Passed
Push — 4.x ( e9b635...bc20e1 )
by Doug
07:44
created

GeographicPoint::mercatorVariantA()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 20
Code Lines 10

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 11
CRAP Score 1

Importance

Changes 0
Metric Value
eloc 10
c 0
b 0
f 0
dl 0
loc 20
ccs 11
cts 11
cp 1
rs 9.9332
cc 1
nc 1
nop 6
crap 1
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function acos;
12
use function cos;
13
use DateTime;
14
use DateTimeImmutable;
15
use DateTimeInterface;
16
use function get_class;
17
use function implode;
18
use InvalidArgumentException;
19
use function log;
20
use PHPCoord\CoordinateOperation\ComplexNumber;
21
use PHPCoord\CoordinateOperation\GeocentricValue;
22
use PHPCoord\CoordinateOperation\GeographicValue;
23
use PHPCoord\CoordinateReferenceSystem\Geocentric;
24
use PHPCoord\CoordinateReferenceSystem\Geographic;
25
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
26
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
27
use PHPCoord\CoordinateReferenceSystem\Projected;
28
use PHPCoord\CoordinateSystem\Axis;
29
use PHPCoord\Datum\Ellipsoid;
30
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
31
use PHPCoord\Exception\UnknownAxisException;
32
use PHPCoord\UnitOfMeasure\Angle\Angle;
33
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
34
use PHPCoord\UnitOfMeasure\Angle\Degree;
35
use PHPCoord\UnitOfMeasure\Angle\Radian;
36
use PHPCoord\UnitOfMeasure\Length\Length;
37
use PHPCoord\UnitOfMeasure\Length\Metre;
38
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
39
use PHPCoord\UnitOfMeasure\Scale\Scale;
40
use PHPCoord\UnitOfMeasure\Scale\Unity;
41
use function sin;
42
use function sprintf;
43
use function sqrt;
44
use function tan;
45
use TypeError;
46
47
/**
48
 * Coordinate representing a point on an ellipsoid.
49
 */
50
class GeographicPoint extends Point
51
{
52
    /**
53
     * Latitude.
54
     */
55
    protected Angle $latitude;
56
57
    /**
58
     * Longitude.
59
     */
60
    protected Angle $longitude;
61
62
    /**
63
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
64
     */
65
    protected ?Length $height;
66
67
    /**
68
     * Coordinate reference system.
69
     */
70
    protected Geographic $crs;
71
72
    /**
73
     * Coordinate epoch (date for which the specified coordinates represented this point).
74
     */
75
    protected ?DateTimeImmutable $epoch;
76
77 116
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
78
    {
79 116
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
80
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
81
        }
82
83 116
        if ($crs instanceof Geographic2D && $height !== null) {
84 1
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
85
        }
86
87 115
        if ($crs instanceof Geographic3D && $height === null) {
88 1
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
89
        }
90
91 114
        $this->crs = $crs;
92
93 114
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
94 114
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
95
96 114
        if ($height) {
97 17
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
98
        } else {
99 100
            $this->height = null;
100
        }
101
102 114
        if ($epoch instanceof DateTime) {
103 1
            $epoch = DateTimeImmutable::createFromMutable($epoch);
104
        }
105 114
        $this->epoch = $epoch;
106 114
    }
107
108
    /**
109
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
110
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
111
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
112
     */
113 116
    public static function create(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null): self
114
    {
115 116
        return new static($latitude, $longitude, $height, $crs, $epoch);
116
    }
117
118 71
    public function getLatitude(): Angle
119
    {
120 71
        return $this->latitude;
121
    }
122
123 71
    public function getLongitude(): Angle
124
    {
125 71
        return $this->longitude;
126
    }
127
128 35
    public function getHeight(): ?Length
129
    {
130 35
        return $this->height;
131
    }
132
133 114
    public function getCRS(): Geographic
134
    {
135 114
        return $this->crs;
136
    }
137
138 3
    public function getCoordinateEpoch(): ?DateTimeImmutable
139
    {
140 3
        return $this->epoch;
141
    }
142
143
    /**
144
     * Calculate surface distance between two points.
145
     */
146 1
    public function calculateDistance(Point $to): Length
147
    {
148 1
        if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
149
            throw new InvalidArgumentException('Can only calculate distances between two points in the same CRS');
150
        }
151
152
        //Mean radius definition taken from Wikipedia
153
        /** @var Ellipsoid $ellipsoid */
154 1
        $ellipsoid = $this->getCRS()->getDatum()->getEllipsoid();
155 1
        $radius = ((2 * $ellipsoid->getSemiMajorAxis()->asMetres()->getValue()) + $ellipsoid->getSemiMinorAxis()->asMetres()->getValue()) / 3;
156
157 1
        return new Metre(acos(sin($this->latitude->asRadians()->getValue()) * sin($to->latitude->asRadians()->getValue()) + cos($this->latitude->asRadians()->getValue()) * cos($to->latitude->asRadians()->getValue()) * cos($to->longitude->asRadians()->getValue() - $this->longitude->asRadians()->getValue())) * $radius);
158
    }
159
160 4
    public function __toString(): string
161
    {
162 4
        $values = [];
163 4
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
164 4
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
165 4
                $values[] = $this->latitude;
166 4
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
167 4
                $values[] = $this->longitude;
168 1
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
169 1
                $values[] = $this->height;
170
            } else {
171
                throw new UnknownAxisException(); // @codeCoverageIgnore
172
            }
173
        }
174
175 4
        return '(' . implode(', ', $values) . ')';
176
    }
177
178
    /**
179
     * Geographic/geocentric conversions
180
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
181
     * 9636 to form a geographic to geographic transformation.
182
     */
183 1
    public function geographicGeocentric(
184
        Geocentric $to
185
    ): GeocentricPoint {
186 1
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
187 1
        $asGeocentric = $geographicValue->asGeocentricValue();
188
189 1
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
190
    }
191
192
    /**
193
     * Coordinate Frame rotation (geog2D/geog3D domain)
194
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
195
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
196
     * between other CRS types.
197
     */
198 2
    public function coordinateFrameRotation(
199
        Geographic $to,
200
        Length $translationX,
201
        Length $translationY,
202
        Length $translationZ,
203
        Angle $rotationX,
204
        Angle $rotationY,
205
        Angle $rotationZ,
206
        Scale $scaleFactor
207
    ): self {
208 2
        return $this->coordinateFrameMolodenskyBadekas(
209 2
            $to,
210
            $translationX,
211
            $translationY,
212
            $translationZ,
213
            $rotationX,
214
            $rotationY,
215
            $rotationZ,
216
            $scaleFactor,
217 2
            new Metre(0),
218 2
            new Metre(0),
219 2
            new Metre(0)
220
        );
221
    }
222
223
    /**
224
     * Molodensky-Badekas (CF geog2D/geog3D domain)
225
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
226
     * opposite rotation convention in geographic 2D domain.
227
     */
228 4
    public function coordinateFrameMolodenskyBadekas(
229
        Geographic $to,
230
        Length $translationX,
231
        Length $translationY,
232
        Length $translationZ,
233
        Angle $rotationX,
234
        Angle $rotationY,
235
        Angle $rotationZ,
236
        Scale $scaleFactor,
237
        Length $pivotX,
238
        Length $pivotY,
239
        Length $pivotZ
240
    ): self {
241 4
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
242 4
        $asGeocentric = $geographicValue->asGeocentricValue();
243
244 4
        $xs = $asGeocentric->getX()->asMetres()->getValue();
245 4
        $ys = $asGeocentric->getY()->asMetres()->getValue();
246 4
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
247 4
        $tx = $translationX->asMetres()->getValue();
248 4
        $ty = $translationY->asMetres()->getValue();
249 4
        $tz = $translationZ->asMetres()->getValue();
250 4
        $rx = $rotationX->asRadians()->getValue();
251 4
        $ry = $rotationY->asRadians()->getValue();
252 4
        $rz = $rotationZ->asRadians()->getValue();
253 4
        $M = 1 + $scaleFactor->asUnity()->getValue();
254 4
        $xp = $pivotX->asMetres()->getValue();
255 4
        $yp = $pivotY->asMetres()->getValue();
256 4
        $zp = $pivotZ->asMetres()->getValue();
257
258 4
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
259 4
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
260 4
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
261 4
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
262 4
        $newGeographic = $newGeocentric->asGeographicValue();
263
264 4
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
265
    }
266
267
    /**
268
     * Position Vector transformation (geog2D/geog3D domain)
269
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
270
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
271
     * operating between other CRS types.
