|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
/** |
|
4
|
|
|
* PHPCoord. |
|
5
|
|
|
* |
|
6
|
|
|
* @author Doug Wright |
|
7
|
|
|
*/ |
|
8
|
|
|
declare(strict_types=1); |
|
9
|
|
|
|
|
10
|
|
|
namespace PHPCoord\CoordinateOperation; |
|
11
|
|
|
|
|
12
|
|
|
class CoordinateOperationMethods |
|
13
|
|
|
{ |
|
14
|
|
|
/** |
|
15
|
|
|
* Affine parametric transformation. |
|
16
|
|
|
*/ |
|
17
|
|
|
protected const EPSG_AFFINE_PARAMETRIC_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9624'; |
|
18
|
|
|
|
|
19
|
|
|
/** |
|
20
|
|
|
* Albers Equal Area. |
|
21
|
|
|
*/ |
|
22
|
|
|
protected const EPSG_ALBERS_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9822'; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* American Polyconic. |
|
26
|
|
|
*/ |
|
27
|
|
|
protected const EPSG_AMERICAN_POLYCONIC = 'urn:ogc:def:method:EPSG::9818'; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* Bonne (South Orientated). |
|
31
|
|
|
*/ |
|
32
|
|
|
protected const EPSG_BONNE_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9828'; |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* Cartesian Grid Offsets |
|
36
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
37
|
|
|
* coordinate values of the point in the source system. |
|
38
|
|
|
*/ |
|
39
|
|
|
protected const EPSG_CARTESIAN_GRID_OFFSETS = 'urn:ogc:def:method:EPSG::9656'; |
|
40
|
|
|
|
|
41
|
|
|
/** |
|
42
|
|
|
* Cassini-Soldner. |
|
43
|
|
|
*/ |
|
44
|
|
|
protected const EPSG_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9806'; |
|
45
|
|
|
|
|
46
|
|
|
/** |
|
47
|
|
|
* Colombia Urban. |
|
48
|
|
|
*/ |
|
49
|
|
|
protected const EPSG_COLOMBIA_URBAN = 'urn:ogc:def:method:EPSG::1052'; |
|
50
|
|
|
|
|
51
|
|
|
/** |
|
52
|
|
|
* Complex polynomial of degree 3 |
|
53
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
|
54
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 3. |
|
55
|
|
|
*/ |
|
56
|
|
|
protected const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 = 'urn:ogc:def:method:EPSG::9652'; |
|
57
|
|
|
|
|
58
|
|
|
/** |
|
59
|
|
|
* Complex polynomial of degree 4 |
|
60
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
|
61
|
|
|
* and leads to a smaller number of coefficients than the general polynomial of degree 4. |
|
62
|
|
|
*/ |
|
63
|
|
|
protected const EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9653'; |
|
64
|
|
|
|
|
65
|
|
|
/** |
|
66
|
|
|
* Coordinate Frame rotation (geocentric domain) |
|
67
|
|
|
* This method is a specific case of the Molodensky-Badekas (CF) method (code 1034) in which the evaluation point |
|
68
|
|
|
* is at the geocentre with coordinate values of zero. Note the analogy with the Position Vector method (code 1033) |
|
69
|
|
|
* but beware of the differences! |
|
70
|
|
|
*/ |
|
71
|
|
|
protected const EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1032'; |
|
72
|
|
|
|
|
73
|
|
|
/** |
|
74
|
|
|
* Coordinate Frame rotation (geog2D domain) |
|
75
|
|
|
* Note the analogy with the Position Vector tfm (code 9606) but beware of the differences! The Position Vector |
|
76
|
|
|
* convention is used by IAG and recommended by ISO 19111. See methods 1032 and 1038 for similar tfms operating |
|
77
|
