e2 = $ellipsoid->getEccentricitySquared();
733
734 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
735 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
736
737 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
738 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
739
740 9
        $A = 1 + $heightOrigin / $nuOrigin;
741 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
742 9
        $G = 1 + $heightOrigin / $rhoMid;
743
744 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
745 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
746
747 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
748
    }
749
750
    /**
751
     * Equal Earth.
752
     */
753 9
    public function equalEarth(
754
        Projected $to,
755
        Angle $longitudeOfNaturalOrigin,
756
        Length $falseEasting,
757
        Length $falseNorthing
758
    ): ProjectedPoint {
759 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
760 9
        $latitude = $this->latitude->asRadians()->getValue();
761 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
762 9
        $e = $ellipsoid->getEccentricity();
763 9
        $e2 = $ellipsoid->getEccentricitySquared();
764
765 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
766 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
767 9
        $beta = self::asin($q / $qP);
768 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
769 9
        $Rq = $a * sqrt($qP / 2);
770
771 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
772 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
773
774 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
775
    }
776
777
    /**
778
     * Equidistant Cylindrical
779
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
780
     */
781 9
    public function equidistantCylindrical(
782
        Projected $to,
783
        Angle $latitudeOf1stStandardParallel,
784
        Angle $longitudeOfNaturalOrigin,
785
        Length $falseEasting,
786
        Length $falseNorthing
787
    ): ProjectedPoint {
788 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
789 9
        $latitude = $this->latitude->asRadians()->getValue();
790 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
791 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
792 9
        $e = $ellipsoid->getEccentricity();
793 9
        $e2 = $ellipsoid->getEccentricitySquared();
794 9
        $e4 = $e ** 4;
795 9
        $e6 = $e ** 6;
796 9
        $e8 = $e ** 8;
797 9
        $e10 = $e ** 10;
798 9
        $e12 = $e ** 12;
799 9
        $e14 = $e ** 14;
800
801 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
802
803 9
        $M = $a * (
804 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
805 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
806 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
807 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
808 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
809 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
810 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
811 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
812 9
        );
813
814 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
815 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
816
817 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
818
    }
819
820
    /**
821
     * Guam Projection
822
     * Simplified form of Oblique Azimuthal Equidistant projection method.
823
     */
824 9
    public function guamProjection(
825
        Projected $to,
826
        Angle $latitudeOfNaturalOrigin,
827
        Angle $longitudeOfNaturalOrigin,
828
        Length $falseEasting,
829
        Length $falseNorthing
830
    ): ProjectedPoint {
831 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
832 9
        $latitude = $this->latitude->asRadians()->getValue();
833 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
834 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
835 9
        $e = $ellipsoid->getEccentricity();
836 9
        $e2 = $ellipsoid->getEccentricitySquared();
837 9
        $e4 = $e ** 4;
838 9
        $e6 = $e ** 6;
839
840 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
841 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
842 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
843
844 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
845 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
846
847 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
848
    }
849
850
    /**
851
     * Krovak.
852
     */
853 36
    public function krovak(
854
        Projected $to,
855
        Angle $latitudeOfProjectionCentre,
856
        Angle $longitudeOfOrigin,
857
        Angle $coLatitudeOfConeAxis,
858
        Angle $latitudeOfPseudoStandardParallel,
859
        Scale $scaleFactorOnPseudoStandardParallel,
860
        Length $falseEasting,
861
        Length $falseNorthing
862
    ): ProjectedPoint {
863 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
864 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
865 36
        $latitude = $this->latitude->asRadians()->getValue();
866 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
867 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
868 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
869 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
870 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
871 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
872 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
873 36
        $e = $ellipsoid->getEccentricity();
874 36
        $e2 = $ellipsoid->getEccentricitySquared();
875
876 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
877 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
878 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
879 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
880 36
        $n = sin($latitudeP);
881 36
        $rO = $kP * $A / tan($latitudeP);
882
883 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
884 36
        $V = $B * ($longitudeO - $longitude);
885 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
886 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
887 36
        $theta = $n * $D;
888 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
889 36
        $X = $r * cos($theta);
890 36
        $Y = $r * sin($theta);
891
892 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
893 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
894
895 36
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
896
    }
897
898
    /**
899
     * Krovak Modified
900
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
901
     * to be a map projection.
902
     */
903 18
    public function krovakModified(
904
        Projected $to,
905
        Angle $latitudeOfProjectionCentre,
906
        Angle $longitudeOfOrigin,
907
        Angle $coLatitudeOfConeAxis,
908
        Angle $latitudeOfPseudoStandardParallel,
909
        Scale $scaleFactorOnPseudoStandardParallel,
910
        Length $falseEasting,
911
        Length $falseNorthing,
912
        Length $ordinate1OfEvaluationPoint,
913
        Length $ordinate2OfEvaluationPoint,
914
        Coefficient $C1,
915
        Coefficient $C2,
916
        Coefficient $C3,
917
        Coefficient $C4,
918
        Coefficient $C5,
919
        Coefficient $C6,
920
        Coefficient $C7,
921
        Coefficient $C8,
922
        Coefficient $C9,
923
        Coefficient $C10
924
    ): ProjectedPoint {
925 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
926
927 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
928 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
929 18
        $c1 = $C1->asUnity()->getValue();
930 18
        $c2 = $C2->asUnity()->getValue();
931 18
        $c3 = $C3->asUnity()->getValue();
932 18
        $c4 = $C4->asUnity()->getValue();
933 18
        $c5 = $C5->asUnity()->getValue();
934 18
        $c6 = $C6->asUnity()->getValue();
935 18
        $c7 = $C7->asUnity()->getValue();
936 18
        $c8 = $C8->asUnity()->getValue();
937 18
        $c9 = $C9->asUnity()->getValue();
938 18
        $c10 = $C10->asUnity()->getValue();
939
940 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
941 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
942
943 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
944 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
945
946 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
947 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
948
949 18
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
950
    }
951
952
    /**
953
     * Lambert Azimuthal Equal Area
954
     * This is the ellipsoidal form of the projection.