272
     */
273 3
    public function positionVectorTransformation(
274
        Geographic $to,
275
        Length $translationX,
276
        Length $translationY,
277
        Length $translationZ,
278
        Angle $rotationX,
279
        Angle $rotationY,
280
        Angle $rotationZ,
281
        Scale $scaleFactor
282
    ): self {
283 3
        return $this->positionVectorMolodenskyBadekas(
284 3
            $to,
285
            $translationX,
286
            $translationY,
287
            $translationZ,
288
            $rotationX,
289
            $rotationY,
290
            $rotationZ,
291
            $scaleFactor,
292 3
            new Metre(0),
293 3
            new Metre(0),
294 3
            new Metre(0)
295
        );
296
    }
297
298
    /**
299
     * Molodensky-Badekas (PV geog2D/geog3D domain)
300
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
301
     * rotation in geographic 2D/3D domain.
302
     */
303 5
    public function positionVectorMolodenskyBadekas(
304
        Geographic $to,
305
        Length $translationX,
306
        Length $translationY,
307
        Length $translationZ,
308
        Angle $rotationX,
309
        Angle $rotationY,
310
        Angle $rotationZ,
311
        Scale $scaleFactor,
312
        Length $pivotX,
313
        Length $pivotY,
314
        Length $pivotZ
315
    ): self {
316 5
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
317 5
        $asGeocentric = $geographicValue->asGeocentricValue();
318
319 5
        $xs = $asGeocentric->getX()->asMetres()->getValue();
320 5
        $ys = $asGeocentric->getY()->asMetres()->getValue();
321 5
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
322 5
        $tx = $translationX->asMetres()->getValue();
323 5
        $ty = $translationY->asMetres()->getValue();
324 5
        $tz = $translationZ->asMetres()->getValue();
325 5
        $rx = $rotationX->asRadians()->getValue();
326 5
        $ry = $rotationY->asRadians()->getValue();
327 5
        $rz = $rotationZ->asRadians()->getValue();
328 5
        $M = 1 + $scaleFactor->asUnity()->getValue();
329 5
        $xp = $pivotX->asMetres()->getValue();
330 5
        $yp = $pivotY->asMetres()->getValue();
331 5
        $zp = $pivotZ->asMetres()->getValue();
332
333 5
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
334 5
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
335 5
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
336 5
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
337 5
        $newGeographic = $newGeocentric->asGeographicValue();
338
339 5
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
340
    }
341
342
    /**
343
     * Geocentric translations
344
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
345
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
346
     * operating between other CRSs types.
347
     */
348 1
    public function geocentricTranslation(
349
        Geographic $to,
350
        Length $translationX,
351
        Length $translationY,
352
        Length $translationZ
353
    ): self {
354 1
        return $this->positionVectorTransformation(
355 1
            $to,
356
            $translationX,
357
            $translationY,
358
            $translationZ,
359 1
            new Radian(0),
360 1
            new Radian(0),
361 1
            new Radian(0),
362 1
            new Unity(0)
363
        );
364
    }
365
366
    /**
367
     * Abridged Molodensky
368
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
369
     * systems, modelled as a set of geocentric translations.
370
     */
371 2
    public function abridgedMolodensky(
372
        Geographic $to,
373
        Length $translationX,
374
        Length $translationY,
375
        Length $translationZ,
376
        Length $differenceInSemiMajorAxis,
377
        Scale $differenceInFlattening
378
    ): self {
379 2
        $latitude = $this->latitude->asRadians()->getValue();
380 2
        $longitude = $this->longitude->asRadians()->getValue();
381 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
382 2
        $tx = $translationX->asMetres()->getValue();
383 2
        $ty = $translationY->asMetres()->getValue();
384 2
        $tz = $translationZ->asMetres()->getValue();
385 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
386 2
        $df = $differenceInFlattening->asUnity()->getValue();
387
388 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
389 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
390
391 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
392 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
393
394 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
395
396 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
397 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
398 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
399
400 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
401 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
402 2
        $toHeight = $fromHeight + $dHeight;
403
404 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
405
    }
406
407
    /**
408
     * Molodensky
409
     * See Abridged Molodensky.
410
     */
411 2
    public function molodensky(
412
        Geographic $to,
413
        Length $translationX,
414
        Length $translationY,
415
        Length $translationZ,
416
        Length $differenceInSemiMajorAxis,
417
        Scale $differenceInFlattening
418
    ): self {
419 2
        $latitude = $this->latitude->asRadians()->getValue();
420 2
        $longitude = $this->longitude->asRadians()->getValue();
421 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
422 2
        $tx = $translationX->asMetres()->getValue();
423 2
        $ty = $translationY->asMetres()->getValue();
424 2
        $tz = $translationZ->asMetres()->getValue();
425 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
426 2
        $df = $differenceInFlattening->asUnity()->getValue();
427
428 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
429 2
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
430 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
431
432 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
433 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
434
435 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
436
437 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
438 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
439 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
440
441 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
442 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
443 2
        $toHeight = $fromHeight + $dHeight;
444
445 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
446
    }
447
448
    /*
449
     * Geographic2D/3D offsets
450
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
451
     * coordinate values of the point in the source system.
452
     */
453 3
    public function offsets(
454
        Geographic $to,
455
        Angle $latitudeOffset,
456
        Angle $longitudeOffset,
457
        ?Length $heightOffset = null
458
    ): self {
459 3
        $heightOffset = $heightOffset ?: new Metre(0);
460
461 3
        $toLatitude = $this->latitude->add($latitudeOffset);
462 3
        $toLongitude = $this->longitude->add($longitudeOffset);
463 3
        $toHeight = $this->height ? $this->height->add($heightOffset) : null;
464
465 3
        return static::create($toLatitude, $toLongitude, $toHeight, $to, $this->epoch);
466
    }
467
468
    /**
469
     * Albers Equal Area.
470
     */
471 2
    public function albersEqualArea(
472
        Projected $to,
473
        Angle $falseOriginLatitude,
474
        Angle $falseOriginLongitude,
475
        Angle $firstStandardParallellLatitude,
476
        Angle $secondStandardParallellLatitude,
477
        Length $falseOriginEasting,
478
        Length $falseOriginNorthing
479
    ): ProjectedPoint {
480 2
        $latitude = $this->latitude->asRadians()->getValue();
481 2
        $longitude = $this->longitude->asRadians()->getValue();
482 2
        $phiOrigin = $falseOriginLatitude->asRadians()->getValue();
483 2
        $phi1 = $firstStandardParallellLatitude->asRadians()->getValue();
484 2
        $phi2 = $secondStandardParallellLatitude->asRadians()->getValue();
485 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
486 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
487 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
488
489 2
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
490 2
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
491
492 2
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
493 2
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
494 2
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
495 2
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
496
497 2
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
498 2
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
499 2
        $theta = $n * ($longitude - $falseOriginLongitude->asRadians()->getValue());
500 2
        $rho = $a * sqrt($C - $n * $alpha) / $n;
501 2
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
502
503 2
        $easting = $falseOriginEasting->asMetres()->getValue() + ($rho * sin($theta));
504 2
        $northing = $falseOriginNorthing->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
505
506 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
507
    }
508
509
    /**
510
     * American Polyconic.