|
|
* between other CRS types. |
|
78
|
|
|
*/ |
|
79
|
|
|
protected const EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9607'; |
|
80
|
|
|
|
|
81
|
|
|
/** |
|
82
|
|
|
* Equal Earth. |
|
83
|
|
|
*/ |
|
84
|
|
|
protected const EPSG_EQUAL_EARTH = 'urn:ogc:def:method:EPSG::1078'; |
|
85
|
|
|
|
|
86
|
|
|
/** |
|
87
|
|
|
* Equidistant Cylindrical |
|
88
|
|
|
* See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
|
89
|
|
|
*/ |
|
90
|
|
|
protected const EPSG_EQUIDISTANT_CYLINDRICAL = 'urn:ogc:def:method:EPSG::1028'; |
|
91
|
|
|
|
|
92
|
|
|
/** |
|
93
|
|
|
* General polynomial of degree 2. |
|
94
|
|
|
*/ |
|
95
|
|
|
protected const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 = 'urn:ogc:def:method:EPSG::9645'; |
|
96
|
|
|
|
|
97
|
|
|
/** |
|
98
|
|
|
* General polynomial of degree 6. |
|
99
|
|
|
*/ |
|
100
|
|
|
protected const EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 = 'urn:ogc:def:method:EPSG::9648'; |
|
101
|
|
|
|
|
102
|
|
|
/** |
|
103
|
|
|
* Geocentric translations (geocentric domain) |
|
104
|
|
|
* This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
|
105
|
|
|
* corresponding coordinates of the point in the source system. See methods 1035 and 9603 for similar tfms |
|
106
|
|
|
* operating between other CRSs types. |
|
107
|
|
|
*/ |
|
108
|
|
|
protected const EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1031'; |
|
109
|
|
|
|
|
110
|
|
|
/** |
|
111
|
|
|
* Geocentric translations (geog2D domain) |
|
112
|
|
|
* See methods 1031 and 1035 for similar tfms operating between other CRSs types. |
|
113
|
|
|
*/ |
|
114
|
|
|
protected const EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9603'; |
|
115
|
|
|
|
|
116
|
|
|
/** |
|
117
|
|
|
* Geographic/geocentric conversions |
|
118
|
|
|
* In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
|
119
|
|
|
* 9636 to form a geographic to geographic transformation. |
|
120
|
|
|
*/ |
|
121
|
|
|
protected const EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS = 'urn:ogc:def:method:EPSG::9602'; |
|
122
|
|
|
|
|
123
|
|
|
/** |
|
124
|
|
|
* Geographic2D offsets |
|
125
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
126
|
|
|
* coordinate values of the point in the source system. |
|
127
|
|
|
*/ |
|
128
|
|
|
protected const EPSG_GEOGRAPHIC2D_OFFSETS = 'urn:ogc:def:method:EPSG::9619'; |
|
129
|
|
|
|
|
130
|
|
|
/** |
|
131
|
|
|
* Geographic2D with Height Offsets |
|
132
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
|
133
|
|
|
* coordinate values of the point in the source system. |
|
134
|
|
|
*/ |
|
135
|
|
|
protected const EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS = 'urn:ogc:def:method:EPSG::9618'; |
|
136
|
|
|
|
|
137
|
|
|
/** |
|
138
|
|
|
* Geographic3D to 2D conversion. |
|
139
|
|
|
*/ |
|
140
|
|
|
protected const EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION = 'urn:ogc:def:method:EPSG::9659'; |
|
141
|
|
|
|
|
142
|
|
|
/** |
|
143
|
|
|
* Guam Projection |
|
144
|
|
|
* Simplified form of Oblique Azimuthal Equidistant projection method. |
|
145
|
|
|
*/ |
|
146
|
|
|
protected const EPSG_GUAM_PROJECTION = 'urn:ogc:def:method:EPSG::9831'; |
|
147
|
|
|
|
|
148
|
|
|
/** |
|
149
|
|
|