955
     */
956 9
    public function lambertAzimuthalEqualArea(
957
        Projected $to,
958
        Angle $latitudeOfNaturalOrigin,
959
        Angle $longitudeOfNaturalOrigin,
960
        Length $falseEasting,
961
        Length $falseNorthing
962
    ): ProjectedPoint {
963 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
964 9
        $latitude = $this->latitude->asRadians()->getValue();
965 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
966 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
967 9
        $e = $ellipsoid->getEccentricity();
968 9
        $e2 = $ellipsoid->getEccentricitySquared();
969
970 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
971 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
972 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
973 9
        $beta = self::asin($q / $qP);
974 9
        $betaO = self::asin($qO / $qP);
975 9
        $Rq = $a * sqrt($qP / 2);
976 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
977 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
978
979 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
980 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
981
982 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
983
    }
984
985
    /**
986
     * Lambert Azimuthal Equal Area (Spherical)
987
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
988
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
989
     * methods.
990
     */
991 9
    public function lambertAzimuthalEqualAreaSpherical(
992
        Projected $to,
993
        Angle $latitudeOfNaturalOrigin,
994
        Angle $longitudeOfNaturalOrigin,
995
        Length $falseEasting,
996
        Length $falseNorthing
997
    ): ProjectedPoint {
998 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
999 9
        $latitude = $this->latitude->asRadians()->getValue();
1000 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1001 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1002
1003 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1004
1005 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1006 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1007
1008 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1009
    }
1010
1011
    /**
1012
     * Lambert Conic Conformal (1SP).
1013
     */
1014 9
    public function lambertConicConformal1SP(
1015
        Projected $to,
1016
        Angle $latitudeOfNaturalOrigin,
1017
        Angle $longitudeOfNaturalOrigin,
1018
        Scale $scaleFactorAtNaturalOrigin,
1019
        Length $falseEasting,
1020
        Length $falseNorthing
1021
    ): ProjectedPoint {
1022 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1023 9
        $latitude = $this->latitude->asRadians()->getValue();
1024 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1025 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1026 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1027 9
        $e = $ellipsoid->getEccentricity();
1028 9
        $e2 = $ellipsoid->getEccentricitySquared();
1029
1030 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1031 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1032 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1033 9
        $n = sin($latitudeOrigin);
1034 9
        $F = $mO / ($n * $tO ** $n);
1035 9
        $rO = $a * $F * $tO ** $n * $kO;
1036 9
        $r = $a * $F * $t ** $n * $kO;
1037 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1038
1039 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1040 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1041
1042 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1043
    }
1044
1045
    /**
1046
     * Lambert Conic Conformal (1SP) Variant B.
1047
     */
1048
    public function lambertConicConformal1SPVariantB(
1049
        Projected $to,
1050
        Angle $latitudeOfNaturalOrigin,
1051
        Scale $scaleFactorAtNaturalOrigin,
1052
        Angle $latitudeOfFalseOrigin,
1053
        Angle $longitudeOfFalseOrigin,
1054
        Length $eastingAtFalseOrigin,
1055
        Length $northingAtFalseOrigin
1056
    ): ProjectedPoint {
1057
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1058
        $latitude = $this->latitude->asRadians()->getValue();
1059
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1060
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1061
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1062
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1063
        $e = $ellipsoid->getEccentricity();
1064
        $e2 = $ellipsoid->getEccentricitySquared();
1065
1066
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1067
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1068
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1069
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1070
        $n = sin($latitudeNaturalOrigin);
1071
        $F = $mO / ($n * $tO ** $n);
1072
        $rF = $a * $F * $tF ** $n * $kO;
1073
        $r = $a * $F * $t ** $n * $kO;
1074
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1075
1076
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1077
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1078
1079
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1080
    }
1081
1082
    /**
1083
     * Lambert Conic Conformal (2SP Belgium)
1084
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1085
     * with appropriately modified parameter values.
1086
     */
1087 9
    public function lambertConicConformal2SPBelgium(
1088
        Projected $to,
1089
        Angle $latitudeOfFalseOrigin,
1090
        Angle $longitudeOfFalseOrigin,
1091
        Angle $latitudeOf1stStandardParallel,
1092
        Angle $latitudeOf2ndStandardParallel,
1093
        Length $eastingAtFalseOrigin,
1094
        Length $northingAtFalseOrigin
1095
    ): ProjectedPoint {
1096 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1097 9
        $latitude = $this->latitude->asRadians()->getValue();
1098 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1099 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1100 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1101 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1102 9
        $e = $ellipsoid->getEccentricity();
1103 9
        $e2 = $ellipsoid->getEccentricitySquared();
1104
1105 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1106 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1107 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1108 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1109 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1110 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1111 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1112 9
        $F = $m1 / ($n * $t1 ** $n);
1113 9
        $r = $a * $F * $t ** $n;
1114 9
        $rF = $a * $F * $tF ** $n;
1115 9
        if (is_nan($rF)) {
1116 9
            $rF = 0;
1117
        }
1118 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1119
1120 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1121 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1122
1123 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1124
    }
1125
1126
    /**
1127
     * Lambert Conic Conformal (2SP Michigan).