511
     */
512 1
    public function americanPolyconic(
513
        Projected $to,
514
        Angle $naturalOriginLatitude,
515
        Angle $naturalOriginLongitude,
516
        Length $falseEasting,
517
        Length $falseNorthing
518
    ): ProjectedPoint {
519 1
        $latitude = $this->latitude->asRadians()->getValue();
520 1
        $longitude = $this->longitude->asRadians()->getValue();
521 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
522 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
523 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
524 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
525 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
526 1
        $e4 = $e ** 4;
527 1
        $e6 = $e ** 6;
528
529 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
530 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
531
532 1
        if ($latitude === 0) {
0 ignored issues
show
introduced by
The condition $latitude === 0 is always false.
Loading history...
533
            $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
534
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
535
        } else {
536 1
            $L = ($longitude - $longitudeOrigin) * sin($latitude);
537 1
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
538
539 1
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
540 1
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
541
        }
542
543 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
544
    }
545
546
    /**
547
     * Bonne.
548
     */
549 1
    public function bonne(
550
        Projected $to,
551
        Angle $naturalOriginLatitude,
552
        Angle $naturalOriginLongitude,
553
        Length $falseEasting,
554
        Length $falseNorthing
555
    ): ProjectedPoint {
556 1
        $latitude = $this->latitude->asRadians()->getValue();
557 1
        $longitude = $this->longitude->asRadians()->getValue();
558 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
559 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
560 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
561 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
562 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
563 1
        $e4 = $e ** 4;
564 1
        $e6 = $e ** 6;
565
566 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
567 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
568
569 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
570 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
571
572 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
573 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
574
575 1
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
576 1
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
577
578 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
579
    }
580
581
    /**
582
     * Bonne South Orientated.
583
     */
584 1
    public function bonneSouthOrientated(
585
        Projected $to,
586
        Angle $naturalOriginLatitude,
587
        Angle $naturalOriginLongitude,
588
        Length $falseEasting,
589
        Length $falseNorthing
590
    ): ProjectedPoint {
591 1
        $latitude = $this->latitude->asRadians()->getValue();
592 1
        $longitude = $this->longitude->asRadians()->getValue();
593 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
594 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
595 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
596 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
597 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
598 1
        $e4 = $e ** 4;
599 1
        $e6 = $e ** 6;
600
601 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
602 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
603
604 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
605 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
606
607 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
608 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
609
610 1
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
611 1
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
612
613 1
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
614
    }
615
616
    /**
617
     * Cassini-Soldner.
618
     */
619 1
    public function cassiniSoldner(
620
        Projected $to,
621
        Angle $naturalOriginLatitude,
622
        Angle $naturalOriginLongitude,
623
        Length $falseEasting,
624
        Length $falseNorthing
625
    ): ProjectedPoint {
626 1
        $latitude = $this->latitude->asRadians()->getValue();
627 1
        $longitude = $this->longitude->asRadians()->getValue();
628 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
629 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
630 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
631 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
632 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
633 1
        $e4 = $e ** 4;
634 1
        $e6 = $e ** 6;
635
636 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
637 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
638
639 1
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
640 1
        $T = tan($latitude) ** 2;
641 1
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
642 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
643 1
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
644
645 1
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
646 1
        $northing = $falseNorthing->asMetres()->getValue() + $X;
647
648 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
649
    }
650
651
    /**
652
     * Hyperbolic Cassini-Soldner.
653
     */
654 1
    public function hyperbolicCassiniSoldner(
655
        Projected $to,
656
        Angle $naturalOriginLatitude,
657
        Angle $naturalOriginLongitude,
658
        Length $falseEasting,
659
        Length $falseNorthing
660
    ): ProjectedPoint {
661 1
        $latitude = $this->latitude->asRadians()->getValue();
662 1
        $longitude = $this->longitude->asRadians()->getValue();
663 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
664 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
665 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
666 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
667 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
668 1
        $e4 = $e ** 4;
669 1
        $e6 = $e ** 6;
670
671 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
672 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
673
674 1
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
675 1
        $T = tan($latitude) ** 2;
676 1
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
677 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
678 1
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
679 1
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
680
681 1
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
682 1
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
683
684 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
685
    }
686
687
    /**
688
     * Colombia Urban.
689
     */
690 1
    public function columbiaUrban(
691
        Projected $to,
692
        Angle $naturalOriginLatitude,
693
        Angle $naturalOriginLongitude,
694
        Length $falseEasting,
695
        Length $falseNorthing,
696
        Length $projectionPlaneOriginHeight
697
    ): ProjectedPoint {
698 1
        $latitude = $this->latitude->asRadians()->getValue();
699 1
        $longitude = $this->longitude->asRadians()->getValue();
700 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
701 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
702 1
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
703 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
704 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
705
706 1
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
0 ignored issues
show
Unused Code introduced by
The assignment to $rho is dead and can be removed.
Loading history...
707 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
708 1
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
709
710 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
711 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
712
713 1
        $A = 1 + $heightOrigin / $nuOrigin;
714 1
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
715 1
        $G = 1 + $heightOrigin / $rhoMid;
716
717 1
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * ($longitude - $longitudeOrigin);
718 1
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * ($longitude - $longitudeOrigin) ** 2 * $nu ** 2 * cos($latitude) ** 2));
719
720 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
721
    }
722
723
    /**
724
     * Equal Earth.
725
     */
726 1
    public function equalEarth(
727
        Projected $to,
728
        Angle $naturalOriginLongitude,
729
        Length $falseEasting,
730
        Length $falseNorthing
731
    ): ProjectedPoint {
732 1
        $latitude = $this->latitude->asRadians()->getValue();
733 1
        $longitude = $this->longitude->asRadians()->getValue();
734 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
735 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
736 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
737 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
738
739 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
740 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
741 1
        $beta = asin($q / $qP);
742 1
        $theta = asin(sin($beta) * sqrt(3) / 2);
743 1
        $Rq = $a * sqrt($qP / 2);
744
745 1
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * ($longitude - $longitudeOrigin) * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
746 1
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
747
748 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
749
    }
750
751
    /**
752
     * Equidistant Cylindrical
753
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
754
     */
755 1
    public function equidistantCylindrical(
756
        Projected $to,
757
        Angle $firstStandardParallelLatitude,
758
        Angle $naturalOriginLongitude,
759
        Length $falseEasting,
760
        Length $falseNorthing
761
    ): ProjectedPoint {
762 1
        $latitude = $this->latitude->asRadians()->getValue();
763 1
        $longitude = $this->longitude->asRadians()->getValue();
764 1
        $latitudeFirstParallel = $firstStandardParallelLatitude->asRadians()->getValue();
765 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
766 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
767 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
768 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
769 1
        $e4 = $e ** 4;
770 1
        $e6 = $e ** 6;
771 1
        $e8 = $e ** 8;
772 1
        $e10 = $e ** 10;
773 1
        $e12 = $e ** 12;
774 1
        $e14 = $e ** 14;
775
776 1
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
777
778
        $M = $a * (
779 1
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
780 1
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
781 1
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
782 1
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
783 1
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
784 1
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
785 1
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
786 1
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
787
        );
788
789 1
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * ($longitude - $longitudeOrigin);
790 1
        $northing = $falseNorthing->asMetres()->getValue() + $M;
791
792 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
793
    }
794
795
    /**
796
     * Guam Projection
797
     * Simplified form of Oblique Azimuthal Equidistant projection method.
798
     */
799 1
    public function guamProjection(
800
        Projected $to,
801
        Angle $naturalOriginLatitude,
802
        Angle $naturalOriginLongitude,
803
        Length $falseEasting,
804
        Length $falseNorthing
805
    ): ProjectedPoint {
806 1
        $latitude = $this->latitude->asRadians()->getValue();
807 1
        $longitude = $this->longitude->asRadians()->getValue();
808 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
809 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
810 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
811 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
812 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
813 1
        $e4 = $e ** 4;
814 1
        $e6 = $e ** 6;
815
816 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
817 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
818 1
        $x = ($a * ($longitude - $longitudeOrigin) * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
819
820 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
821 1
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
822
823 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
824
    }
825
826
    /**
827
     * Krovak.