* Hotine Oblique Mercator (variant A). |
|
150
|
|
|
*/ |
|
151
|
|
|
protected const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9812'; |
|
152
|
|
|
|
|
153
|
|
|
/** |
|
154
|
|
|
* Hotine Oblique Mercator (variant B). |
|
155
|
|
|
*/ |
|
156
|
|
|
protected const EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9815'; |
|
157
|
|
|
|
|
158
|
|
|
/** |
|
159
|
|
|
* Hyperbolic Cassini-Soldner. |
|
160
|
|
|
*/ |
|
161
|
|
|
protected const EPSG_HYPERBOLIC_CASSINI_SOLDNER = 'urn:ogc:def:method:EPSG::9833'; |
|
162
|
|
|
|
|
163
|
|
|
/** |
|
164
|
|
|
* Krovak. |
|
165
|
|
|
*/ |
|
166
|
|
|
protected const EPSG_KROVAK = 'urn:ogc:def:method:EPSG::9819'; |
|
167
|
|
|
|
|
168
|
|
|
/** |
|
169
|
|
|
* Krovak (North Orientated). |
|
170
|
|
|
*/ |
|
171
|
|
|
protected const EPSG_KROVAK_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1041'; |
|
172
|
|
|
|
|
173
|
|
|
/** |
|
174
|
|
|
* Krovak Modified |
|
175
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
|
176
|
|
|
* to be a map projection. |
|
177
|
|
|
*/ |
|
178
|
|
|
protected const EPSG_KROVAK_MODIFIED = 'urn:ogc:def:method:EPSG::1042'; |
|
179
|
|
|
|
|
180
|
|
|
/** |
|
181
|
|
|
* Krovak Modified (North Orientated) |
|
182
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
|
183
|
|
|
* to be a map projection. |
|
184
|
|
|
*/ |
|
185
|
|
|
protected const EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED = 'urn:ogc:def:method:EPSG::1043'; |
|
186
|
|
|
|
|
187
|
|
|
/** |
|
188
|
|
|
* Laborde Oblique Mercator. |
|
189
|
|
|
*/ |
|
190
|
|
|
protected const EPSG_LABORDE_OBLIQUE_MERCATOR = 'urn:ogc:def:method:EPSG::9813'; |
|
191
|
|
|
|
|
192
|
|
|
/** |
|
193
|
|
|
* Lambert Azimuthal Equal Area |
|
194
|
|
|
* This is the ellipsoidal form of the projection. |
|
195
|
|
|
*/ |
|
196
|
|
|
protected const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9820'; |
|
197
|
|
|
|
|
198
|
|
|
/** |
|
199
|
|
|
* Lambert Azimuthal Equal Area (Spherical) |
|
200
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
|
201
|
|
|
* (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
|
202
|
|
|
* methods. |
|
203
|
|
|
*/ |
|
204
|
|
|
protected const EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL = 'urn:ogc:def:method:EPSG::1027'; |
|
205
|
|
|
|
|
206
|
|
|
/** |
|
207
|
|
|
* Lambert Conic Conformal (1SP). |
|
208
|
|
|
*/ |
|
209
|
|
|
protected const EPSG_LAMBERT_CONIC_CONFORMAL_1SP = 'urn:ogc:def:method:EPSG::9801'; |
|
210
|
|
|
|
|
211
|
|
|
/** |
|
212
|
|
|
* Lambert Conic Conformal (2SP Belgium) |
|
213
|
|
|
* In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
|
214
|
|
|
* with appropriately modified parameter values. |
|
215
|
|
|
*/ |
|
216
|
|
|
protected const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM = 'urn:ogc:def:method:EPSG::9803'; |
|
217
|
|
|
|
|
218
|
|
|
/** |
|
219
|
|
|
* Lambert Conic Conformal (2SP Michigan). |
|
220
|
|
|
*/ |
|
221
|
|
|
protected const EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN = 'urn:ogc:def:method:EPSG::1051'; |
|
222
|
|
|
|
|
223
|
|
|
/** |
|
224
|
|
|
* Lambert Conic Conformal (2SP). |
|
225
|
|
|
*/ |
|
226
|
|
|
protected const EPSG_LAMBERT_CONIC_CONFORMAL_2SP = 'urn:ogc:def:method:EPSG::9802'; |