1128
     */
1129 9
    public function lambertConicConformal2SPMichigan(
1130
        Projected $to,
1131
        Angle $latitudeOfFalseOrigin,
1132
        Angle $longitudeOfFalseOrigin,
1133
        Angle $latitudeOf1stStandardParallel,
1134
        Angle $latitudeOf2ndStandardParallel,
1135
        Length $eastingAtFalseOrigin,
1136
        Length $northingAtFalseOrigin,
1137
        Scale $ellipsoidScalingFactor
1138
    ): ProjectedPoint {
1139 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1140 9
        $latitude = $this->latitude->asRadians()->getValue();
1141 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1142 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1143 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1144 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1145 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1146 9
        $e = $ellipsoid->getEccentricity();
1147 9
        $e2 = $ellipsoid->getEccentricitySquared();
1148
1149 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1150 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1151 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1152 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1153 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1154 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1155 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1156 9
        $F = $m1 / ($n * $t1 ** $n);
1157 9
        $r = $a * $K * $F * $t ** $n;
1158 9
        $rF = $a * $K * $F * $tF ** $n;
1159 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1160
1161 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1162 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1163
1164 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1165
    }
1166
1167
    /**
1168
     * Lambert Conic Conformal (2SP).
1169
     */
1170 18
    public function lambertConicConformal2SP(
1171
        Projected $to,
1172
        Angle $latitudeOfFalseOrigin,
1173
        Angle $longitudeOfFalseOrigin,
1174
        Angle $latitudeOf1stStandardParallel,
1175
        Angle $latitudeOf2ndStandardParallel,
1176
        Length $eastingAtFalseOrigin,
1177
        Length $northingAtFalseOrigin
1178
    ): ProjectedPoint {
1179 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1180 18
        $latitude = $this->latitude->asRadians()->getValue();
1181 18
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1182 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1183 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1184 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1185 18
        $e = $ellipsoid->getEccentricity();
1186 18
        $e2 = $ellipsoid->getEccentricitySquared();
1187
1188 18
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1189 18
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1190 18
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1191 18
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1192 18
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1193 18
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1194 18
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1195 18
        $F = $m1 / ($n * $t1 ** $n);
1196 18
        $r = $a * $F * $t ** $n;
1197 18
        $rF = $a * $F * $tF ** $n;
1198 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1199
1200 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1201 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1202
1203 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1204
    }
1205
1206
    /**
1207
     * Lambert Conic Conformal (West Orientated).
1208
     */
1209
    public function lambertConicConformalWestOrientated(
1210
        Projected $to,
1211
        Angle $latitudeOfNaturalOrigin,
1212
        Angle $longitudeOfNaturalOrigin,
1213
        Scale $scaleFactorAtNaturalOrigin,
1214
        Length $falseEasting,
1215
        Length $falseNorthing
1216
    ): ProjectedPoint {
1217
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1218
        $latitude = $this->latitude->asRadians()->getValue();
1219
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1220
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1221
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1222
        $e = $ellipsoid->getEccentricity();
1223
        $e2 = $ellipsoid->getEccentricitySquared();
1224
1225
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1226
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1227
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1228
        $n = sin($latitudeOrigin);
1229
        $F = $mO / ($n * $tO ** $n);
1230
        $rO = $a * $F * $tO ** $n ** $kO;
1231
        $r = $a * $F * $t ** $n ** $kO;
1232
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1233
1234
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1235
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1236
1237
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1238
    }
1239
1240
    /**
1241
     * Lambert Conic Near-Conformal
1242
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1243
     * series expansion of the projection formulae.
1244
     */
1245 9
    public function lambertConicNearConformal(
1246
        Projected $to,
1247
        Angle $latitudeOfNaturalOrigin,
1248
        Angle $longitudeOfNaturalOrigin,
1249
        Scale $scaleFactorAtNaturalOrigin,
1250
        Length $falseEasting,
1251
        Length $falseNorthing
1252
    ): ProjectedPoint {
1253 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1254 9
        $latitude = $this->latitude->asRadians()->getValue();
1255 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1256 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1257 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1258 9
        $e2 = $ellipsoid->getEccentricitySquared();
1259 9
        $f = $ellipsoid->getInverseFlattening();
1260
1261 9
        $n = $f / (2 - $f);
1262 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1263 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1264 9
        $A = 1 / (6 * $rhoO * $nuO);
1265 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1266 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1267 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1268 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1269 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1270 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1271 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1272 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1273 9
        $m = $s - $sO;
1274 9
        $M = $kO * ($m + $A * $m ** 3);
1275 9
        $r = $rO - $M;
1276 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1277
1278 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1279 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1280
1281 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1282
    }
1283
1284
    /**
1285
     * Lambert Cylindrical Equal Area
1286
     * This is the ellipsoidal form of the projection.