828
     */
829 4
    public function krovak(
830
        Projected $to,
831
        Angle $latitudeProjectionCentre,
832
        Angle $longitudeOrigin,
833
        Angle $coLatitudeConeAxis,
834
        Angle $latitudePseudoStandardParallel,
835
        Scale $scaleFactorPseudoStandardParallel,
836
        Length $falseWesting,
837
        Length $falseSouthing
838
    ): ProjectedPoint {
839 4
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->subtract($this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude());
840 4
        $latitude = $this->latitude->asRadians()->getValue();
841 4
        $longitude = $this->longitude->subtract($longitudeOffset)->asRadians()->getValue();
842 4
        $latitudeC = $latitudeProjectionCentre->asRadians()->getValue();
843 4
        $longitudeO = $longitudeOrigin->asRadians()->getValue();
844 4
        $alphaC = $coLatitudeConeAxis->asRadians()->getValue();
845 4
        $latitudeP = $latitudePseudoStandardParallel->asRadians()->getValue();
846 4
        $kP = $scaleFactorPseudoStandardParallel->asUnity()->getValue();
847 4
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
848 4
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
849 4
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
850
851 4
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
852 4
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
853 4
        $upsilonO = asin(sin($latitudeC) / $B);
854 4
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
855 4
        $n = sin($latitudeP);
856 4
        $rO = $kP * $A / tan($latitudeP);
857
858 4
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
859 4
        $V = $B * ($longitudeO - $longitude);
860 4
        $T = asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
861 4
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
862 4
        $theta = $n * $D;
863 4
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
864 4
        $X = $r * cos($theta);
865 4
        $Y = $r * sin($theta);
866
867 4
        $westing = $Y + $falseWesting->asMetres()->getValue();
868 4
        $southing = $X + $falseSouthing->asMetres()->getValue();
869
870 4
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
871
    }
872
873
    /**
874
     * Krovak Modified
875
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
876
     * to be a map projection.
877
     */
878 2
    public function krovakModified(
879
        Projected $to,
880
        Angle $latitudeProjectionCentre,
881
        Angle $longitudeOrigin,
882
        Angle $coLatitudeConeAxis,
883
        Angle $latitudePseudoStandardParallel,
884
        Scale $scaleFactorPseudoStandardParallel,
885
        Length $falseWesting,
886
        Length $falseSouthing,
887
        Length $evaluationPointSouthing,
888
        Length $evaluationPointWesting,
889
        Coefficient $C1,
890
        Coefficient $C2,
891
        Coefficient $C3,
892
        Coefficient $C4,
893
        Coefficient $C5,
894
        Coefficient $C6,
895
        Coefficient $C7,
896
        Coefficient $C8,
897
        Coefficient $C9,
898
        Coefficient $C10
899
    ): ProjectedPoint {
900 2
        $asKrovak = $this->krovak($to, $latitudeProjectionCentre, $longitudeOrigin, $coLatitudeConeAxis, $latitudePseudoStandardParallel, $scaleFactorPseudoStandardParallel, new Metre(0), new Metre(0));
901
902 2
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
903 2
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
904 2
        $c1 = $C1->asUnity()->getValue();
905 2
        $c2 = $C2->asUnity()->getValue();
906 2
        $c3 = $C3->asUnity()->getValue();
907 2
        $c4 = $C4->asUnity()->getValue();
908 2
        $c5 = $C5->asUnity()->getValue();
909 2
        $c6 = $C6->asUnity()->getValue();
910 2
        $c7 = $C7->asUnity()->getValue();
911 2
        $c8 = $C8->asUnity()->getValue();
912 2
        $c9 = $C9->asUnity()->getValue();
913 2
        $c10 = $C10->asUnity()->getValue();
914
915 2
        $Xr = $southing - $evaluationPointSouthing->asMetres()->getValue();
916 2
        $Yr = $westing - $evaluationPointWesting->asMetres()->getValue();
917
918 2
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
919 2
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
920
921 2
        $westing += $falseWesting->asMetres()->getValue() - $dY;
922 2
        $southing += $falseSouthing->asMetres()->getValue() - $dX;
923
924 2
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
925
    }
926
927
    /**
928
     * Lambert Azimuthal Equal Area
929
     * This is the ellipsoidal form of the projection.
930
     */
931 1
    public function lambertAzimuthalEqualArea(
932
        Projected $to,
933
        Angle $naturalOriginLatitude,
934
        Angle $naturalOriginLongitude,
935
        Length $falseEasting,
936
        Length $falseNorthing
937
    ): ProjectedPoint {
938 1
        $latitude = $this->latitude->asRadians()->getValue();
939 1
        $longitude = $this->longitude->asRadians()->getValue();
940 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
941 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
942 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
943 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
944 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
945
946 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
947 1
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
948 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
949 1
        $beta = asin($q / $qP);
950 1
        $betaO = asin($qO / $qP);
951 1
        $Rq = $a * sqrt($qP / 2);
952 1
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($longitude - $longitudeOrigin))));
953 1
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
954
955 1
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($longitude - $longitudeOrigin)));
956 1
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($longitude - $longitudeOrigin)));
957
958 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
959
    }
960
961
    /**
962
     * Lambert Azimuthal Equal Area (Spherical)
963
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
964
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
965
     * methods.
966
     */
967 1
    public function lambertAzimuthalEqualAreaSpherical(
968
        Projected $to,
969
        Angle $naturalOriginLatitude,
970
        Angle $naturalOriginLongitude,
971
        Length $falseEasting,
972
        Length $falseNorthing
973
    ): ProjectedPoint {
974 1
        $latitude = $this->latitude->asRadians()->getValue();
975 1
        $longitude = $this->longitude->asRadians()->getValue();
976 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
977 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
978 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
979
980 1
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
981
982 1
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($longitude - $longitudeOrigin));
983 1
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
984
985 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
986
    }
987
988
    /**
989
     * Lambert Conic Conformal (1SP).
990
     */
991 1
    public function lambertConicConformal1SP(
992
        Projected $to,
993
        Angle $naturalOriginLatitude,
994
        Angle $naturalOriginLongitude,
995
        Scale $naturalOriginScaleFactor,
996
        Length $falseEasting,
997
        Length $falseNorthing
998
    ): ProjectedPoint {
999 1
        $latitude = $this->latitude->asRadians()->getValue();
1000 1
        $longitude = $this->longitude->asRadians()->getValue();
1001 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1002 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1003 1
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1004 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1005 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1006 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1007
1008 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1009 1
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1010 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1011 1
        $n = sin($latitudeOrigin);
1012 1
        $F = $mO / ($n * $tO ** $n);
1013 1
        $rO = $a * $F * $tO ** $n ** $kO;
1014 1
        $r = $a * $F * $t ** $n ** $kO;
1015 1
        $theta = $n * ($longitude - $longitudeOrigin);
1016
1017 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1018 1
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1019
1020 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1021
    }
1022
1023
    /**
1024
     * Lambert Conic Conformal (2SP Belgium)
1025
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1026
     * with appropriately modified parameter values.
