Passed
Push — 4.x ( 1d49e7...4cde9a )
by Doug
06:44
created

GeographicPoint::asGeographicValue()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 3
Code Lines 1

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 2
CRAP Score 1

Importance

Changes 0
Metric Value
cc 1
eloc 1
nc 1
nop 0
dl 0
loc 3
ccs 2
cts 2
cp 1
crap 1
rs 10
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function cos;
12
use DateTime;
13
use DateTimeImmutable;
14
use DateTimeInterface;
15
use function get_class;
16
use function implode;
17
use InvalidArgumentException;
18
use function log;
19
use PHPCoord\CoordinateOperation\AutoConversion;
20
use PHPCoord\CoordinateOperation\ComplexNumber;
21
use PHPCoord\CoordinateOperation\GeocentricValue;
22
use PHPCoord\CoordinateOperation\GeographicValue;
23
use PHPCoord\CoordinateReferenceSystem\Compound;
24
use PHPCoord\CoordinateReferenceSystem\Geocentric;
25
use PHPCoord\CoordinateReferenceSystem\Geographic;
26
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
27
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
28
use PHPCoord\CoordinateReferenceSystem\Projected;
29
use PHPCoord\CoordinateSystem\Axis;
30
use PHPCoord\Datum\Ellipsoid;
31
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
32
use PHPCoord\Exception\UnknownAxisException;
33
use PHPCoord\UnitOfMeasure\Angle\Angle;
34
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
35
use PHPCoord\UnitOfMeasure\Angle\Degree;
36
use PHPCoord\UnitOfMeasure\Angle\Radian;
37
use PHPCoord\UnitOfMeasure\Length\Length;
38
use PHPCoord\UnitOfMeasure\Length\Metre;
39
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
40
use PHPCoord\UnitOfMeasure\Scale\Scale;
41
use PHPCoord\UnitOfMeasure\Scale\Unity;
42
use function sin;
43
use function sprintf;
44
use function sqrt;
45
use function tan;
46
use TypeError;
47
48
/**
49
 * Coordinate representing a point on an ellipsoid.
50
 */
51
class GeographicPoint extends Point
52
{
53
    use AutoConversion;
54
55
    /**
56
     * Latitude.
57
     */
58
    protected Angle $latitude;
59
60
    /**
61
     * Longitude.
62
     */
63
    protected Angle $longitude;
64
65
    /**
66
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
67
     */
68
    protected ?Length $height;
69
70
    /**
71
     * Coordinate reference system.
72
     */
73
    protected Geographic $crs;
74
75
    /**
76
     * Coordinate epoch (date for which the specified coordinates represented this point).
77
     */
78
    protected ?DateTimeImmutable $epoch;
79
80 123
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
81
    {
82 123
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
83
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
84
        }
85
86 123
        if ($crs instanceof Geographic2D && $height !== null) {
87 1
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
88
        }
89
90 122
        if ($crs instanceof Geographic3D && $height === null) {
91 1
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
92
        }
93
94 121
        $this->crs = $crs;
95
96 121
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
97 121
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
98
99 121
        if ($height) {
100 16
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
101
        } else {
102 109
            $this->height = null;
103
        }
104
105 121
        if ($epoch instanceof DateTime) {
106 1
            $epoch = DateTimeImmutable::createFromMutable($epoch);
107
        }
108 121
        $this->epoch = $epoch;
109 121
    }
110
111
    /**
112
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
113
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
114
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
115
     */
116 123
    public static function create(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null): self
117
    {
118 123
        return new static($latitude, $longitude, $height, $crs, $epoch);
119
    }
120
121 72
    public function getLatitude(): Angle
122
    {
123 72
        return $this->latitude;
124
    }
125
126 72
    public function getLongitude(): Angle
127
    {
128 72
        return $this->longitude;
129
    }
130
131 35
    public function getHeight(): ?Length
132
    {
133 35
        return $this->height;
134
    }
135
136 121
    public function getCRS(): Geographic
137
    {
138 121
        return $this->crs;
139
    }
140
141 9
    public function getCoordinateEpoch(): ?DateTimeImmutable
142
    {
143 9
        return $this->epoch;
144
    }
145
146
    /**
147
     * Calculate surface distance between two points.
148
     */
149 1
    public function calculateDistance(Point $to): Length
150
    {
151 1
        if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
152
            throw new InvalidArgumentException('Can only calculate distances between two points in the same CRS');
153
        }
154
155
        //Mean radius definition taken from Wikipedia
156
        /** @var Ellipsoid $ellipsoid */
157 1
        $ellipsoid = $this->getCRS()->getDatum()->getEllipsoid();
158 1
        $radius = ((2 * $ellipsoid->getSemiMajorAxis()->asMetres()->getValue()) + $ellipsoid->getSemiMinorAxis()->asMetres()->getValue()) / 3;
159
160 1
        return new Metre(self::acos(sin($this->latitude->asRadians()->getValue()) * sin($to->latitude->asRadians()->getValue()) + cos($this->latitude->asRadians()->getValue()) * cos($to->latitude->asRadians()->getValue()) * cos($to->longitude->asRadians()->getValue() - $this->longitude->asRadians()->getValue())) * $radius);
161
    }
162
163 4
    public function __toString(): string
164
    {
165 4
        $values = [];
166 4
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
167 4
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
168 4
                $values[] = $this->latitude;
169 4
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
170 4
                $values[] = $this->longitude;
171 1
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
172 1
                $values[] = $this->height;
173
            } else {
174
                throw new UnknownAxisException(); // @codeCoverageIgnore
175
            }
176
        }
177
178 4
        return '(' . implode(', ', $values) . ')';
179
    }
180
181
    /**
182
     * Geographic/geocentric conversions
183
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
184
     * 9636 to form a geographic to geographic transformation.
185
     */
186 1
    public function geographicGeocentric(
187
        Geocentric $to
188
    ): GeocentricPoint {
189 1
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
190 1
        $asGeocentric = $geographicValue->asGeocentricValue();
191
192 1
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
193
    }
194
195
    /**
196
     * Coordinate Frame rotation (geog2D/geog3D domain)
197
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
198
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
199
     * between other CRS types.