|
227
|
|
|
|
|
228
|
|
|
/** |
|
229
|
|
|
* Lambert Conic Conformal (West Orientated). |
|
230
|
|
|
*/ |
|
231
|
|
|
protected const EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED = 'urn:ogc:def:method:EPSG::9826'; |
|
232
|
|
|
|
|
233
|
|
|
/** |
|
234
|
|
|
* Lambert Conic Near-Conformal |
|
235
|
|
|
* The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
|
236
|
|
|
* series expansion of the projection formulae. |
|
237
|
|
|
*/ |
|
238
|
|
|
protected const EPSG_LAMBERT_CONIC_NEAR_CONFORMAL = 'urn:ogc:def:method:EPSG::9817'; |
|
239
|
|
|
|
|
240
|
|
|
/** |
|
241
|
|
|
* Lambert Cylindrical Equal Area |
|
242
|
|
|
* This is the ellipsoidal form of the projection. |
|
243
|
|
|
*/ |
|
244
|
|
|
protected const EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA = 'urn:ogc:def:method:EPSG::9835'; |
|
245
|
|
|
|
|
246
|
|
|
/** |
|
247
|
|
|
* Longitude rotation |
|
248
|
|
|
* This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
|
249
|
|
|
* value to the longitude value of the point in the source system. |
|
250
|
|
|
*/ |
|
251
|
|
|
protected const EPSG_LONGITUDE_ROTATION = 'urn:ogc:def:method:EPSG::9601'; |
|
252
|
|
|
|
|
253
|
|
|
/** |
|
254
|
|
|
* Madrid to ED50 polynomial. |
|
255
|
|
|
*/ |
|
256
|
|
|
protected const EPSG_MADRID_TO_ED50_POLYNOMIAL = 'urn:ogc:def:method:EPSG::9617'; |
|
257
|
|
|
|
|
258
|
|
|
/** |
|
259
|
|
|
* Mercator (variant A) |
|
260
|
|
|
* Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
|
261
|
|
|
* Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
|
262
|
|
|
* completeness in CRS labelling. |
|
263
|
|
|
*/ |
|
264
|
|
|
protected const EPSG_MERCATOR_VARIANT_A = 'urn:ogc:def:method:EPSG::9804'; |
|
265
|
|
|
|
|
266
|
|
|
/** |
|
267
|
|
|
* Mercator (variant B) |
|
268
|
|
|
* Used for most nautical charts. |
|
269
|
|
|
*/ |
|
270
|
|
|
protected const EPSG_MERCATOR_VARIANT_B = 'urn:ogc:def:method:EPSG::9805'; |
|
271
|
|
|
|
|
272
|
|
|
/** |
|
273
|
|
|
* Modified Azimuthal Equidistant |
|
274
|
|
|
* Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
|
275
|
|
|
* distances over which these projections are used (under 800km) this modification introduces no significant error. |
|
276
|
|
|
*/ |
|
277
|
|
|
protected const EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT = 'urn:ogc:def:method:EPSG::9832'; |
|
278
|
|
|
|
|
279
|
|
|
/** |
|
280
|
|
|
* Molodensky-Badekas (CF geog2D domain) |
|
281
|
|
|
* See method codes 1034 and 1039 for this operation in other coordinate domains and method code 1063 for the |
|
282
|
|
|
* opposite rotation convention in geographic 2D domain. |
|
283
|
|
|
*/ |
|
284
|
|
|
protected const EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9636'; |
|
285
|
|
|
|
|
286
|
|
|
/** |
|
287
|
|
|
* Molodensky-Badekas (PV geocentric domain) |
|
288
|
|
|
* See method codes 1062 and 1063 for this operation in other coordinate domains and method code 1034 for opposite |
|
289
|
|
|
* rotation convention in geocentric domain. |
|
290
|
|
|
*/ |
|
291
|
|
|
protected const EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1061'; |
|
292
|
|
|
|
|
293
|
|
|
/** |
|
294
|
|
|
* Molodensky-Badekas (PV geog2D domain) |
|
295
|
|
|