1027
     */
1028 1
    public function lambertConicConformal2SPBelgium(
1029
        Projected $to,
1030
        Angle $falseOriginLatitude,
1031
        Angle $falseOriginLongitude,
1032
        Angle $firstStandardParallellLatitude,
1033
        Angle $secondStandardParallellLatitude,
1034
        Length $falseOriginEasting,
1035
        Length $falseOriginNorthing
1036
    ): ProjectedPoint {
1037 1
        $latitude = $this->latitude->asRadians()->getValue();
1038 1
        $longitude = $this->longitude->asRadians()->getValue();
1039 1
        $lambdaF = $falseOriginLongitude->asRadians()->getValue();
1040 1
        $phiF = $falseOriginLatitude->asRadians()->getValue();
1041 1
        $phi1 = $firstStandardParallellLatitude->asRadians()->getValue();
1042 1
        $phi2 = $secondStandardParallellLatitude->asRadians()->getValue();
1043 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1044 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1045 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1046
1047 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1048 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1049 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1050 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1051 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1052 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1053 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1054 1
        $F = $m1 / ($n * $t1 ** $n);
1055 1
        $r = $a * $F * $t ** $n;
1056 1
        $rF = $a * $F * $tF ** $n;
1057 1
        if (is_nan($rF)) {
1058 1
            $rF = 0;
1059
        }
1060 1
        $theta = ($n * ($longitude - $lambdaF)) - (new ArcSecond(29.2985))->asRadians()->getValue();
1061
1062 1
        $easting = $falseOriginEasting->asMetres()->getValue() + $r * sin($theta);
1063 1
        $northing = $falseOriginNorthing->asMetres()->getValue() + $rF - $r * cos($theta);
1064
1065 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1066
    }
1067
1068
    /**
1069
     * Lambert Conic Conformal (2SP Michigan).
1070
     */
1071 1
    public function lambertConicConformal2SPMichigan(
1072
        Projected $to,
1073
        Angle $falseOriginLatitude,
1074
        Angle $falseOriginLongitude,
1075
        Angle $firstStandardParallellLatitude,
1076
        Angle $secondStandardParallellLatitude,
1077
        Length $falseOriginEasting,
1078
        Length $falseOriginNorthing,
1079
        Scale $scalingFactor
1080
    ): ProjectedPoint {
1081 1
        $latitude = $this->latitude->asRadians()->getValue();
1082 1
        $longitude = $this->longitude->asRadians()->getValue();
1083 1
        $lambdaF = $falseOriginLongitude->asRadians()->getValue();
1084 1
        $phiF = $falseOriginLatitude->asRadians()->getValue();
1085 1
        $phi1 = $firstStandardParallellLatitude->asRadians()->getValue();
1086 1
        $phi2 = $secondStandardParallellLatitude->asRadians()->getValue();
1087 1
        $K = $scalingFactor->asUnity()->getValue();
1088 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1089 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1090 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1091
1092 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1093 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1094 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1095 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1096 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1097 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1098 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1099 1
        $F = $m1 / ($n * $t1 ** $n);
1100 1
        $r = $a * $K * $F * $t ** $n;
1101 1
        $rF = $a * $K * $F * $tF ** $n;
1102 1
        $theta = $n * ($longitude - $lambdaF);
1103
1104 1
        $easting = $falseOriginEasting->asMetres()->getValue() + $r * sin($theta);
1105 1
        $northing = $falseOriginNorthing->asMetres()->getValue() + $rF - $r * cos($theta);
1106
1107 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1108
    }
1109
1110
    /**
1111
     * Lambert Conic Conformal (2SP).
1112
     */
1113 1
    public function lambertConicConformal2SP(
1114
        Projected $to,
1115
        Angle $falseOriginLatitude,
1116
        Angle $falseOriginLongitude,
1117
        Angle $firstStandardParallellLatitude,
1118
        Angle $secondStandardParallellLatitude,
1119
        Length $falseOriginEasting,
1120
        Length $falseOriginNorthing
1121
    ): ProjectedPoint {
1122 1
        $latitude = $this->latitude->asRadians()->getValue();
1123 1
        $longitude = $this->longitude->asRadians()->getValue();
1124 1
        $lambdaF = $falseOriginLongitude->asRadians()->getValue();
1125 1
        $phiF = $falseOriginLatitude->asRadians()->getValue();
1126 1
        $phi1 = $firstStandardParallellLatitude->asRadians()->getValue();
1127 1
        $phi2 = $secondStandardParallellLatitude->asRadians()->getValue();
1128 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1129 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1130 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1131
1132 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1133 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1134 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1135 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1136 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1137 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1138 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1139 1
        $F = $m1 / ($n * $t1 ** $n);
1140 1
        $r = $a * $F * $t ** $n;
1141 1
        $rF = $a * $F * $tF ** $n;
1142 1
        $theta = $n * ($longitude - $lambdaF);
1143
1144 1
        $easting = $falseOriginEasting->asMetres()->getValue() + $r * sin($theta);
1145 1
        $northing = $falseOriginNorthing->asMetres()->getValue() + $rF - $r * cos($theta);
1146
1147 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1148
    }
1149
1150
    /**
1151
     * Lambert Conic Conformal (West Orientated).
1152
     */
1153
    public function lambertConicConformalWestOrientated(
1154
        Projected $to,
1155
        Angle $naturalOriginLatitude,
1156
        Angle $naturalOriginLongitude,
1157
        Scale $naturalOriginScaleFactor,
1158
        Length $falseEasting,
1159
        Length $falseNorthing
1160
    ): ProjectedPoint {
1161
        $latitude = $this->latitude->asRadians()->getValue();
1162
        $longitude = $this->longitude->asRadians()->getValue();
1163
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1164
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1165
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1166
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1167
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1168
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1169
1170
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1171
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1172
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1173
        $n = sin($latitudeOrigin);
1174
        $F = $mO / ($n * $tO ** $n);
1175
        $rO = $a * $F * $tO ** $n ** $kO;
1176
        $r = $a * $F * $t ** $n ** $kO;
1177
        $theta = $n * ($longitude - $longitudeOrigin);
1178
1179
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1180
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1181
1182
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1183
    }
1184
1185
    /**
1186
     * Lambert Conic Near-Conformal
1187
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1188
     * series expansion of the projection formulae.
1189
     */
1190 1
    public function lambertConicNearConformal(
1191
        Projected $to,
1192
        Angle $naturalOriginLatitude,
1193
        Angle $naturalOriginLongitude,
1194
        Scale $naturalOriginScaleFactor,
1195
        Length $falseEasting,
1196
        Length $falseNorthing
1197
    ): ProjectedPoint {
1198 1
        $latitude = $this->latitude->asRadians()->getValue();
1199 1
        $longitude = $this->longitude->asRadians()->getValue();
1200 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1201 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1202 1
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1203 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1204 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1205 1
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1206
1207 1
        $n = $f / (2 - $f);
1208 1
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1209 1
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1210 1
        $A = 1 / (6 * $rhoO * $nuO);
1211 1
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1212 1
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1213 1
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1214 1
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1215 1
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1216 1
        $rO = $kO * $nuO / tan($latitudeOrigin);
1217 1
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1218 1
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1219 1
        $m = $s - $sO;
1220 1
        $M = $kO * ($m + $A * $m ** 3);
1221 1
        $r = $rO - $M;
1222 1
        $theta = ($longitude - $longitudeOrigin) * sin($latitudeOrigin);
1223
1224 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1225 1
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1226
1227 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1228
    }
1229
1230
    /**
1231
     * Lambert Cylindrical Equal Area
1232
     * This is the ellipsoidal form of the projection.
1233
     */
1234 1
    public function lambertCylindricalEqualArea(
1235
        Projected $to,
1236
        Angle $firstStandardParallelLatitude,
1237
        Angle $naturalOriginLongitude,
1238
        Length $falseEasting,
1239
        Length $falseNorthing
1240
    ): ProjectedPoint {
1241 1
        $latitude = $this->latitude->asRadians()->getValue();
1242 1
        $longitude = $this->longitude->asRadians()->getValue();
1243 1
        $latitudeFirstParallel = $firstStandardParallelLatitude->asRadians()->getValue();
1244 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1245 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1246 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1247 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1248
1249 1
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1250 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1251
1252 1
        $x = $a * $k * ($longitude - $longitudeOrigin);
1253 1
        $y = $a * $q / (2 * $k);
1254
1255 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
1256 1
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1257
1258 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1259
    }
1260
1261
    /**
1262
     * Longitude rotation
1263
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1264
     * value to the longitude value of the point in the source system.