1287
     */
1288 9
    public function lambertCylindricalEqualArea(
1289
        Projected $to,
1290
        Angle $latitudeOf1stStandardParallel,
1291
        Angle $longitudeOfNaturalOrigin,
1292
        Length $falseEasting,
1293
        Length $falseNorthing
1294
    ): ProjectedPoint {
1295 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1296 9
        $latitude = $this->latitude->asRadians()->getValue();
1297 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1298 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1299 9
        $e = $ellipsoid->getEccentricity();
1300 9
        $e2 = $ellipsoid->getEccentricitySquared();
1301
1302 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1303 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1304
1305 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1306 9
        $y = $a * $q / (2 * $k);
1307
1308 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1309 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1310
1311 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1312
    }
1313
1314
    /**
1315
     * Modified Azimuthal Equidistant
1316
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1317
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1318
     */
1319 9
    public function modifiedAzimuthalEquidistant(
1320
        Projected $to,
1321
        Angle $latitudeOfNaturalOrigin,
1322
        Angle $longitudeOfNaturalOrigin,
1323
        Length $falseEasting,
1324
        Length $falseNorthing
1325
    ): ProjectedPoint {
1326 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1327 9
        $latitude = $this->latitude->asRadians()->getValue();
1328 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1329 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1330 9
        $e = $ellipsoid->getEccentricity();
1331 9
        $e2 = $ellipsoid->getEccentricitySquared();
1332
1333 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1334 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1335 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1336 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1337 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1338 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1339
1340 9
        if (sin($alpha) === 0.0) {
1341
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1342
        } else {
1343 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1344
        }
1345
1346 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1347
1348 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1349 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1350
1351 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1352
    }
1353
1354
    /**
1355
     * Oblique Stereographic
1356
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1357
     * Projections - A Working Manual" by John P. Snyder.
1358
     */
1359 9
    public function obliqueStereographic(
1360
        Projected $to,
1361
        Angle $latitudeOfNaturalOrigin,
1362
        Angle $longitudeOfNaturalOrigin,
1363
        Scale $scaleFactorAtNaturalOrigin,
1364
        Length $falseEasting,
1365
        Length $falseNorthing
1366
    ): ProjectedPoint {
1367 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1368 9
        $latitude = $this->latitude->asRadians()->getValue();
1369 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1370 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1371 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1372 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1373 9
        $e = $ellipsoid->getEccentricity();
1374 9
        $e2 = $ellipsoid->getEccentricitySquared();
1375
1376 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1377 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1378 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1379
1380 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1381 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1382 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1383 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1384 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1385 9
        $w2 = $c * $w1;
1386 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1387
1388 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1389
1390 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1391 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1392 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1393 9
        $chi = self::asin(($w - 1) / ($w + 1));
1394
1395 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1396
1397 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1398 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1399
1400 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1401
    }
1402
1403
    /**
1404
     * Polar Stereographic (variant A)
1405
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1406
     */
1407 9
    public function polarStereographicVariantA(
1408
        Projected $to,
1409
        Angle $latitudeOfNaturalOrigin,
1410
        Angle $longitudeOfNaturalOrigin,
1411
        Scale $scaleFactorAtNaturalOrigin,
1412
        Length $falseEasting,
1413
        Length $falseNorthing
1414
    ): ProjectedPoint {
1415 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1416 9
        $latitude = $this->latitude->asRadians()->getValue();
1417 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1418 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1419 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1420 9
        $e = $ellipsoid->getEccentricity();
1421
1422 9
        if ($latitudeOrigin < 0) {
1423
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1424
        } else {
1425 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1426
        }
1427 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1428
1429 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1430 9
        $dE = $rho * sin($theta);
1431 9
        $dN = $rho * cos($theta);
1432
1433 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1434 9
        if ($latitudeOrigin < 0) {
1435
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1436
        } else {
1437 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1438
        }
1439
1440 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1441
    }
1442
1443
    /**
1444
     * Polar Stereographic (variant B).
1445
     */
1446 9
    public function polarStereographicVariantB(
1447
        Projected $to,
1448
        Angle $latitudeOfStandardParallel,
1449
        Angle $longitudeOfOrigin,
1450
        Length $falseEasting,
1451
        Length $falseNorthing
1452
    ): ProjectedPoint {
1453 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1454 9
        $latitude = $this->latitude->asRadians()->getValue();
1455 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1456 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1457 9
        $e = $ellipsoid->getEccentricity();
1458 9
        $e2 = $ellipsoid->getEccentricitySquared();
1459
1460 9
        if ($firstStandardParallel < 0) {
1461 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1462 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1463
        } else {
1464
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1465
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1466
        }
1467 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1468 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1469
1470 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1471
1472 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1473 9
        $dE = $rho * sin($theta);
1474 9
        $dN = $rho * cos($theta);
1475
1476 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1477 9
        if ($firstStandardParallel < 0) {
1478 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1479
        } else {
1480
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1481
        }
1482
1483 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1484
    }
1485
1486
    /**
1487
     * Polar Stereographic (variant C).
1488
     */
1489 9
    public function polarStereographicVariantC(
1490
        Projected $to,
1491
        Angle $latitudeOfStandardParallel,
1492
        Angle $longitudeOfOrigin,
1493
        Length $eastingAtFalseOrigin,
1494
        Length $northingAtFalseOrigin
1495
    ): ProjectedPoint {
1496 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1497 9
        $latitude = $this->latitude->asRadians()->getValue();
1498 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1499 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1500 9
        $e = $ellipsoid->getEccentricity();
1501 9
        $e2 = $ellipsoid->getEccentricitySquared();
1502
1503 9
        if ($firstStandardParallel < 0) {
1504 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1505 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1506
        } else {
1507
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1508
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1509
        }
1510 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1511
1512 9
        $rhoF = $a * $mF;
1513 9
        $rho = $rhoF * $t / $tF;
1514
1515 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1516 9
        $dE = $rho * sin($theta);
1517 9
        $dN = $rho * cos($theta);
1518
1519 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1520 9
        if ($firstStandardParallel < 0) {
1521 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1522
        } else {
1523
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1524
        }
1525
1526 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1527
    }
1528
1529
    /**
1530
     * Popular Visualisation Pseudo Mercator
1531
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1532
     */
1533 9
    public function popularVisualisationPseudoMercator(
1534
        Projected $to,
1535
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1535
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1536
        Angle $longitudeOfNaturalOrigin,
1537
        Length $falseEasting,
1538
        Length $falseNorthing
1539
    ): ProjectedPoint {
1540 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1541 9
        $latitude = $this->latitude->asRadians()->getValue();
1542 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1543
1544 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1545 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1546
1547 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1548
    }
1549
1550
    /**
1551
     * Mercator (variant A)
1552
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1553
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1554
     * completeness in CRS labelling.