200
     */
201 2
    public function coordinateFrameRotation(
202
        Geographic $to,
203
        Length $xAxisTranslation,
204
        Length $yAxisTranslation,
205
        Length $zAxisTranslation,
206
        Angle $xAxisRotation,
207
        Angle $yAxisRotation,
208
        Angle $zAxisRotation,
209
        Scale $scaleDifference
210
    ): self {
211 2
        return $this->coordinateFrameMolodenskyBadekas(
212 2
            $to,
213
            $xAxisTranslation,
214
            $yAxisTranslation,
215
            $zAxisTranslation,
216
            $xAxisRotation,
217
            $yAxisRotation,
218
            $zAxisRotation,
219
            $scaleDifference,
220 2
            new Metre(0),
221 2
            new Metre(0),
222 2
            new Metre(0)
223
        );
224
    }
225
226
    /**
227
     * Molodensky-Badekas (CF geog2D/geog3D domain)
228
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
229
     * opposite rotation convention in geographic 2D domain.
230
     */
231 4
    public function coordinateFrameMolodenskyBadekas(
232
        Geographic $to,
233
        Length $xAxisTranslation,
234
        Length $yAxisTranslation,
235
        Length $zAxisTranslation,
236
        Angle $xAxisRotation,
237
        Angle $yAxisRotation,
238
        Angle $zAxisRotation,
239
        Scale $scaleDifference,
240
        Length $ordinate1OfEvaluationPoint,
241
        Length $ordinate2OfEvaluationPoint,
242
        Length $ordinate3OfEvaluationPoint
243
    ): self {
244 4
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
245 4
        $asGeocentric = $geographicValue->asGeocentricValue();
246
247 4
        $xs = $asGeocentric->getX()->asMetres()->getValue();
248 4
        $ys = $asGeocentric->getY()->asMetres()->getValue();
249 4
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
250 4
        $tx = $xAxisTranslation->asMetres()->getValue();
251 4
        $ty = $yAxisTranslation->asMetres()->getValue();
252 4
        $tz = $zAxisTranslation->asMetres()->getValue();
253 4
        $rx = $xAxisRotation->asRadians()->getValue();
254 4
        $ry = $yAxisRotation->asRadians()->getValue();
255 4
        $rz = $zAxisRotation->asRadians()->getValue();
256 4
        $M = 1 + $scaleDifference->asUnity()->getValue();
257 4
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
258 4
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
259 4
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
260
261 4
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
262 4
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
263 4
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
264 4
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
265 4
        $newGeographic = $newGeocentric->asGeographicValue();
266
267 4
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
268
    }
269
270
    /**
271
     * Position Vector transformation (geog2D/geog3D domain)
272
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
273
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
274
     * operating between other CRS types.
275
     */
276 4
    public function positionVectorTransformation(
277
        Geographic $to,
278
        Length $xAxisTranslation,
279
        Length $yAxisTranslation,
280
        Length $zAxisTranslation,
281
        Angle $xAxisRotation,
282
        Angle $yAxisRotation,
283
        Angle $zAxisRotation,
284
        Scale $scaleDifference
285
    ): self {
286 4
        return $this->positionVectorMolodenskyBadekas(
287 4
            $to,
288
            $xAxisTranslation,
289
            $yAxisTranslation,
290
            $zAxisTranslation,
291
            $xAxisRotation,
292
            $yAxisRotation,
293
            $zAxisRotation,
294
            $scaleDifference,
295 4
            new Metre(0),
296 4
            new Metre(0),
297 4
            new Metre(0)
298
        );
299
    }
300
301
    /**
302
     * Molodensky-Badekas (PV geog2D/geog3D domain)
303
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
304
     * rotation in geographic 2D/3D domain.
305
     */
306 6
    public function positionVectorMolodenskyBadekas(
307
        Geographic $to,
308
        Length $xAxisTranslation,
309
        Length $yAxisTranslation,
310
        Length $zAxisTranslation,
311
        Angle $xAxisRotation,
312
        Angle $yAxisRotation,
313
        Angle $zAxisRotation,
314
        Scale $scaleDifference,
315
        Length $ordinate1OfEvaluationPoint,
316
        Length $ordinate2OfEvaluationPoint,
317
        Length $ordinate3OfEvaluationPoint
318
    ): self {
319 6
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
320 6
        $asGeocentric = $geographicValue->asGeocentricValue();
321
322 6
        $xs = $asGeocentric->getX()->asMetres()->getValue();
323 6
        $ys = $asGeocentric->getY()->asMetres()->getValue();
324 6
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
325 6
        $tx = $xAxisTranslation->asMetres()->getValue();
326 6
        $ty = $yAxisTranslation->asMetres()->getValue();
327 6
        $tz = $zAxisTranslation->asMetres()->getValue();
328 6
        $rx = $xAxisRotation->asRadians()->getValue();
329 6
        $ry = $yAxisRotation->asRadians()->getValue();
330 6
        $rz = $zAxisRotation->asRadians()->getValue();
331 6
        $M = 1 + $scaleDifference->asUnity()->getValue();
332 6
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
333 6
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
334 6
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
335
336 6
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
337 6
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
338 6
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
339 6
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
340 6
        $newGeographic = $newGeocentric->asGeographicValue();
341
342 6
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
343
    }
344
345
    /**
346
     * Geocentric translations
347
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
348
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
349
     * operating between other CRSs types.
350
     */
351 1
    public function geocentricTranslation(
352
        Geographic $to,
353
        Length $xAxisTranslation,
354
        Length $yAxisTranslation,
355
        Length $zAxisTranslation
356
    ): self {
357 1
        return $this->positionVectorTransformation(
358 1
            $to,
359
            $xAxisTranslation,
360
            $yAxisTranslation,
361
            $zAxisTranslation,
362 1
            new Radian(0),
363 1
            new Radian(0),
364 1
            new Radian(0),
365 1
            new Unity(0)
366
        );
367
    }
368
369
    /**
370
     * Abridged Molodensky
371
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
372
     * systems, modelled as a set of geocentric translations.
373
     */
374 2
    public function abridgedMolodensky(
375
        Geographic $to,
376
        Length $xAxisTranslation,
377
        Length $yAxisTranslation,
378
        Length $zAxisTranslation,
379
        Length $differenceInSemiMajorAxis,
380
        Scale $differenceInFlattening
381
    ): self {
382 2
        $latitude = $this->latitude->asRadians()->getValue();
383 2
        $longitude = $this->longitude->asRadians()->getValue();
384 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
385 2
        $tx = $xAxisTranslation->asMetres()->getValue();
386 2
        $ty = $yAxisTranslation->asMetres()->getValue();
387 2
        $tz = $zAxisTranslation->asMetres()->getValue();
388 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
389 2
        $df = $differenceInFlattening->asUnity()->getValue();
390
391 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
392 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
393
394 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
395 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
396
397 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
398
399 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
400 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
401 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
402
403 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
404 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
405 2
        $toHeight = $fromHeight + $dHeight;
406
407 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
408
    }
409
410
    /**
411
     * Molodensky
412
     * See Abridged Molodensky.