1265
     */
1266 1
    public function longitudeRotation(
1267
        Geographic $to,
1268
        Angle $rotation
1269
    ): self {
1270 1
        $newLongitude = $this->longitude->asRadians()->getValue() + $rotation->asRadians()->getValue();
1271
1272 1
        return static::create($this->latitude, new Radian($newLongitude), $this->height, $to, $this->epoch);
1273
    }
1274
1275
    /**
1276
     * Modified Azimuthal Equidistant
1277
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1278
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1279
     */
1280 1
    public function modifiedAzimuthalEquidistant(
1281
        Projected $to,
1282
        Angle $naturalOriginLatitude,
1283
        Angle $naturalOriginLongitude,
1284
        Length $falseEasting,
1285
        Length $falseNorthing
1286
    ): ProjectedPoint {
1287 1
        $latitude = $this->latitude->asRadians()->getValue();
1288 1
        $longitude = $this->longitude->asRadians()->getValue();
1289 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1290 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1291 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1292 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1293 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1294
1295 1
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1296 1
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1297 1
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1298 1
        $alpha = atan2(sin($longitude - $longitudeOrigin), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($longitude - $longitudeOrigin)));
1299 1
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1300 1
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1301
1302 1
        if (sin($alpha) === 0) {
1303
            $s = asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1304
        } else {
1305 1
            $s = asin(sin($longitude - $longitudeOrigin) * cos($psi) / sin($alpha));
1306
        }
1307
1308 1
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1309
1310 1
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1311 1
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1312
1313 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1314
    }
1315
1316
    /**
1317
     * Oblique Stereographic
1318
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1319
     * Projections - A Working Manual" by John P. Snyder.
1320
     */
1321 1
    public function obliqueStereographic(
1322
        Projected $to,
1323
        Angle $naturalOriginLatitude,
1324
        Angle $naturalOriginLongitude,
1325
        Scale $naturalOriginScaleFactor,
1326
        Length $falseEasting,
1327
        Length $falseNorthing
1328
    ): ProjectedPoint {
1329 1
        $latitude = $this->latitude->asRadians()->getValue();
1330 1
        $longitude = $this->longitude->asRadians()->getValue();
1331 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1332 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1333 1
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1334 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1335 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1336 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1337
1338 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1339 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1340 1
        $R = sqrt($rhoOrigin * $nuOrigin);
1341
1342 1
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1343 1
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1344 1
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1345 1
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1346 1
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1347 1
        $w2 = $c * $w1;
1348 1
        $chiOrigin = asin(($w2 - 1) / ($w2 + 1));
1349
1350 1
        $lambda = $n * ($longitude - $longitudeOrigin) + $longitudeOrigin;
1351
1352 1
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1353 1
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1354 1
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1355 1
        $chi = asin(($w - 1) / ($w + 1));
1356
1357 1
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1358
1359 1
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1360 1
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1361
1362 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1363
    }
1364
1365
    /**
1366
     * Polar Stereographic (variant A)
1367
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1368
     */
1369 1
    public function polarStereographicVariantA(
1370
        Projected $to,
1371
        Angle $naturalOriginLatitude,
1372
        Angle $naturalOriginLongitude,
1373
        Scale $naturalOriginScaleFactor,
1374
        Length $falseEasting,
1375
        Length $falseNorthing
1376
    ): ProjectedPoint {
1377 1
        $latitude = $this->latitude->asRadians()->getValue();
1378 1
        $longitude = $this->longitude->asRadians()->getValue();
1379 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1380 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1381 1
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1382 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1383 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1384
1385 1
        if ($latitudeOrigin < 0) {
1386
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1387
        } else {
1388 1
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1389
        }
1390 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1391
1392 1
        $theta = $longitude - $longitudeOrigin;
1393 1
        $dE = $rho * sin($theta);
1394 1
        $dN = $rho * cos($theta);
1395
1396 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1397 1
        if ($latitudeOrigin < 0) {
1398
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1399
        } else {
1400 1
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1401
        }
1402
1403 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1404
    }
1405
1406
    /**
1407
     * Polar Stereographic (variant B).
1408
     */
1409 1
    public function polarStereographicVariantB(
1410
        Projected $to,
1411
        Angle $firstStandardParallelLatitude,
1412
        Angle $longitudeOfOrigin,
1413
        Length $falseEasting,
1414
        Length $falseNorthing
1415
    ): ProjectedPoint {
1416 1
        $latitude = $this->latitude->asRadians()->getValue();
1417 1
        $longitude = $this->longitude->asRadians()->getValue();
1418 1
        $firstStandardParallel = $firstStandardParallelLatitude->asRadians()->getValue();
1419 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1420 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1421 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1422 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1423
1424 1
        if ($firstStandardParallel < 0) {
1425 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1426 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1427
        } else {
1428
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1429
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1430
        }
1431 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1432 1
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1433
1434 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1435
1436 1
        $theta = $longitude - $longitudeOrigin;
1437 1
        $dE = $rho * sin($theta);
1438 1
        $dN = $rho * cos($theta);
1439
1440 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1441 1
        if ($firstStandardParallel < 0) {
1442 1
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1443
        } else {
1444
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1445
        }
1446
1447 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1448
    }
1449
1450
    /**
1451
     * Polar Stereographic (variant C).
1452
     */
1453 1
    public function polarStereographicVariantC(
1454
        Projected $to,
1455
        Angle $firstStandardParallelLatitude,
1456
        Angle $longitudeOfOrigin,
1457
        Length $falseOriginEasting,
1458
        Length $falseOriginNorthing
1459
    ): ProjectedPoint {
1460 1
        $latitude = $this->latitude->asRadians()->getValue();
1461 1
        $longitude = $this->longitude->asRadians()->getValue();
1462 1
        $firstStandardParallel = $firstStandardParallelLatitude->asRadians()->getValue();
1463 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1464 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1465 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1466 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1467
1468 1
        if ($firstStandardParallel < 0) {
1469 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1470 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1471
        } else {
1472
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1473
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1474
        }
1475 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1476
1477 1
        $rhoF = $a * $mF;
1478 1
        $rho = $rhoF * $t / $tF;
1479
1480 1
        $theta = $longitude - $longitudeOrigin;
1481 1
        $dE = $rho * sin($theta);
1482 1
        $dN = $rho * cos($theta);
1483
1484 1
        $easting = $falseOriginEasting->asMetres()->getValue() + $dE;
1485 1
        if ($firstStandardParallel < 0) {
1486 1
            $northing = $falseOriginNorthing->asMetres()->getValue() - $rhoF + $dN;
1487
        } else {
1488
            $northing = $falseOriginNorthing->asMetres()->getValue() + $rhoF - $dN;
1489
        }
1490
1491 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1492
    }
1493
1494
    /**
1495
     * Popular Visualisation Pseudo Mercator
1496
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1497
     */
1498 1
    public function popularVisualisationPseudoMercator(
1499
        Projected $to,
1500
        Angle $naturalOriginLatitude,
1501
        Angle $naturalOriginLongitude,
1502
        Length $falseEasting,
1503
        Length $falseNorthing
1504
    ): ProjectedPoint {
1505 1
        $latitude = $this->latitude->asRadians()->getValue();
1506 1
        $longitude = $this->longitude->asRadians()->getValue();
1507 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1508 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1509 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1510
1511 1
        $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
1512 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1513
1514 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1515
    }
1516
1517
    /**
1518
     * Mercator (variant A)
1519
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1520
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1521
     * completeness in CRS labelling.
1522
     */
1523 1
    public function mercatorVariantA(
1524
        Projected $to,
1525
        Angle $naturalOriginLatitude,
1526
        Angle $naturalOriginLongitude,
1527
        Scale $naturalOriginScaleFactor,
1528
        Length $falseEasting,
1529
        Length $falseNorthing
1530
    ): ProjectedPoint {
1531 1
        $latitude = $this->latitude->asRadians()->getValue();
1532 1
        $longitude = $this->longitude->asRadians()->getValue();
1533 1
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1534 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1535 1
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1536 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1537 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1538
1539 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1540 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1541
1542 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1543
    }
1544
1545
    /**
1546
     * Mercator (variant B)
1547
     * Used for most nautical charts.