1555
     */
1556 18
    public function mercatorVariantA(
1557
        Projected $to,
1558
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1558
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1559
        Angle $longitudeOfNaturalOrigin,
1560
        Scale $scaleFactorAtNaturalOrigin,
1561
        Length $falseEasting,
1562
        Length $falseNorthing
1563
    ): ProjectedPoint {
1564 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1565 18
        $latitude = $this->latitude->asRadians()->getValue();
1566 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1567
1568 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1569 18
        $e = $ellipsoid->getEccentricity();
1570
1571 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1572 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1573
1574 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1575
    }
1576
1577
    /**
1578
     * Mercator (variant B)
1579
     * Used for most nautical charts.
1580
     */
1581 9
    public function mercatorVariantB(
1582
        Projected $to,
1583
        Angle $latitudeOf1stStandardParallel,
1584
        Angle $longitudeOfNaturalOrigin,
1585
        Length $falseEasting,
1586
        Length $falseNorthing
1587
    ): ProjectedPoint {
1588 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1589 9
        $latitude = $this->latitude->asRadians()->getValue();
1590 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1591 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1592 9
        $e = $ellipsoid->getEccentricity();
1593 9
        $e2 = $ellipsoid->getEccentricitySquared();
1594
1595 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1596
1597 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1598 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1599
1600 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1601
    }
1602
1603
    /**
1604
     * Longitude rotation
1605
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1606
     * value to the longitude value of the point in the source system.
1607
     */
1608 9
    public function longitudeRotation(
1609
        Geographic $to,
1610
        Angle $longitudeOffset
1611
    ): self {
1612 9
        $newLongitude = $this->longitude->add($longitudeOffset);
1613
1614 9
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1615
    }
1616
1617
    /**
1618
     * Hotine Oblique Mercator (variant A).
1619
     */
1620 9
    public function obliqueMercatorHotineVariantA(
1621
        Projected $to,
1622
        Angle $latitudeOfProjectionCentre,
1623
        Angle $longitudeOfProjectionCentre,
1624
        Angle $azimuthOfInitialLine,
1625
        Angle $angleFromRectifiedToSkewGrid,
1626
        Scale $scaleFactorOnInitialLine,
1627
        Length $falseEasting,
1628
        Length $falseNorthing
1629
    ): ProjectedPoint {
1630 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1631 9
        $latitude = $this->latitude->asRadians()->getValue();
1632 9
        $longitude = $this->longitude->asRadians()->getValue();
1633 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1634 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1635 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1636 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1637 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1638 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1639 9
        $e = $ellipsoid->getEccentricity();
1640 9
        $e2 = $ellipsoid->getEccentricitySquared();
1641
1642 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1643 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1644 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1645 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1646 9
        $DD = max(1, $D ** 2);
1647 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1648 9
        $H = $F * ($tO) ** $B;
1649 9
        $G = ($F - 1 / $F) / 2;
1650 9
        $gammaO = self::asin(sin($alphaC) / $D);
1651 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1652
1653 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1654 9
        $Q = $H / $t ** $B;
1655 9
        $S = ($Q - 1 / $Q) / 2;
1656 9
        $T = ($Q + 1 / $Q) / 2;
1657 9
        $V = sin($B * ($longitude - $lonO));
1658 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1659 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1660 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1661
1662 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1663 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1664
1665 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1666
    }
1667
1668
    /**
1669
     * Hotine Oblique Mercator (variant B).
1670
     */
1671 9
    public function obliqueMercatorHotineVariantB(
1672
        Projected $to,
1673
        Angle $latitudeOfProjectionCentre,
1674
        Angle $longitudeOfProjectionCentre,
1675
        Angle $azimuthOfInitialLine,
1676
        Angle $angleFromRectifiedToSkewGrid,
1677
        Scale $scaleFactorOnInitialLine,
1678
        Length $eastingAtProjectionCentre,
1679
        Length $northingAtProjectionCentre
1680
    ): ProjectedPoint {
1681 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1682 9
        $latitude = $this->latitude->asRadians()->getValue();
1683 9
        $longitude = $this->longitude->asRadians()->getValue();
1684 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1685 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1686 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1687 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1688 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1689 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1690 9
        $e = $ellipsoid->getEccentricity();
1691 9
        $e2 = $ellipsoid->getEccentricitySquared();
1692
1693 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1694 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1695 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1696 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1697 9
        $DD = max(1, $D ** 2);
1698 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1699 9
        $H = $F * ($tO) ** $B;
1700 9
        $G = ($F - 1 / $F) / 2;
1701 9
        $gammaO = self::asin(sin($alphaC) / $D);
1702 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1703 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1704 9
        if ($alphaC === M_PI / 2) {
1705
            $uC = $A * ($lonC - $lonO);
1706
        } else {
1707 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1708
        }
1709
1710 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1711 9
        $Q = $H / $t ** $B;
1712 9
        $S = ($Q - 1 / $Q) / 2;
1713 9
        $T = ($Q + 1 / $Q) / 2;
1714 9
        $V = sin($B * ($longitude - $lonO));
1715 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1716 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1717
1718 9
        if ($alphaC === M_PI / 2) {
1719
            if ($longitude === $lonC) {
1720
                $u = 0;
1721
            } else {
1722
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1723
            }
1724
        } else {
1725 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1726
        }
1727
1728 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1729 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1730
1731 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1732
    }
1733
1734
    /**
1735
     * Laborde Oblique Mercator.