* See method codes 1061 and 1062 for this operation in other coordinate domains and method code 9636 for opposite |
|
296
|
|
|
* rotation in geographic 2D domain. |
|
297
|
|
|
*/ |
|
298
|
|
|
protected const EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::1063'; |
|
299
|
|
|
|
|
300
|
|
|
/** |
|
301
|
|
|
* New Zealand Map Grid. |
|
302
|
|
|
*/ |
|
303
|
|
|
protected const EPSG_NEW_ZEALAND_MAP_GRID = 'urn:ogc:def:method:EPSG::9811'; |
|
304
|
|
|
|
|
305
|
|
|
/** |
|
306
|
|
|
* Oblique Stereographic |
|
307
|
|
|
* This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
|
308
|
|
|
* Projections - A Working Manual" by John P. Snyder. |
|
309
|
|
|
*/ |
|
310
|
|
|
protected const EPSG_OBLIQUE_STEREOGRAPHIC = 'urn:ogc:def:method:EPSG::9809'; |
|
311
|
|
|
|
|
312
|
|
|
/** |
|
313
|
|
|
* Polar Stereographic (variant A) |
|
314
|
|
|
* Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
|
315
|
|
|
*/ |
|
316
|
|
|
protected const EPSG_POLAR_STEREOGRAPHIC_VARIANT_A = 'urn:ogc:def:method:EPSG::9810'; |
|
317
|
|
|
|
|
318
|
|
|
/** |
|
319
|
|
|
* Polar Stereographic (variant B). |
|
320
|
|
|
*/ |
|
321
|
|
|
protected const EPSG_POLAR_STEREOGRAPHIC_VARIANT_B = 'urn:ogc:def:method:EPSG::9829'; |
|
322
|
|
|
|
|
323
|
|
|
/** |
|
324
|
|
|
* Polar Stereographic (variant C). |
|
325
|
|
|
*/ |
|
326
|
|
|
protected const EPSG_POLAR_STEREOGRAPHIC_VARIANT_C = 'urn:ogc:def:method:EPSG::9830'; |
|
327
|
|
|
|
|
328
|
|
|
/** |
|
329
|
|
|
* Popular Visualisation Pseudo Mercator |
|
330
|
|
|
* Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
|
331
|
|
|
*/ |
|
332
|
|
|
protected const EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR = 'urn:ogc:def:method:EPSG::1024'; |
|
333
|
|
|
|
|
334
|
|
|
/** |
|
335
|
|
|
* Position Vector transformation (geocentric domain) |
|
336
|
|
|
* This method is a specific case of the Molodensky-Badekas (PV) method (code 1061) in which the evaluation point |
|
337
|
|
|
* is the geocentre with coordinate values of zero. Note the analogy with the Coordinate Frame method (code 1032) |
|
338
|
|
|
* but beware of the differences! |
|
339
|
|
|
*/ |
|
340
|
|
|
protected const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN = 'urn:ogc:def:method:EPSG::1033'; |
|
341
|
|
|
|
|
342
|
|
|
/** |
|
343
|
|
|
* Position Vector transformation (geog2D domain) |
|
344
|
|
|
* Note the analogy with the Coordinate Frame rotation (code 9607) but beware of the differences! The Position |
|
345
|
|
|
* Vector convention is used by IAG and recommended by ISO 19111. See methods 1033 and 1037 for similar tfms |
|
346
|
|
|
* operating between other CRS types. |
|
347
|
|
|
*/ |
|
348
|
|
|
protected const EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN = 'urn:ogc:def:method:EPSG::9606'; |
|
349
|
|
|
|
|
350
|
|
|
/** |
|
351
|
|
|
* Reversible polynomial of degree 13. |
|
352
|
|
|
*/ |
|
353
|
|
|
protected const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 = 'urn:ogc:def:method:EPSG::9654'; |
|
354
|
|
|
|
|
355
|
|
|
/** |
|
356
|
|
|
* Reversible polynomial of degree 4 |
|
357
|
|
|
* Reversibility is subject to constraints. See Guidance Note 7 for conditions and clarification. |
|
358
|
|
|
*/ |
|
359
|
|
|