1548
     */
1549 1
    public function mercatorVariantB(
1550
        Projected $to,
1551
        Angle $firstStandardParallelLatitude,
1552
        Angle $naturalOriginLongitude,
1553
        Length $falseEasting,
1554
        Length $falseNorthing
1555
    ): ProjectedPoint {
1556 1
        $latitude = $this->latitude->asRadians()->getValue();
1557 1
        $longitude = $this->longitude->asRadians()->getValue();
1558 1
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1559 1
        $firstStandardParallel = $firstStandardParallelLatitude->asRadians()->getValue();
1560 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1561 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1562 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1563
1564 1
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1565
1566 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1567 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1568
1569 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1570
    }
1571
1572
    /**
1573
     * Hotine Oblique Mercator (variant A).
1574
     */
1575 1
    public function obliqueMercatorHotineVariantA(
1576
        Projected $to,
1577
        Angle $latitudeOfProjectionCentre,
1578
        Angle $longitudeOfProjectionCentre,
1579
        Angle $azimuthOfInitialLine,
1580
        Angle $angleFromRectifiedToSkewGrid,
1581
        Scale $scaleFactorOnInitialLine,
1582
        Length $falseEasting,
1583
        Length $falseNorthing
1584
    ): ProjectedPoint {
1585 1
        $latitude = $this->latitude->asRadians()->getValue();
1586 1
        $longitude = $this->longitude->asRadians()->getValue();
1587 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1588 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1589 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1590 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1591 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1592 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1593 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1594 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1595
1596 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1597 1
        $A = $a * $B * $kC * (1 - $e2) ** 0.5 / (1 - $e2 * sin($latC) ** 2);
1598 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1599 1
        $D = $B * (1 - $e2) ** 0.5 / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1600 1
        $DD = max(1, $D ** 2);
1601 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1602 1
        $H = $F * ($tO) ** $B;
1603 1
        $G = ($F - 1 / $F) / 2;
1604 1
        $gammaO = asin(sin($alphaC) / $D);
1605 1
        $lonO = $lonC - (asin($G * tan($gammaO))) / $B;
1606
1607 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1608 1
        $Q = $H / $t ** $B;
1609 1
        $S = ($Q - 1 / $Q) / 2;
1610 1
        $T = ($Q + 1 / $Q) / 2;
1611 1
        $V = sin($B * ($longitude - $lonO));
1612 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1613 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1614 1
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1615
1616 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1617 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1618
1619 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1620
    }
1621
1622
    /**
1623
     * Hotine Oblique Mercator (variant B).
1624
     */
1625 1
    public function obliqueMercatorHotineVariantB(
1626
        Projected $to,
1627
        Angle $latitudeOfProjectionCentre,
1628
        Angle $longitudeOfProjectionCentre,
1629
        Angle $azimuthOfInitialLine,
1630
        Angle $angleFromRectifiedToSkewGrid,
1631
        Scale $scaleFactorOnInitialLine,
1632
        Length $eastingAtProjectionCentre,
1633
        Length $northingAtProjectionCentre
1634
    ): ProjectedPoint {
1635 1
        $latitude = $this->latitude->asRadians()->getValue();
1636 1
        $longitude = $this->longitude->asRadians()->getValue();
1637 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1638 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1639 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1640 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1641 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1642 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1643 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1644 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1645
1646 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1647 1
        $A = $a * $B * $kC * (1 - $e2) ** 0.5 / (1 - $e2 * sin($latC) ** 2);
1648 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1649 1
        $D = $B * (1 - $e2) ** 0.5 / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1650 1
        $DD = max(1, $D ** 2);
1651 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1652 1
        $H = $F * ($tO) ** $B;
1653 1
        $G = ($F - 1 / $F) / 2;
1654 1
        $gammaO = asin(sin($alphaC) / $D);
1655 1
        $lonO = $lonC - (asin($G * tan($gammaO))) / $B;
1656 1
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1657 1
        if ($alphaC === M_PI / 2) {
1658
            $uC = $A * ($lonC - $lonO);
1659
        } else {
1660 1
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1661
        }
1662
1663 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1664 1
        $Q = $H / $t ** $B;
1665 1
        $S = ($Q - 1 / $Q) / 2;
1666 1
        $T = ($Q + 1 / $Q) / 2;
1667 1
        $V = sin($B * ($longitude - $lonO));
1668 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1669 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1670
1671 1
        if ($alphaC === M_PI / 2) {
1672
            if ($longitude === $lonC) {
1673
                $u = 0;
1674
            } else {
1675
                $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($alphaC) * static::sign($lonC - $longitude));
1676
            }
1677
        } else {
1678 1
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($alphaC));
1679
        }
1680
1681 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1682 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1683
1684 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1685
    }
1686
1687
    /**
1688
     * Laborde Oblique Mercator.
1689
     */
1690 1
    public function obliqueMercatorLaborde(
1691
        Projected $to,
1692
        Angle $latitudeOfProjectionCentre,
1693
        Angle $longitudeOfProjectionCentre,
1694
        Angle $azimuthOfInitialLine,
1695
        Scale $scaleFactorOnInitialLine,
1696
        Length $falseEasting,
1697
        Length $falseNorthing
1698
    ): ProjectedPoint {
1699 1
        $latitude = $this->latitude->asRadians()->getValue();
1700 1
        $longitude = $this->longitude->asRadians()->getValue();
1701 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1702 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1703 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1704 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1705 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1706 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1707 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1708
1709 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1710 1
        $latS = asin(sin($latC) / $B);
1711 1
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1712 1
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1713
1714 1
        $L = $B * ($longitude - $lonC);
1715 1
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1716 1
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1717 1
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1718 1
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1719 1
        $W = cos($P) * sin($L);
1720 1
        $d = sqrt($U ** 2 + $V ** 2);
1721 1
        if ($d === 0) {
1722
            $LPrime = 0;
1723
            $PPrime = static::sign($W) * M_PI / 2;
1724
        } else {
1725 1
            $LPrime = 2 * atan($V / ($U + $d));
1726 1
            $PPrime = atan($W / $d);
1727
        }
1728 1
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1729 1
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1730
1731 1
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1732 1
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1733
1734 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1735
    }
1736
1737
    /**
1738
     * Transverse Mercator.
1739
     */
1740 4
    public function transverseMercator(
1741
        Projected $to,
1742
        Angle $naturalOriginLatitude,
1743
        Angle $naturalOriginLongitude,
1744
        Scale $naturalOriginScaleFactor,
1745
        Length $falseEasting,
1746
        Length $falseNorthing
1747
    ): ProjectedPoint {
1748 4
        $latitude = $this->latitude->asRadians()->getValue();
1749 4
        $longitude = $this->longitude->asRadians()->getValue();
1750 4
        $latitudeOrigin = $naturalOriginLatitude->asRadians()->getValue();
1751 4
        $longitudeOrigin = $naturalOriginLongitude->asRadians()->getValue();
1752 4
        $kO = $naturalOriginScaleFactor->asUnity()->getValue();
1753 4
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1754 4
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1755 4
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1756
1757 4
        $n = $f / (2 - $f);
1758 4
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1759
1760 4
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1761 4
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1762 4
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1763 4
        $h4 = (49561 / 161280) * $n ** 4;
1764
1765 4
        if ($latitudeOrigin === 0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0 is always false.
Loading history...