413
     */
414 2
    public function molodensky(
415
        Geographic $to,
416
        Length $xAxisTranslation,
417
        Length $yAxisTranslation,
418
        Length $zAxisTranslation,
419
        Length $differenceInSemiMajorAxis,
420
        Scale $differenceInFlattening
421
    ): self {
422 2
        $latitude = $this->latitude->asRadians()->getValue();
423 2
        $longitude = $this->longitude->asRadians()->getValue();
424 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
425 2
        $tx = $xAxisTranslation->asMetres()->getValue();
426 2
        $ty = $yAxisTranslation->asMetres()->getValue();
427 2
        $tz = $zAxisTranslation->asMetres()->getValue();
428 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
429 2
        $df = $differenceInFlattening->asUnity()->getValue();
430
431 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
432 2
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
433 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
434
435 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
436 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
437
438 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
439
440 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
441 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
442 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
443
444 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
445 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
446 2
        $toHeight = $fromHeight + $dHeight;
447
448 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
449
    }
450
451
    /**
452
     * Albers Equal Area.
453
     */
454 2
    public function albersEqualArea(
455
        Projected $to,
456
        Angle $latitudeOfFalseOrigin,
457
        Angle $longitudeOfFalseOrigin,
458
        Angle $latitudeOf1stStandardParallel,
459
        Angle $latitudeOf2ndStandardParallel,
460
        Length $eastingAtFalseOrigin,
461
        Length $northingAtFalseOrigin
462
    ): ProjectedPoint {
463 2
        $latitude = $this->latitude->asRadians()->getValue();
464 2
        $longitude = $this->longitude->asRadians()->getValue();
465 2
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
466 2
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
467 2
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
468 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
469 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
470 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
471
472 2
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
473 2
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
474
475 2
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
476 2
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
477 2
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
478 2
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
479
480 2
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
481 2
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
482 2
        $theta = $n * ($longitude - $longitudeOfFalseOrigin->asRadians()->getValue());
483 2
        $rho = $a * sqrt($C - $n * $alpha) / $n;
484 2
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
485
486 2
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
487 2
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
488
489 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
490
    }
491
492
    /**
493
     * American Polyconic.
494
     */
495 1
    public function americanPolyconic(
496
        Projected $to,
497
        Angle $latitudeOfNaturalOrigin,
498
        Angle $longitudeOfNaturalOrigin,
499
        Length $falseEasting,
500
        Length $falseNorthing
501
    ): ProjectedPoint {
502 1
        $latitude = $this->latitude->asRadians()->getValue();
503 1
        $longitude = $this->longitude->asRadians()->getValue();
504 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
505 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
506 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
507 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
508 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
509 1
        $e4 = $e ** 4;
510 1
        $e6 = $e ** 6;
511
512 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
513 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
514
515 1
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
516
            $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
517
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
518
        } else {
519 1
            $L = ($longitude - $longitudeOrigin) * sin($latitude);
520 1
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
521
522 1
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
523 1
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
524
        }
525
526 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
527
    }
528
529
    /**
530
     * Bonne.
531
     */
532 1
    public function bonne(
533
        Projected $to,
534
        Angle $latitudeOfNaturalOrigin,
535
        Angle $longitudeOfNaturalOrigin,
536
        Length $falseEasting,
537
        Length $falseNorthing
538
    ): ProjectedPoint {
539 1
        $latitude = $this->latitude->asRadians()->getValue();
540 1
        $longitude = $this->longitude->asRadians()->getValue();
541 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
542 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
543 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
544 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
545 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
546 1
        $e4 = $e ** 4;
547 1
        $e6 = $e ** 6;
548
549 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
550 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
551
552 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
553 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
554
555 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
556 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
557
558 1
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
559 1
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
560
561 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
562
    }
563
564
    /**
565
     * Bonne South Orientated.
566
     */
567 1
    public function bonneSouthOrientated(
568
        Projected $to,
569
        Angle $latitudeOfNaturalOrigin,
570
        Angle $longitudeOfNaturalOrigin,
571
        Length $falseEasting,
572
        Length $falseNorthing
573
    ): ProjectedPoint {
574 1
        $latitude = $this->latitude->asRadians()->getValue();
575 1
        $longitude = $this->longitude->asRadians()->getValue();
576 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
577 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
578 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
579 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
580 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
581 1
        $e4 = $e ** 4;
582 1
        $e6 = $e ** 6;
583
584 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
585 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
586
587 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
588 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
589
590 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
591 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
592
593 1
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
594 1
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
595
596 1
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
597
    }
598
599
    /**
600
     * Cassini-Soldner.
601
     */
602 1
    public function cassiniSoldner(
603
        Projected $to,
604
        Angle $latitudeOfNaturalOrigin,
605
        Angle $longitudeOfNaturalOrigin,
606
        Length $falseEasting,
607
        Length $falseNorthing
608
    ): ProjectedPoint {
609 1
        $latitude = $this->latitude->asRadians()->getValue();
610 1
        $longitude = $this->longitude->asRadians()->getValue();
611 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
612 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
613 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
614 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
615 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
616 1
        $e4 = $e ** 4;
617 1
        $e6 = $e ** 6;
618
619 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
620 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
621
622 1
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
623 1
        $T = tan($latitude) ** 2;
624 1
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
625 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
626 1
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
627
628 1
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
629 1
        $northing = $falseNorthing->asMetres()->getValue() + $X;
630
631 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
632
    }
633
634
    /**
635
     * Hyperbolic Cassini-Soldner.
636
     */
637 2
    public function hyperbolicCassiniSoldner(
638
        Projected $to,
639
        Angle $latitudeOfNaturalOrigin,
640
        Angle $longitudeOfNaturalOrigin,
641
        Length $falseEasting,
642
        Length $falseNorthing
643
    ): ProjectedPoint {
644 2
        $latitude = $this->latitude->asRadians()->getValue();
645 2
        $longitude = $this->longitude->asRadians()->getValue();
646 2
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
647 2
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
648 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
649 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
650 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
651 2
        $e4 = $e ** 4;
652 2
        $e6 = $e ** 6;
653
654 2
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
655 2
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
656
657 2
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
658 2
        $T = tan($latitude) ** 2;
659 2
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
660 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
661 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
662 2
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
663
664 2
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
665 2
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
666
667 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
668
    }
669
670
    /**
671
     * Colombia Urban.