protected const EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 = 'urn:ogc:def:method:EPSG::9651'; |
|
360
|
|
|
|
|
361
|
|
|
/** |
|
362
|
|
|
* Similarity transformation |
|
363
|
|
|
* Defined for two-dimensional coordinate systems. |
|
364
|
|
|
*/ |
|
365
|
|
|
protected const EPSG_SIMILARITY_TRANSFORMATION = 'urn:ogc:def:method:EPSG::9621'; |
|
366
|
|
|
|
|
367
|
|
|
/** |
|
368
|
|
|
* Time-dependent Coordinate Frame rotation (geocen) |
|
369
|
|
|
* Note the analogy with the Time-dependent Position Vector transformation (code 1053) but beware of the |
|
370
|
|
|
* differences! The Position Vector convention is used by IAG. See method codes 1057 and 1058 for similar methods |
|
371
|
|
|
* operating between other CRS types. |
|
372
|
|
|
*/ |
|
373
|
|
|
protected const EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1056'; |
|
374
|
|
|
|
|
375
|
|
|
/** |
|
376
|
|
|
* Time-dependent Position Vector tfm (geocentric) |
|
377
|
|
|
* Note the analogy with the Time-dependent Coordinate Frame rotation (code 1056) but beware of the differences! |
|
378
|
|
|
* The Position Vector convention is used by IAG. See method codes 1054 and 1055 for similar methods operating |
|
379
|
|
|
* between other CRS types. |
|
380
|
|
|
*/ |
|
381
|
|
|
protected const EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC = 'urn:ogc:def:method:EPSG::1053'; |
|
382
|
|
|
|
|
383
|
|
|
/** |
|
384
|
|
|
* Time-specific Coordinate Frame rotation (geocen) |
|
385
|
|
|
* Note the analogy with the Time-specific Position Vector method (code 1065) but beware of the differences! |
|
386
|
|
|
*/ |
|
387
|
|
|
protected const EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN = 'urn:ogc:def:method:EPSG::1066'; |
|
388
|
|
|
|
|
389
|
|
|
/** |
|
390
|
|
|
* Time-specific Position Vector transform (geocen) |
|
391
|
|
|
* Note the analogy with the Time-specifc Coordinate Frame method (code 1066) but beware of the differences! |
|
392
|
|
|
*/ |
|
393
|
|
|
protected const EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN = 'urn:ogc:def:method:EPSG::1065'; |
|
394
|
|
|
|
|
395
|
|
|
/** |
|
396
|
|
|
* Transverse Mercator. |
|
397
|
|
|
*/ |
|
398
|
|
|
protected const EPSG_TRANSVERSE_MERCATOR = 'urn:ogc:def:method:EPSG::9807'; |
|
399
|
|
|
|
|
400
|
|
|
/** |
|
401
|
|
|
* Transverse Mercator (South Orientated). |
|
402
|
|
|
*/ |
|
403
|
|
|
protected const EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED = 'urn:ogc:def:method:EPSG::9808'; |
|
404
|
|
|
|
|
405
|
|
|
/** |
|
406
|
|
|
* Transverse Mercator Zoned Grid System |
|
407
|
|
|
* If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
|
408
|
|
|
* each zone. |
|
409
|
|
|
*/ |
|
410
|
|
|
protected const EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM = 'urn:ogc:def:method:EPSG::9824'; |
|
411
|
|
|
|
|
412
|
|
|
/** |
|
413
|
|
|
* Vertical Offset |
|
414
|
|
|
* This transformation allows calculation of height (or depth) in the target system by adding the parameter value |
|
415
|
|
|
* to the height (or depth)-value of the point in the source system. |
|
416
|
|
|
*/ |
|
417
|
|
|
protected const EPSG_VERTICAL_OFFSET = 'urn:ogc:def:method:EPSG::9616'; |
|
418
|
|
|
|
|
419
|
|
|
/** |
|
420
|
|
|