1766
            $mO = 0;
1767 4
        } elseif ($latitudeOrigin === M_PI / 2) {
1768
            $mO = $B * M_PI / 2;
1769 4
        } elseif ($latitudeOrigin === -M_PI / 2) {
1770
            $mO = $B * -M_PI / 2;
1771
        } else {
1772 4
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1773 4
            $betaO = atan(sinh($qO));
1774 4
            $xiO0 = asin(sin($betaO));
1775 4
            $xiO1 = $h1 * sin(2 * $xiO0);
1776 4
            $xiO2 = $h2 * sin(4 * $xiO0);
1777 4
            $xiO3 = $h3 * sin(6 * $xiO0);
1778 4
            $xiO4 = $h4 * sin(8 * $xiO0);
1779 4
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1780 4
            $mO = $B * $xiO;
1781
        }
1782
1783 4
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1784 4
        $beta = atan(sinh($Q));
1785 4
        $eta0 = atanh(cos($beta) * sin($longitude - $longitudeOrigin));
1786 4
        $xi0 = asin(sin($beta) * cosh($eta0));
1787 4
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1788 4
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1789 4
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1790 4
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1791 4
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1792 4
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1793 4
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1794 4
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1795 4
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1796 4
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1797
1798 4
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1799 4
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1800
1801 4
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1802
    }
1803
1804
    /**
1805
     * Transverse Mercator Zoned Grid System
1806
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1807
     * each zone.
1808
     */
1809 2
    public function transverseMercatorZonedGrid(
1810
        Projected $to,
1811
        Angle $naturalOriginLatitude,
1812
        Angle $initialLongitude,
1813
        Angle $zoneWidth,
1814
        Scale $naturalOriginScaleFactor,
1815
        Length $falseEasting,
1816
        Length $falseNorthing
1817
    ): ProjectedPoint {
1818 2
        $W = $zoneWidth->asDegrees()->getValue();
1819 2
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1;
1820
1821 2
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1822 2
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1823
1824 2
        return $this->transverseMercator($to, $naturalOriginLatitude, $longitudeOrigin, $naturalOriginScaleFactor, $falseEasting, $falseNorthing);
1825
    }
1826
1827
    /**
1828
     * New Zealand Map Grid.
1829
     */
1830 3
    public function newZealandMapGrid(
1831
        Projected $to,
1832
        Angle $naturalOriginLatitude,
1833
        Angle $naturalOriginLongitude,
1834
        Length $falseEasting,
1835
        Length $falseNorthing
1836
    ): ProjectedPoint {
1837 3
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1838
1839 3
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($naturalOriginLatitude), Angle::EPSG_ARC_SECOND)->getValue();
1840 3
        $deltaLongitudeToOrigin = $this->longitude->subtract($naturalOriginLongitude)->asRadians();
1841
1842 3
        $deltaPsi = 0;
1843 3
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1844 3
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1845 3
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1846 3
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1847 3
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1848 3
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1849 3
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1850 3
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1851 3
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1852 3
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1853
1854 3
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1855
1856 3
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1857 3
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1858 3
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1859 3
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1860 3
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1861 3
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1862 3
        $z = new ComplexNumber(0, 0);
1863 3
        $z = $z->add($B1->multiply($zeta->pow(1)));
1864 3
        $z = $z->add($B2->multiply($zeta->pow(2)));
1865 3
        $z = $z->add($B3->multiply($zeta->pow(3)));
1866 3
        $z = $z->add($B4->multiply($zeta->pow(4)));
1867 3
        $z = $z->add($B5->multiply($zeta->pow(5)));
1868 3
        $z = $z->add($B6->multiply($zeta->pow(6)));
1869
1870 3
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1871 3
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1872
1873 3
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1874
    }
1875
1876
    /**
1877
     * Madrid to ED50 polynomial.
1878
     */
1879 1
    public function madridToED50Polynomial(
1880
        Geographic2D $to,
1881
        Coefficient $A0,
1882
        Coefficient $A1,
1883
        Coefficient $A2,
1884
        Coefficient $A3,
1885
        Coefficient $B00,
1886
        Coefficient $B0,
1887
        Coefficient $B1,
1888
        Coefficient $B2,
1889
        Coefficient $B3
1890
    ): self {
1891 1
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1892 1
        $dLongitude = new ArcSecond($B00->add($B0)->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1893
1894 1
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1895
    }
1896
1897
    /**
1898
     * Geographic3D to 2D conversion.
1899
     */
1900 1
    public function threeDToTwoD(
1901
        Geographic2D $to
1902
    ): self {
1903 1
        return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1904
    }
1905
1906
    /**
1907
     * General polynomial of degree.
1908
     * @param Coefficient[] $powerCoefficients
1909
     */
1910 1
    public function generalPolynomial(
1911
        Geographic $to,
1912
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1913
        Angle $ordinate2OfEvaluationPointInSourceCRS,
1914
        Angle $ordinate1OfEvaluationPointInTargetCRS,
1915
        Angle $ordinate2OfEvaluationPointInTargetCRS,
1916
        Coefficient $scalingFactorForSourceCRSCoordDifferences,
1917
        Coefficient $scalingFactorForTargetCRSCoordDifferences,
1918
        Coefficient $A0,
1919
        Coefficient $B0,
1920
        array $powerCoefficients
1921
    ): self {
1922 1
        $xs = $this->latitude->getValue();
1923 1
        $ys = $this->longitude->getValue();
1924
1925 1
        $t = $this->generalPolynomialUnitless(
1926 1
            $xs,
1927
            $ys,
1928
            $ordinate1OfEvaluationPointInSourceCRS,
1929
            $ordinate2OfEvaluationPointInSourceCRS,
1930
            $ordinate1OfEvaluationPointInTargetCRS,
1931
            $ordinate2OfEvaluationPointInTargetCRS,
1932
            $scalingFactorForSourceCRSCoordDifferences,
1933
            $scalingFactorForTargetCRSCoordDifferences,
1934
            $A0,
1935
            $B0,
1936
            $powerCoefficients
1937
        );
1938
1939 1
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
1940 1
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1941 1
            $xtUnit = Angle::EPSG_DEGREE;
1942
        }
1943 1
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
1944 1
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1945 1
            $ytUnit = Angle::EPSG_DEGREE;
1946
        }
1947
1948 1
        return static::create(
1949 1
            Angle::makeUnit($t['xt'], $xtUnit),
1950 1
            Angle::makeUnit($t['yt'], $ytUnit),
1951 1
            $this->height,
1952
            $to,
1953 1
            $this->epoch
1954
        );
1955
    }
1956
1957
    /**
1958
     * Reversible polynomial.
1959
     * @param Coefficient[] $powerCoefficients
1960
     */
1961 2
    public function reversiblePolynomial(
1962
        Geographic $to,
1963
        Angle $ordinate1OfEvaluationPoint,
1964
        Angle $ordinate2OfEvaluationPoint,
1965
        Coefficient $scalingFactorForCoordDifferences,
1966
        Coefficient $A0,
1967
        Coefficient $B0,
1968
        $powerCoefficients
1969
    ): self {
1970 2
        $xs = $this->latitude->getValue();
1971 2
        $ys = $this->longitude->getValue();
1972
1973 2
        $t = $this->reversiblePolynomialUnitless(
1974 2
            $xs,
1975
            $ys,
1976
            $ordinate1OfEvaluationPoint,
1977
            $ordinate2OfEvaluationPoint,
1978
            $scalingFactorForCoordDifferences,
1979
            $A0,
1980
            $B0,
1981
            $powerCoefficients
1982
        );
1983
1984 2
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
1985 2
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1986 2
            $xtUnit = Angle::EPSG_DEGREE;
1987
        }
1988 2
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
1989 2
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1990 2
            $ytUnit = Angle::EPSG_DEGREE;
1991
        }
1992
1993 2
        return static::create(
1994 2
            Angle::makeUnit($t['xt'], $xtUnit),
1995 2
            Angle::makeUnit($t['yt'], $ytUnit),
1996 2
            $this->height,
1997
            $to,
1998 2
            $this->epoch
1999
        );
2000
    }
2001
}
2002