672
     */
673 1
    public function columbiaUrban(
674
        Projected $to,
675
        Angle $latitudeOfNaturalOrigin,
676
        Angle $longitudeOfNaturalOrigin,
677
        Length $falseEasting,
678
        Length $falseNorthing,
679
        Length $projectionPlaneOriginHeight
680
    ): ProjectedPoint {
681 1
        $latitude = $this->latitude->asRadians()->getValue();
682 1
        $longitude = $this->longitude->asRadians()->getValue();
683 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
684 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
685 1
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
686 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
687 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
688
689 1
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
0 ignored issues
show
Unused Code introduced by
The assignment to $rho is dead and can be removed.
Loading history...
690 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
691 1
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
692
693 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
694 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
695
696 1
        $A = 1 + $heightOrigin / $nuOrigin;
697 1
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
698 1
        $G = 1 + $heightOrigin / $rhoMid;
699
700 1
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * ($longitude - $longitudeOrigin);
701 1
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * ($longitude - $longitudeOrigin) ** 2 * $nu ** 2 * cos($latitude) ** 2));
702
703 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
704
    }
705
706
    /**
707
     * Equal Earth.
708
     */
709 1
    public function equalEarth(
710
        Projected $to,
711
        Angle $longitudeOfNaturalOrigin,
712
        Length $falseEasting,
713
        Length $falseNorthing
714
    ): ProjectedPoint {
715 1
        $latitude = $this->latitude->asRadians()->getValue();
716 1
        $longitude = $this->longitude->asRadians()->getValue();
717 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
718 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
719 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
720 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
721
722 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
723 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
724 1
        $beta = self::asin($q / $qP);
725 1
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
726 1
        $Rq = $a * sqrt($qP / 2);
727
728 1
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * ($longitude - $longitudeOrigin) * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
729 1
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
730
731 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
732
    }
733
734
    /**
735
     * Equidistant Cylindrical
736
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
737
     */
738 1
    public function equidistantCylindrical(
739
        Projected $to,
740
        Angle $latitudeOf1stStandardParallel,
741
        Angle $longitudeOfNaturalOrigin,
742
        Length $falseEasting,
743
        Length $falseNorthing
744
    ): ProjectedPoint {
745 1
        $latitude = $this->latitude->asRadians()->getValue();
746 1
        $longitude = $this->longitude->asRadians()->getValue();
747 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
748 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
749 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
750 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
751 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
752 1
        $e4 = $e ** 4;
753 1
        $e6 = $e ** 6;
754 1
        $e8 = $e ** 8;
755 1
        $e10 = $e ** 10;
756 1
        $e12 = $e ** 12;
757 1
        $e14 = $e ** 14;
758
759 1
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
760
761
        $M = $a * (
762 1
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
763 1
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
764 1
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
765 1
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
766 1
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
767 1
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
768 1
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
769 1
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
770
        );
771
772 1
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * ($longitude - $longitudeOrigin);
773 1
        $northing = $falseNorthing->asMetres()->getValue() + $M;
774
775 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
776
    }
777
778
    /**
779
     * Guam Projection
780
     * Simplified form of Oblique Azimuthal Equidistant projection method.
781
     */
782 1
    public function guamProjection(
783
        Projected $to,
784
        Angle $latitudeOfNaturalOrigin,
785
        Angle $longitudeOfNaturalOrigin,
786
        Length $falseEasting,
787
        Length $falseNorthing
788
    ): ProjectedPoint {
789 1
        $latitude = $this->latitude->asRadians()->getValue();
790 1
        $longitude = $this->longitude->asRadians()->getValue();
791 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
792 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
793 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
794 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
795 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
796 1
        $e4 = $e ** 4;
797 1
        $e6 = $e ** 6;
798
799 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
800 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
801 1
        $x = ($a * ($longitude - $longitudeOrigin) * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
802
803 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
804 1
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
805
806 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
807
    }
808
809
    /**
810
     * Krovak.
811
     */
812 4
    public function krovak(
813
        Projected $to,
814
        Angle $latitudeOfProjectionCentre,
815
        Angle $longitudeOfOrigin,
816
        Angle $coLatitudeOfConeAxis,
817
        Angle $latitudeOfPseudoStandardParallel,
818
        Scale $scaleFactorOnPseudoStandardParallel,
819
        Length $falseEasting,
820
        Length $falseNorthing
821
    ): ProjectedPoint {
822 4
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
823 4
        $latitude = $this->latitude->asRadians()->getValue();
824 4
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
825 4
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
826 4
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
827 4
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
828 4
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
829 4
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
830 4
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
831 4
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
832 4
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
833
834 4
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
835 4
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
836 4
        $upsilonO = self::asin(sin($latitudeC) / $B);
837 4
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
838 4
        $n = sin($latitudeP);
839 4
        $rO = $kP * $A / tan($latitudeP);
840
841 4
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
842 4
        $V = $B * ($longitudeO - $longitude);
843 4
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
844 4
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
845 4
        $theta = $n * $D;
846 4
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
847 4
        $X = $r * cos($theta);
848 4
        $Y = $r * sin($theta);
849
850 4
        $westing = $Y + $falseEasting->asMetres()->getValue();
851 4
        $southing = $X + $falseNorthing->asMetres()->getValue();
852
853 4
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
854
    }
855
856
    /**
857
     * Krovak Modified
858
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
859
     * to be a map projection.