1736
     */
1737 9
    public function obliqueMercatorLaborde(
1738
        Projected $to,
1739
        Angle $latitudeOfProjectionCentre,
1740
        Angle $longitudeOfProjectionCentre,
1741
        Angle $azimuthOfInitialLine,
1742
        Scale $scaleFactorOnInitialLine,
1743
        Length $falseEasting,
1744
        Length $falseNorthing
1745
    ): ProjectedPoint {
1746 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1747 9
        $latitude = $this->latitude->asRadians()->getValue();
1748 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1749 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1750 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1751 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1752 9
        $e = $ellipsoid->getEccentricity();
1753 9
        $e2 = $ellipsoid->getEccentricitySquared();
1754
1755 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1756 9
        $latS = self::asin(sin($latC) / $B);
1757 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1758 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1759
1760 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1761 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1762 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1763 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1764 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1765 9
        $W = cos($P) * sin($L);
1766 9
        $d = hypot($U, $V);
1767 9
        if ($d === 0.0) {
1768
            $LPrime = 0;
1769
            $PPrime = static::sign($W) * M_PI / 2;
1770
        } else {
1771 9
            $LPrime = 2 * atan($V / ($U + $d));
1772 9
            $PPrime = atan($W / $d);
1773
        }
1774 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1775 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1776
1777 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1778 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1779
1780 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1781
    }
1782
1783
    /**
1784
     * Transverse Mercator.
1785
     */
1786 121
    public function transverseMercator(
1787
        Projected $to,
1788
        Angle $latitudeOfNaturalOrigin,
1789
        Angle $longitudeOfNaturalOrigin,
1790
        Scale $scaleFactorAtNaturalOrigin,
1791
        Length $falseEasting,
1792
        Length $falseNorthing
1793
    ): ProjectedPoint {
1794 121
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1795 121
        $latitude = $this->latitude->asRadians()->getValue();
1796 121
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1797 121
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1798 121
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1799 121
        $e = $ellipsoid->getEccentricity();
1800 121
        $f = $ellipsoid->getInverseFlattening();
1801
1802 121
        $n = $f / (2 - $f);
1803 121
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1804
1805 121
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1806 121
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1807 121
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1808 121
        $h4 = (49561 / 161280) * $n ** 4;
1809
1810 121
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1811 81
            $mO = 0;
1812 40
        } elseif ($latitudeOrigin === M_PI / 2) {
1813
            $mO = $B * M_PI / 2;
1814 40
        } elseif ($latitudeOrigin === -M_PI / 2) {
1815
            $mO = $B * -M_PI / 2;
1816
        } else {
1817 40
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1818 40
            $betaO = atan(sinh($qO));
1819 40
            $xiO0 = self::asin(sin($betaO));
1820 40
            $xiO1 = $h1 * sin(2 * $xiO0);
1821 40
            $xiO2 = $h2 * sin(4 * $xiO0);
1822 40
            $xiO3 = $h3 * sin(6 * $xiO0);
1823 40
            $xiO4 = $h4 * sin(8 * $xiO0);
1824 40
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1825 40
            $mO = $B * $xiO;
1826
        }
1827
1828 121
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1829 121
        $beta = atan(sinh($Q));
1830 121
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1831 121
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1832 121
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1833 121
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1834 121
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1835 121
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1836 121
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1837 121
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1838 121
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1839 121
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1840 121
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1841 121
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1842
1843 121
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1844 121
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1845
1846 121
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1847
    }
1848
1849
    /**
1850
     * Transverse Mercator Zoned Grid System
1851
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1852
     * each zone.
1853
     */
1854 36
    public function transverseMercatorZonedGrid(
1855
        Projected $to,
1856
        Angle $latitudeOfNaturalOrigin,
1857
        Angle $initialLongitude,
1858
        Angle $zoneWidth,
1859
        Scale $scaleFactorAtNaturalOrigin,
1860
        Length $falseEasting,
1861
        Length $falseNorthing
1862
    ): ProjectedPoint {
1863 36
        $W = $zoneWidth->asDegrees()->getValue();
1864 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1865
1866 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1867 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1868
1869 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1870
    }
1871
1872
    /**
1873
     * New Zealand Map Grid.
1874
     */
1875 27
    public function newZealandMapGrid(
1876
        Projected $to,
1877
        Angle $latitudeOfNaturalOrigin,
1878
        Angle $longitudeOfNaturalOrigin,
1879
        Length $falseEasting,
1880
        Length $falseNorthing
1881
    ): ProjectedPoint {
1882 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1883 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1884
1885 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1886 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1887
1888 27
        $deltaPsi = 0;
1889 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1890 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1891 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1892 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1893 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1894 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1895 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1896 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1897 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1898 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1899
1900 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1901
1902 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1903 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1904 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1905 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1906 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1907 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1908 27
        $z = new ComplexNumber(0, 0);
1909 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1910 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1911 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1912 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1913 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1914 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1915
1916 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1917 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1918
1919 27
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1920
    }
1921
1922
    /**
1923
     * Madrid to ED50 polynomial.