* Vertical Offset and Slope |
|
421
|
|
|
* This transformation allows calculation of height in the target system by applying the parameter values to the |
|
422
|
|
|
* height value of the point in the source system. |
|
423
|
|
|
*/ |
|
424
|
|
|
protected const EPSG_VERTICAL_OFFSET_AND_SLOPE = 'urn:ogc:def:method:EPSG::1046'; |
|
425
|
|
|
|
|
426
|
|
|
public function operationBySRID(string $srid) |
|
|
|
|
|
|
427
|
|
|
{ |
|
428
|
|
|
return [ |
|
429
|
|
|
self::EPSG_GEOGRAPHIC_GEOCENTRIC_CONVERSIONS => 'geographicGeocentric', |
|
430
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOCENTRIC_DOMAIN => 'geocentricTranslation', |
|
431
|
|
|
self::EPSG_GEOCENTRIC_TRANSLATIONS_GEOG2D_DOMAIN => 'geocentricTranslation', |
|
432
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOCENTRIC_DOMAIN => 'coordinateFrameRotation', |
|
433
|
|
|
self::EPSG_COORDINATE_FRAME_ROTATION_GEOG2D_DOMAIN => 'coordinateFrameRotation', |
|
434
|
|
|
self::EPSG_TIME_DEPENDENT_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeDependentCoordinateFrameRotation', |
|
435
|
|
|
self::EPSG_TIME_SPECIFIC_COORDINATE_FRAME_ROTATION_GEOCEN => 'timeSpecificCoordinateFrameRotation', |
|
436
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOCENTRIC_DOMAIN => 'positionVectorTransformation', |
|
437
|
|
|
self::EPSG_POSITION_VECTOR_TRANSFORMATION_GEOG2D_DOMAIN => 'positionVectorTransformation', |
|
438
|
|
|
self::EPSG_TIME_DEPENDENT_POSITION_VECTOR_TFM_GEOCENTRIC => 'timeDependentPositionVectorTransformation', |
|
439
|
|
|
self::EPSG_TIME_SPECIFIC_POSITION_VECTOR_TRANSFORM_GEOCEN => 'timeSpecificPositionVectorTransformation', |
|
440
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_CF_GEOG2D_DOMAIN => 'coordinateFrameMolodenskyBadekas', |
|
441
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOCENTRIC_DOMAIN => 'positionVectorMolodenskyBadekas', |
|
442
|
|
|
self::EPSG_MOLODENSKY_BADEKAS_PV_GEOG2D_DOMAIN => 'positionVectorMolodenskyBadekas', |
|
443
|
|
|
self::EPSG_GEOGRAPHIC2D_OFFSETS => 'offsets', |
|
444
|
|
|
self::EPSG_GEOGRAPHIC2D_WITH_HEIGHT_OFFSETS => 'offsets', |
|
445
|
|
|
self::EPSG_AFFINE_PARAMETRIC_TRANSFORMATION => 'affineParametricTransform', |
|
446
|
|
|
self::EPSG_ALBERS_EQUAL_AREA => 'albersEqualArea', |
|
447
|
|
|
self::EPSG_AMERICAN_POLYCONIC => 'americanPolyconic', |
|
448
|
|
|
self::EPSG_BONNE_SOUTH_ORIENTATED => 'bonneSouthOrientated', |
|
449
|
|
|
self::EPSG_CARTESIAN_GRID_OFFSETS => 'offsets', |
|
450
|
|
|
self::EPSG_CASSINI_SOLDNER => 'cassiniSoldner', |
|
451
|
|
|
self::EPSG_HYPERBOLIC_CASSINI_SOLDNER => 'hyperbolicCassiniSoldner', |
|
452
|
|
|
self::EPSG_COLOMBIA_URBAN => 'columbiaUrban', |
|
453
|
|
|
self::EPSG_EQUAL_EARTH => 'equalEarth', |
|
454
|
|
|
self::EPSG_EQUIDISTANT_CYLINDRICAL => 'equidistantCylindrical', |
|
455
|
|
|
self::EPSG_GEOGRAPHIC3D_TO_2D_CONVERSION => 'threeDToTwoD', |
|
456
|
|
|
self::EPSG_GUAM_PROJECTION => 'guamProjection', |
|
457
|
|
|
self::EPSG_KROVAK => 'krovak', |
|
458
|
|
|
self::EPSG_KROVAK_NORTH_ORIENTATED => 'krovak', |
|
459
|
|
|
self::EPSG_KROVAK_MODIFIED => 'krovakModified', |
|
460
|
|
|
self::EPSG_KROVAK_MODIFIED_NORTH_ORIENTATED => 'krovakModified', |
|
461