860
     */
861 2
    public function krovakModified(
862
        Projected $to,
863
        Angle $latitudeOfProjectionCentre,
864
        Angle $longitudeOfOrigin,
865
        Angle $coLatitudeOfConeAxis,
866
        Angle $latitudeOfPseudoStandardParallel,
867
        Scale $scaleFactorOnPseudoStandardParallel,
868
        Length $falseEasting,
869
        Length $falseNorthing,
870
        Length $ordinate1OfEvaluationPoint,
871
        Length $ordinate2OfEvaluationPoint,
872
        Coefficient $C1,
873
        Coefficient $C2,
874
        Coefficient $C3,
875
        Coefficient $C4,
876
        Coefficient $C5,
877
        Coefficient $C6,
878
        Coefficient $C7,
879
        Coefficient $C8,
880
        Coefficient $C9,
881
        Coefficient $C10
882
    ): ProjectedPoint {
883 2
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
884
885 2
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
886 2
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
887 2
        $c1 = $C1->asUnity()->getValue();
888 2
        $c2 = $C2->asUnity()->getValue();
889 2
        $c3 = $C3->asUnity()->getValue();
890 2
        $c4 = $C4->asUnity()->getValue();
891 2
        $c5 = $C5->asUnity()->getValue();
892 2
        $c6 = $C6->asUnity()->getValue();
893 2
        $c7 = $C7->asUnity()->getValue();
894 2
        $c8 = $C8->asUnity()->getValue();
895 2
        $c9 = $C9->asUnity()->getValue();
896 2
        $c10 = $C10->asUnity()->getValue();
897
898 2
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
899 2
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
900
901 2
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
902 2
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
903
904 2
        $westing += $falseEasting->asMetres()->getValue() - $dY;
905 2
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
906
907 2
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
908
    }
909
910
    /**
911
     * Lambert Azimuthal Equal Area
912
     * This is the ellipsoidal form of the projection.
913
     */
914 1
    public function lambertAzimuthalEqualArea(
915
        Projected $to,
916
        Angle $latitudeOfNaturalOrigin,
917
        Angle $longitudeOfNaturalOrigin,
918
        Length $falseEasting,
919
        Length $falseNorthing
920
    ): ProjectedPoint {
921 1
        $latitude = $this->latitude->asRadians()->getValue();
922 1
        $longitude = $this->longitude->asRadians()->getValue();
923 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
924 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
925 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
926 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
927 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
928
929 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
930 1
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
931 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
932 1
        $beta = self::asin($q / $qP);
933 1
        $betaO = self::asin($qO / $qP);
934 1
        $Rq = $a * sqrt($qP / 2);
935 1
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($longitude - $longitudeOrigin))));
936 1
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
937
938 1
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($longitude - $longitudeOrigin)));
939 1
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($longitude - $longitudeOrigin)));
940
941 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
942
    }
943
944
    /**
945
     * Lambert Azimuthal Equal Area (Spherical)
946
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
947
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
948
     * methods.
949
     */
950 1
    public function lambertAzimuthalEqualAreaSpherical(
951
        Projected $to,
952
        Angle $latitudeOfNaturalOrigin,
953
        Angle $longitudeOfNaturalOrigin,
954
        Length $falseEasting,
955
        Length $falseNorthing
956
    ): ProjectedPoint {
957 1
        $latitude = $this->latitude->asRadians()->getValue();
958 1
        $longitude = $this->longitude->asRadians()->getValue();
959 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
960 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
961 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
962
963 1
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
964
965 1
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($longitude - $longitudeOrigin));
966 1
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
967
968 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
969
    }
970
971
    /**
972
     * Lambert Conic Conformal (1SP).
973
     */
974 1
    public function lambertConicConformal1SP(
975
        Projected $to,
976
        Angle $latitudeOfNaturalOrigin,
977
        Angle $longitudeOfNaturalOrigin,
978
        Scale $scaleFactorAtNaturalOrigin,
979
        Length $falseEasting,
980
        Length $falseNorthing
981
    ): ProjectedPoint {
982 1
        $latitude = $this->latitude->asRadians()->getValue();
983 1
        $longitude = $this->longitude->asRadians()->getValue();
984 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
985 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
986 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
987 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
988 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
989 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
990
991 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
992 1
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
993 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
994 1
        $n = sin($latitudeOrigin);
995 1
        $F = $mO / ($n * $tO ** $n);
996 1
        $rO = $a * $F * $tO ** $n * $kO;
997 1
        $r = $a * $F * $t ** $n * $kO;
998 1
        $theta = $n * ($longitude - $longitudeOrigin);
999
1000 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1001 1
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1002
1003 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1004
    }
1005
1006
    /**
1007
     * Lambert Conic Conformal (2SP Belgium)
1008
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1009
     * with appropriately modified parameter values.
1010
     */
1011 1
    public function lambertConicConformal2SPBelgium(
1012
        Projected $to,
1013
        Angle $latitudeOfFalseOrigin,
1014
        Angle $longitudeOfFalseOrigin,
1015
        Angle $latitudeOf1stStandardParallel,
1016
        Angle $latitudeOf2ndStandardParallel,
1017
        Length $eastingAtFalseOrigin,
1018
        Length $northingAtFalseOrigin
1019
    ): ProjectedPoint {
1020 1
        $latitude = $this->latitude->asRadians()->getValue();
1021 1
        $longitude = $this->longitude->asRadians()->getValue();
1022 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1023 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1024 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1025 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1026 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1027 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1028 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1029
1030 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1031 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1032 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1033 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1034 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1035 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1036 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1037 1
        $F = $m1 / ($n * $t1 ** $n);
1038 1
        $r = $a * $F * $t ** $n;
1039 1
        $rF = $a * $F * $tF ** $n;
1040 1
        if (is_nan($rF)) {
1041 1
            $rF = 0;
1042
        }
1043 1
        $theta = ($n * ($longitude - $lambdaF)) - (new ArcSecond(29.2985))->asRadians()->getValue();
1044
1045 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1046 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1047
1048 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1049
    }
1050
1051
    /**
1052
     * Lambert Conic Conformal (2SP Michigan).
1053
     */
1054 1
    public function lambertConicConformal2SPMichigan(
1055
        Projected $to,
1056
        Angle $latitudeOfFalseOrigin,
1057
        Angle $longitudeOfFalseOrigin,
1058
        Angle $latitudeOf1stStandardParallel,
1059
        Angle $latitudeOf2ndStandardParallel,
1060
        Length $eastingAtFalseOrigin,
1061
        Length $northingAtFalseOrigin,
1062
        Scale $ellipsoidScalingFactor
1063
    ): ProjectedPoint {
1064 1
        $latitude = $this->latitude->asRadians()->getValue();
1065 1
        $longitude = $this->longitude->asRadians()->getValue();
1066 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1067 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1068 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1069 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1070 1
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1071 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1072 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1073 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1074
1075 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1076 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1077 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1078 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1079 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1080 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1081 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1082 1
        $F = $m1 / ($n * $t1 ** $n);
1083 1
        $r = $a * $K * $F * $t ** $n;
1084 1
        $rF = $a * $K * $F * $tF ** $n;
1085 1
        $theta = $n * ($longitude - $lambdaF);
1086
1087 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1088 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1089
1090 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1091
    }
1092
1093
    /**
1094
     * Lambert Conic Conformal (2SP).