1924
     */
1925 9
    public function madridToED50Polynomial(
1926
        Geographic2D $to,
1927
        Scale $A0,
1928
        Scale $A1,
1929
        Scale $A2,
1930
        Scale $A3,
1931
        Angle $B00,
1932
        Scale $B0,
1933
        Scale $B1,
1934
        Scale $B2,
1935
        Scale $B3
1936
    ): self {
1937 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1938 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1939
1940 9
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1941
    }
1942
1943
    /**
1944
     * Geographic3D to 2D conversion.
1945
     */
1946 36
    public function threeDToTwoD(
1947
        Geographic $to
1948
    ): self {
1949 36
        if ($to instanceof Geographic2D) {
1950 36
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1951
        }
1952
1953
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1954
    }
1955
1956
    /**
1957
     * Geographic2D offsets.
1958
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1959
     * coordinate values of the point in the source system.
1960
     */
1961 9
    public function geographic2DOffsets(
1962
        Geographic $to,
1963
        Angle $latitudeOffset,
1964
        Angle $longitudeOffset
1965
    ): self {
1966 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1967 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1968
1969 9
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1970
    }
1971
1972
    /*
1973
     * Geographic2D with Height Offsets.
1974
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1975
     * coordinate values of the point in the source system.
1976
     */
1977
    public function geographic2DWithHeightOffsets(
1978
        Compound $to,
1979
        Angle $latitudeOffset,
1980
        Angle $longitudeOffset,
1981
        Length $geoidUndulation
1982
    ): CompoundPoint {
1983
        $toLatitude = $this->latitude->add($latitudeOffset);
1984
        $toLongitude = $this->longitude->add($longitudeOffset);
1985
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1985
        /** @scrutinizer ignore-call */ 
1986
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1986
1987
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
1988
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1988
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
1989
1990
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
1991
    }
1992
1993
    /**
1994
     * General polynomial.
1995
     * @param Coefficient[] $powerCoefficients
1996
     */
1997 18
    public function generalPolynomial(
1998
        Geographic $to,
1999
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2000
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2001
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2002
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2003
        Scale $scalingFactorForSourceCRSCoordDifferences,
2004
        Scale $scalingFactorForTargetCRSCoordDifferences,
2005
        Scale $A0,
2006
        Scale $B0,
2007
        array $powerCoefficients
2008
    ): self {
2009 18
        $xs = $this->latitude->getValue();
2010 18
        $ys = $this->longitude->getValue();
2011
2012 18
        $t = $this->generalPolynomialUnitless(
2013 18
            $xs,
2014 18
            $ys,
2015 18
            $ordinate1OfEvaluationPointInSourceCRS,
2016 18
            $ordinate2OfEvaluationPointInSourceCRS,
2017 18
            $ordinate1OfEvaluationPointInTargetCRS,
2018 18
            $ordinate2OfEvaluationPointInTargetCRS,
2019 18
            $scalingFactorForSourceCRSCoordDifferences,
2020 18
            $scalingFactorForTargetCRSCoordDifferences,
2021 18
            $A0,
2022 18
            $B0,
2023 18
            $powerCoefficients
2024 18
        );
2025
2026 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2027 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2028
2029 18
        return static::create(
2030 18
            Angle::makeUnit($t['xt'], $xtUnit),
2031 18
            Angle::makeUnit($t['yt'], $ytUnit),
2032 18
            $this->height,
2033 18
            $to,
2034 18
            $this->epoch
2035 18
        );
2036
    }
2037
2038
    /**
2039
     * Reversible polynomial.
2040
     * @param Coefficient[] $powerCoefficients
2041
     */
2042 36
    public function reversiblePolynomial(
2043
        Geographic $to,
2044
        Angle $ordinate1OfEvaluationPoint,
2045
        Angle $ordinate2OfEvaluationPoint,
2046
        Scale $scalingFactorForCoordDifferences,
2047
        Scale $A0,
2048
        Scale $B0,
2049
        $powerCoefficients
2050
    ): self {
2051 36
        $xs = $this->latitude->getValue();
2052 36
        $ys = $this->longitude->getValue();
2053
2054 36
        $t = $this->reversiblePolynomialUnitless(
2055 36
            $xs,
2056 36
            $ys,
2057 36
            $ordinate1OfEvaluationPoint,
2058 36
            $ordinate2OfEvaluationPoint,
2059 36
            $scalingFactorForCoordDifferences,
2060 36
            $A0,
2061 36
            $B0,
2062 36
            $powerCoefficients
2063 36
        );
2064
2065 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2066 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2067
2068 36
        return static::create(
2069 36
            Angle::makeUnit($t['xt'], $xtUnit),
2070 36
            Angle::makeUnit($t['yt'], $ytUnit),
2071 36
            $this->height,
2072 36
            $to,
2073 36
            $this->epoch
2074 36
        );
2075
    }
2076
2077
    /**
2078
     * Axis Order Reversal.
2079
     */
2080
    public function axisReversal(
2081
        Geographic $to
2082
    ): self {
2083
        // axes are read in from the CRS, this is a book-keeping adjustment only
2084
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2085
    }
2086
2087
    /**
2088
     * Ordnance Survey National Transformation
2089
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2090
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2091
     */
2092 2
    public function OSTN15(
2093
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2093
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2094
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2095
    ): ProjectedPoint {
2096 2
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2097 2
        $etrs89NationalGrid = new Projected(
2098 2
            'ETRS89 / National Grid',
2099 2
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2100 2
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2101 2
            $osgb36NationalGrid->getBoundingArea()
2102 2
        );
2103
2104 2
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2105
2106 2
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2107
    }
2108
2109
    /**
2110
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2111
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2112
     * coordinate differences.