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA => 'lambertAzimuthalEqualArea', |
|
462
|
|
|
self::EPSG_LAMBERT_AZIMUTHAL_EQUAL_AREA_SPHERICAL => 'lambertAzimuthalEqualAreaSpherical', |
|
463
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_1SP => 'lambertConicConformal1SP', |
|
464
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_BELGIUM => 'lambertConicConformal2SPBelgium', |
|
465
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP_MICHIGAN => 'lambertConicConformal2SPMichigan', |
|
466
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_2SP => 'lambertConicConformal2SP', |
|
467
|
|
|
self::EPSG_LAMBERT_CONIC_CONFORMAL_WEST_ORIENTATED => 'lambertConicConformalWestOrientated', |
|
468
|
|
|
self::EPSG_LAMBERT_CONIC_NEAR_CONFORMAL => 'lambertConicNearConformal', |
|
469
|
|
|
self::EPSG_LAMBERT_CYLINDRICAL_EQUAL_AREA => 'lambertCylindricalEqualArea', |
|
470
|
|
|
self::EPSG_LONGITUDE_ROTATION => 'longitudeRotation', |
|
471
|
|
|
self::EPSG_MODIFIED_AZIMUTHAL_EQUIDISTANT => 'modifiedAzimuthalEquidistant', |
|
472
|
|
|
self::EPSG_OBLIQUE_STEREOGRAPHIC => 'obliqueStereographic', |
|
473
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_A => 'polarStereographicVariantA', |
|
474
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_B => 'polarStereographicVariantB', |
|
475
|
|
|
self::EPSG_POLAR_STEREOGRAPHIC_VARIANT_C => 'polarStereographicVariantC', |
|
476
|
|
|
self::EPSG_POPULAR_VISUALISATION_PSEUDO_MERCATOR => 'popularVisualisationPseudoMercator', |
|
477
|
|
|
self::EPSG_SIMILARITY_TRANSFORMATION => 'similarityTransformation', |
|
478
|
|
|
self::EPSG_MERCATOR_VARIANT_A => 'mercatorVariantA', |
|
479
|
|
|
self::EPSG_MERCATOR_VARIANT_B => 'mercatorVariantB', |
|
480
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_A => 'obliqueMercatorHotineVariantA', |
|
481
|
|
|
self::EPSG_HOTINE_OBLIQUE_MERCATOR_VARIANT_B => 'obliqueMercatorHotineVariantA', |
|
482
|
|
|
self::EPSG_TRANSVERSE_MERCATOR => 'transverseMercator', |
|
483
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_SOUTH_ORIENTATED => 'transverseMercator', |
|
484
|
|
|
self::EPSG_TRANSVERSE_MERCATOR_ZONED_GRID_SYSTEM => 'transverseMercatorZonedGrid', |
|
485
|
|
|
self::EPSG_VERTICAL_OFFSET => 'verticalOffset', |
|
486
|
|
|
self::EPSG_VERTICAL_OFFSET_AND_SLOPE => 'verticalOffsetAndSlope', |
|
487
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_2 => 'generalPolynomial', |
|
488
|
|
|
self::EPSG_GENERAL_POLYNOMIAL_OF_DEGREE_6 => 'generalPolynomial', |
|
489
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_4 => 'reversiblePolynomial', |
|
490
|
|
|
self::EPSG_REVERSIBLE_POLYNOMIAL_OF_DEGREE_13 => 'reversiblePolynomial', |
|
491
|
|
|
self::EPSG_NEW_ZEALAND_MAP_GRID => 'newZealandMapGrid', |
|
492
|
|
|
self::EPSG_LABORDE_OBLIQUE_MERCATOR => 'obliqueMercatorLaborde', |
|
493
|
|
|
self::EPSG_MADRID_TO_ED50_POLYNOMIAL => 'madridToED50Polynomial', |
|
494
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_3 => 'complexPolynomialDegree', |
|
495
|
|
|
self::EPSG_COMPLEX_POLYNOMIAL_OF_DEGREE_4 => 'complexPolynomialDegree', |
|
496
|
|
|
]; |
|
497
|
|
|
} |
|
498
|
|
|
} |
|
499
|
|
|
|
This check looks for parameters that have been defined for a function or method, but which are not used in the method body.