1095
     */
1096 1
    public function lambertConicConformal2SP(
1097
        Projected $to,
1098
        Angle $latitudeOfFalseOrigin,
1099
        Angle $longitudeOfFalseOrigin,
1100
        Angle $latitudeOf1stStandardParallel,
1101
        Angle $latitudeOf2ndStandardParallel,
1102
        Length $eastingAtFalseOrigin,
1103
        Length $northingAtFalseOrigin
1104
    ): ProjectedPoint {
1105 1
        $latitude = $this->latitude->asRadians()->getValue();
1106 1
        $longitude = $this->longitude->asRadians()->getValue();
1107 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1108 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1109 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1110 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1111 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1112 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1113 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1114
1115 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1116 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1117 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1118 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1119 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1120 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1121 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1122 1
        $F = $m1 / ($n * $t1 ** $n);
1123 1
        $r = $a * $F * $t ** $n;
1124 1
        $rF = $a * $F * $tF ** $n;
1125 1
        $theta = $n * ($longitude - $lambdaF);
1126
1127 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1128 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1129
1130 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1131
    }
1132
1133
    /**
1134
     * Lambert Conic Conformal (West Orientated).
1135
     */
1136
    public function lambertConicConformalWestOrientated(
1137
        Projected $to,
1138
        Angle $latitudeOfNaturalOrigin,
1139
        Angle $longitudeOfNaturalOrigin,
1140
        Scale $scaleFactorAtNaturalOrigin,
1141
        Length $falseEasting,
1142
        Length $falseNorthing
1143
    ): ProjectedPoint {
1144
        $latitude = $this->latitude->asRadians()->getValue();
1145
        $longitude = $this->longitude->asRadians()->getValue();
1146
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1147
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1148
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1149
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1150
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1151
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1152
1153
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1154
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1155
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1156
        $n = sin($latitudeOrigin);
1157
        $F = $mO / ($n * $tO ** $n);
1158
        $rO = $a * $F * $tO ** $n ** $kO;
1159
        $r = $a * $F * $t ** $n ** $kO;
1160
        $theta = $n * ($longitude - $longitudeOrigin);
1161
1162
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1163
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1164
1165
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1166
    }
1167
1168
    /**
1169
     * Lambert Conic Near-Conformal
1170
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1171
     * series expansion of the projection formulae.
1172
     */
1173 1
    public function lambertConicNearConformal(
1174
        Projected $to,
1175
        Angle $latitudeOfNaturalOrigin,
1176
        Angle $longitudeOfNaturalOrigin,
1177
        Scale $scaleFactorAtNaturalOrigin,
1178
        Length $falseEasting,
1179
        Length $falseNorthing
1180
    ): ProjectedPoint {
1181 1
        $latitude = $this->latitude->asRadians()->getValue();
1182 1
        $longitude = $this->longitude->asRadians()->getValue();
1183 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1184 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1185 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1186 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1187 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1188 1
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1189
1190 1
        $n = $f / (2 - $f);
1191 1
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1192 1
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1193 1
        $A = 1 / (6 * $rhoO * $nuO);
1194 1
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1195 1
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1196 1
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1197 1
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1198 1
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1199 1
        $rO = $kO * $nuO / tan($latitudeOrigin);
1200 1
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1201 1
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1202 1
        $m = $s - $sO;
1203 1
        $M = $kO * ($m + $A * $m ** 3);
1204 1
        $r = $rO - $M;
1205 1
        $theta = ($longitude - $longitudeOrigin) * sin($latitudeOrigin);
1206
1207 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1208 1
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1209
1210 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1211
    }
1212
1213
    /**
1214
     * Lambert Cylindrical Equal Area
1215
     * This is the ellipsoidal form of the projection.
1216
     */
1217 1
    public function lambertCylindricalEqualArea(
1218
        Projected $to,
1219
        Angle $latitudeOf1stStandardParallel,
1220
        Angle $longitudeOfNaturalOrigin,
1221
        Length $falseEasting,
1222
        Length $falseNorthing
1223
    ): ProjectedPoint {
1224 1
        $latitude = $this->latitude->asRadians()->getValue();
1225 1
        $longitude = $this->longitude->asRadians()->getValue();
1226 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1227 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1228 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1229 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1230 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1231
1232 1
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1233 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1234
1235 1
        $x = $a * $k * ($longitude - $longitudeOrigin);
1236 1
        $y = $a * $q / (2 * $k);
1237
1238 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
1239 1
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1240
1241 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1242
    }
1243
1244
    /**
1245
     * Modified Azimuthal Equidistant
1246
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1247
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1248
     */
1249 1
    public function modifiedAzimuthalEquidistant(
1250
        Projected $to,
1251
        Angle $latitudeOfNaturalOrigin,
1252
        Angle $longitudeOfNaturalOrigin,
1253
        Length $falseEasting,
1254
        Length $falseNorthing
1255
    ): ProjectedPoint {
1256 1
        $latitude = $this->latitude->asRadians()->getValue();
1257 1
        $longitude = $this->longitude->asRadians()->getValue();
1258 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1259 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1260 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1261 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1262 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1263
1264 1
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1265 1
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1266 1
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1267 1
        $alpha = atan2(sin($longitude - $longitudeOrigin), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($longitude - $longitudeOrigin)));
1268 1
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1269 1
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1270
1271 1
        if (sin($alpha) === 0.0) {
1272
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1273
        } else {
1274 1
            $s = self::asin(sin($longitude - $longitudeOrigin) * cos($psi) / sin($alpha));
1275
        }
1276
1277 1
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1278
1279 1
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1280 1
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1281
1282 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1283
    }
1284
1285
    /**
1286
     * Oblique Stereographic
1287
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1288
     * Projections - A Working Manual" by John P. Snyder.