2113
     */
2114 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2115
        Compound $to,
2116
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile,
2117
        string $EPSGCodeForInterpolationCRS
0 ignored issues
show
Unused Code introduced by
The parameter $EPSGCodeForInterpolationCRS is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2117
        /** @scrutinizer ignore-unused */ string $EPSGCodeForInterpolationCRS

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2118
    ): CompoundPoint {
2119 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2120 1
        $etrs89NationalGrid = new Projected(
2121 1
            'ETRS89 / National Grid',
2122 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2123 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2124 1
            $osgb36NationalGrid->getBoundingArea()
2125 1
        );
2126
2127 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2128
2129 1
        $horizontalPoint = self::create(
2130 1
            $this->latitude,
2131 1
            $this->longitude,
2132 1
            null,
2133 1
            $to->getHorizontal(),
2134 1
            $this->getCoordinateEpoch()
2135 1
        );
2136
2137 1
        $verticalPoint = VerticalPoint::create(
2138 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2138
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
Loading history...
2139 1
            $to->getVertical(),
2140 1
            $this->getCoordinateEpoch()
2141 1
        );
2142
2143 1
        return CompoundPoint::create(
2144 1
            $horizontalPoint,
2145 1
            $verticalPoint,
2146 1
            $to,
2147 1
            $this->getCoordinateEpoch()
2148 1
        );
2149
    }
2150
2151
    /**
2152
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2153
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2154
     * coordinate differences.
2155
     */
2156 1
    public function geographic3DToGravityHeightOSGM15(
2157
        Vertical $to,
2158
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2159
    ): VerticalPoint {
2160 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2161 1
        $etrs89NationalGrid = new Projected(
2162 1
            'ETRS89 / National Grid',
2163 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2164 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2165 1
            $osgb36NationalGrid->getBoundingArea()
2166 1
        );
2167
2168 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2169
2170 1
        return VerticalPoint::create(
2171 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2171
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getVerticalAdjustment($projected)),
Loading history...
2172 1
            $to,
2173 1
            $this->getCoordinateEpoch()
2174 1
        );
2175
    }
2176
2177
    /**
2178
     * NADCON5.
2179
     * Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation.  Input
2180
     * expects longitudes to be positive east in range 0-360° (0° = Greenwich).
2181
     */
2182 7
    public function NADCON5(
2183
        Geographic $to,
2184
        NADCON5Grid $latitudeDifferenceFile,
2185
        NADCON5Grid $longitudeDifferenceFile,
2186
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile = null,
2187
        bool $inReverse
2188
    ): self {
2189
        /*
2190
         * Ideally most of this logic (especially reverse case) would be in the NADCON5Grid class like the other grids,
2191
         * but NADCON5 uses different files for latitude/longitude/height that need to be combined at runtime so that
2192
         * isn't possible.
2193
         */
2194 7
        if (!$inReverse) {
2195 4
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($this));
2196 4
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($this));
2197 4
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($this)) : null;
2198
2199 4
            return self::create($this->latitude->add($latitudeAdjustment), $this->longitude->add($longitudeAdjustment), $heightAdjustment ? $this->height->add($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2200
        }
2201
2202 3
        $iteration = $this;
2203
2204
        do {
2205 3
            $prevIteration = $iteration;
2206 3
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($iteration));
2207 3
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($iteration));
2208 3
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($iteration)) : null;
2209 3
            $iteration = self::create($this->latitude->subtract($latitudeAdjustment), $this->longitude->subtract($longitudeAdjustment), $heightAdjustment ? $this->height->subtract($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2210 3
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
0 ignored issues
show
Bug introduced by
It seems like $prevIteration->height can also be of type null; however, parameter $unit of PHPCoord\UnitOfMeasure\Length\Length::subtract() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2210
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract(/** @scrutinizer ignore-type */ $prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
Loading history...
Bug introduced by
The method subtract() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2210
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->/** @scrutinizer ignore-call */ subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
2211
2212 3
        return $iteration;
2213
    }
2214
2215
    /**
2216
     * NTv2
2217
     * Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Supersedes
2218
     * NTv1 (transformation method code 9614).  Input expects longitudes to be positive west.
2219
     */
2220 6
    public function NTv2(
2221
        Geographic $to,
2222
        NTv2Grid $latitudeAndLongitudeDifferenceFile,
2223
        bool $inReverse
2224
    ): self {
2225 6
        if (!$inReverse) {
2226 4
            return $latitudeAndLongitudeDifferenceFile->applyForwardAdjustment($this, $to);
2227
        } else {
2228 2
            return $latitudeAndLongitudeDifferenceFile->applyReverseAdjustment($this, $to);
2229
        }
2230
    }
2231
2232 378
    public function asGeographicValue(): GeographicValue
2233
    {
2234 378
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2235
    }
2236
2237 18
    public function asUTMPoint(): UTMPoint
2238
    {
2239 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2240 18
        $latitudeOfNaturalOrigin = new Degree(0);
2241 18
        $initialLongitude = new Degree(-180);
2242 18
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2243 18
        $falseEasting = new Metre(500000);
2244 18
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2245 18
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2246 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2247
2248 18
        $projectedCRS = new Projected(
2249 18
            'UTM/' . $this->crs->getSRID(),
2250 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2251 18
            $this->crs->getDatum(),
2252 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter
2253 18
        );
2254
2255 18
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2256
2257 18
        return new UTMPoint($asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->crs, $this->epoch);
2258
    }
2259
}
2260