1289
     */
1290 1
    public function obliqueStereographic(
1291
        Projected $to,
1292
        Angle $latitudeOfNaturalOrigin,
1293
        Angle $longitudeOfNaturalOrigin,
1294
        Scale $scaleFactorAtNaturalOrigin,
1295
        Length $falseEasting,
1296
        Length $falseNorthing
1297
    ): ProjectedPoint {
1298 1
        $latitude = $this->latitude->asRadians()->getValue();
1299 1
        $longitude = $this->longitude->asRadians()->getValue();
1300 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1301 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1302 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1303 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1304 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1305 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1306
1307 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1308 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1309 1
        $R = sqrt($rhoOrigin * $nuOrigin);
1310
1311 1
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1312 1
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1313 1
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1314 1
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1315 1
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1316 1
        $w2 = $c * $w1;
1317 1
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1318
1319 1
        $lambda = $n * ($longitude - $longitudeOrigin) + $longitudeOrigin;
1320
1321 1
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1322 1
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1323 1
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1324 1
        $chi = self::asin(($w - 1) / ($w + 1));
1325
1326 1
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1327
1328 1
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1329 1
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1330
1331 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1332
    }
1333
1334
    /**
1335
     * Polar Stereographic (variant A)
1336
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1337
     */
1338 1
    public function polarStereographicVariantA(
1339
        Projected $to,
1340
        Angle $latitudeOfNaturalOrigin,
1341
        Angle $longitudeOfNaturalOrigin,
1342
        Scale $scaleFactorAtNaturalOrigin,
1343
        Length $falseEasting,
1344
        Length $falseNorthing
1345
    ): ProjectedPoint {
1346 1
        $latitude = $this->latitude->asRadians()->getValue();
1347 1
        $longitude = $this->longitude->asRadians()->getValue();
1348 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1349 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1350 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1351 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1352 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1353
1354 1
        if ($latitudeOrigin < 0) {
1355
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1356
        } else {
1357 1
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1358
        }
1359 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1360
1361 1
        $theta = $longitude - $longitudeOrigin;
1362 1
        $dE = $rho * sin($theta);
1363 1
        $dN = $rho * cos($theta);
1364
1365 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1366 1
        if ($latitudeOrigin < 0) {
1367
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1368
        } else {
1369 1
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1370
        }
1371
1372 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1373
    }
1374
1375
    /**
1376
     * Polar Stereographic (variant B).
1377
     */
1378 1
    public function polarStereographicVariantB(
1379
        Projected $to,
1380
        Angle $latitudeOfStandardParallel,
1381
        Angle $longitudeOfOrigin,
1382
        Length $falseEasting,
1383
        Length $falseNorthing
1384
    ): ProjectedPoint {
1385 1
        $latitude = $this->latitude->asRadians()->getValue();
1386 1
        $longitude = $this->longitude->asRadians()->getValue();
1387 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1388 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1389 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1390 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1391 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1392
1393 1
        if ($firstStandardParallel < 0) {
1394 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1395 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1396
        } else {
1397
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1398
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1399
        }
1400 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1401 1
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1402
1403 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1404
1405 1
        $theta = $longitude - $longitudeOrigin;
1406 1
        $dE = $rho * sin($theta);
1407 1
        $dN = $rho * cos($theta);
1408
1409 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1410 1
        if ($firstStandardParallel < 0) {
1411 1
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1412
        } else {
1413
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1414
        }
1415
1416 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1417
    }
1418
1419
    /**
1420
     * Polar Stereographic (variant C).
1421
     */
1422 1
    public function polarStereographicVariantC(
1423
        Projected $to,
1424
        Angle $latitudeOfStandardParallel,
1425
        Angle $longitudeOfOrigin,
1426
        Length $eastingAtFalseOrigin,
1427
        Length $northingAtFalseOrigin
1428
    ): ProjectedPoint {
1429 1
        $latitude = $this->latitude->asRadians()->getValue();
1430 1
        $longitude = $this->longitude->asRadians()->getValue();
1431 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1432 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1433 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1434 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1435 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1436
1437 1
        if ($firstStandardParallel < 0) {
1438 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1439 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1440
        } else {
1441
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1442
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1443
        }
1444 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1445
1446 1
        $rhoF = $a * $mF;
1447 1
        $rho = $rhoF * $t / $tF;
1448
1449 1
        $theta = $longitude - $longitudeOrigin;
1450 1
        $dE = $rho * sin($theta);
1451 1
        $dN = $rho * cos($theta);
1452
1453 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1454 1
        if ($firstStandardParallel < 0) {
1455 1
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1456
        } else {
1457
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1458
        }
1459
1460 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1461
    }
1462
1463
    /**
1464
     * Popular Visualisation Pseudo Mercator
1465
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1466
     */
1467 1
    public function popularVisualisationPseudoMercator(
1468
        Projected $to,
1469
        Angle $latitudeOfNaturalOrigin,
1470
        Angle $longitudeOfNaturalOrigin,
1471
        Length $falseEasting,
1472
        Length $falseNorthing
1473
    ): ProjectedPoint {
1474 1
        $latitude = $this->latitude->asRadians()->getValue();
1475 1
        $longitude = $this->longitude->asRadians()->getValue();
1476 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1477 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1478 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1479
1480 1
        $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
1481 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1482
1483 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1484
    }
1485
1486
    /**
1487
     * Mercator (variant A)
1488
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1489
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1490
     * completeness in CRS labelling.
1491
     */
1492 1
    public function mercatorVariantA(
1493
        Projected $to,
1494
        Angle $latitudeOfNaturalOrigin,
1495
        Angle $longitudeOfNaturalOrigin,
1496
        Scale $scaleFactorAtNaturalOrigin,
1497
        Length $falseEasting,
1498
        Length $falseNorthing
1499
    ): ProjectedPoint {
1500 1
        $latitude = $this->latitude->asRadians()->getValue();
1501 1
        $longitude = $this->longitude->asRadians()->getValue();
1502
1503 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1504 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1505 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1506
1507 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1508 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1509
1510 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1511 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1512
1513 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1514
    }
1515
1516
    /**
1517
     * Mercator (variant B)
1518
     * Used for most nautical charts.
1519
     */
1520 1
    public function mercatorVariantB(
1521
        Projected $to,
1522
        Angle $latitudeOf1stStandardParallel,
1523
        Angle $longitudeOfNaturalOrigin,
1524
        Length $falseEasting,
1525
        Length $falseNorthing
1526
    ): ProjectedPoint {
1527 1
        $latitude = $this->latitude->asRadians()->getValue();
1528 1
        $longitude = $this->longitude->asRadians()->getValue();
1529 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1530 1
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1531 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1532 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1533 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1534
1535 1
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1536
1537 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1538 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1539
1540 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1541
    }
1542
1543
    /**
1544
     * Longitude rotation
1545
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1546
     * value to the longitude value of the point in the source system.
1547
     */
1548 1
    public function longitudeRotation(
1549
        Geographic $to,
1550
        Angle $longitudeOffset
1551
    ): self {
1552 1
        $newLongitude = $this->longitude->add($longitudeOffset);
1553 1
        if ($newLongitude->asDegrees()->getValue() < -180) {
1554
            $newLongitude = $newLongitude->add(new Degree(360));
1555
        }
1556
1557 1
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1558
    }
1559
1560
    /**
1561
     * Hotine Oblique Mercator (variant A).
1562
     */
1563 1
    public function obliqueMercatorHotineVariantA(
1564
        Projected $to,
1565
        Angle $latitudeOfProjectionCentre,
1566
        Angle $longitudeOfProjectionCentre,
1567
        Angle $azimuthOfInitialLine,
1568
        Angle $angleFromRectifiedToSkewGrid,
1569
        Scale $scaleFactorOnInitialLine,
1570
        Length $falseEasting,
1571
        Length $falseNorthing
1572
    ): ProjectedPoint {
1573 1
        $latitude = $this->latitude->asRadians()->getValue();
1574 1
        $longitude = $this->longitude->asRadians()->getValue();
1575 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1576 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1577 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1578 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1579 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1580 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1581 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1582 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1583
1584 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1585 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1586 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1587 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1588 1
        $DD = max(1, $D ** 2);
1589 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1590 1
        $H = $F * ($tO) ** $B;
1591 1
        $G = ($F - 1 / $F) / 2;
1592 1
        $gammaO = self::asin(sin($alphaC) / $D);
1593 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1594
1595 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1596 1
        $Q = $H / $t ** $B;
1597 1
        $S = ($Q - 1 / $Q) / 2;
1598 1
        $T = ($Q + 1 / $Q) / 2;
1599 1
        $V = sin($B * ($longitude - $lonO));
1600 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1601 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1602 1
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1603
1604 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1605 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1606
1607 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1608
    }
1609
1610
    /**
1611
     * Hotine Oblique Mercator (variant B).
1612
     */
1613 1
    public function obliqueMercatorHotineVariantB(
1614
        Projected $to,
1615
        Angle $latitudeOfProjectionCentre,
1616
        Angle $longitudeOfProjectionCentre,
1617
        Angle $azimuthOfInitialLine,
1618
        Angle $angleFromRectifiedToSkewGrid,
1619
        Scale $scaleFactorOnInitialLine,
1620
        Length $eastingAtProjectionCentre,
1621
        Length $northingAtProjectionCentre
1622
    ): ProjectedPoint {
1623 1
        $latitude = $this->latitude->asRadians()->getValue();
1624 1
        $longitude = $this->longitude->asRadians()->getValue();
1625 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1626 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1627 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1628 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1629 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1630 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1631 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1632 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1633
1634 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1635 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1636 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1637 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1638 1
        $DD = max(1, $D ** 2);
1639 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1640 1
        $H = $F * ($tO) ** $B;
1641 1
        $G = ($F - 1 / $F) / 2;
1642 1
        $gammaO = self::asin(sin($alphaC) / $D);
1643 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1644 1
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1645 1
        if ($alphaC === M_PI / 2) {
1646
            $uC = $A * ($lonC - $lonO);
1647
        } else {
1648 1
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1649
        }
1650
1651 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1652 1
        $Q = $H / $t ** $B;
1653 1
        $S = ($Q - 1 / $Q) / 2;
1654 1
        $T = ($Q + 1 / $Q) / 2;
1655 1
        $V = sin($B * ($longitude - $lonO));
1656 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1657 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1658
1659 1
        if ($alphaC === M_PI / 2) {
1660
            if ($longitude === $lonC) {
1661
                $u = 0;
1662
            } else {
1663
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1664
            }
1665
        } else {
1666 1
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1667
        }
1668
1669 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1670 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1671
1672 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1673
    }
1674
1675
    /**
1676
     * Laborde Oblique Mercator.
1677
     */
1678 1
    public function obliqueMercatorLaborde(
1679
        Projected $to,
1680
        Angle $latitudeOfProjectionCentre,
1681
        Angle $longitudeOfProjectionCentre,
1682
        Angle $azimuthOfInitialLine,
1683
        Scale $scaleFactorOnInitialLine,
1684
        Length $falseEasting,
1685
        Length $falseNorthing
1686
    ): ProjectedPoint {
1687 1
        $latitude = $this->latitude->asRadians()->getValue();
1688 1
        $longitude = $this->longitude->asRadians()->getValue();
1689 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1690 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1691 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1692 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1693 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1694 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1695 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1696
1697 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1698 1
        $latS = self::asin(sin($latC) / $B);
1699 1
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1700 1
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1701
1702 1
        $L = $B * ($longitude - $lonC);
1703 1
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1704 1
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1705 1
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1706 1
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1707 1
        $W = cos($P) * sin($L);
1708 1
        $d = sqrt($U ** 2 + $V ** 2);
1709 1
        if ($d === 0.0) {
1710
            $LPrime = 0;
1711
            $PPrime = static::sign($W) * M_PI / 2;
1712
        } else {
1713 1
            $LPrime = 2 * atan($V / ($U + $d));
1714 1
            $PPrime = atan($W / $d);
1715
        }
1716 1
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1717 1
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1718
1719 1
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1720 1
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1721
1722 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1723
    }
1724
1725
    /**
1726
     * Transverse Mercator.
1727
     */
1728 7
    public function transverseMercator(
1729
        Projected $to,
1730
        Angle $latitudeOfNaturalOrigin,
1731
        Angle $longitudeOfNaturalOrigin,
1732
        Scale $scaleFactorAtNaturalOrigin,
1733
        Length $falseEasting,
1734
        Length $falseNorthing
1735
    ): ProjectedPoint {
1736 7
        $latitude = $this->latitude->asRadians()->getValue();
1737 7
        $longitude = $this->longitude->asRadians()->getValue();
1738 7
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1739 7
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1740 7
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1741 7
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1742 7
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1743 7
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1744
1745 7
        $n = $f / (2 - $f);
1746 7
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1747
1748 7
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1749 7
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1750 7
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1751 7
        $h4 = (49561 / 161280) * $n ** 4;
1752
1753 7
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1754 5
            $mO = 0;
1755 2
        } elseif ($latitudeOrigin === M_PI / 2) {
1756
            $mO = $B * M_PI / 2;
1757 2
        } elseif ($latitudeOrigin === -M_PI / 2) {
1758
            $mO = $B * -M_PI / 2;
1759
        } else {
1760 2
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1761 2
            $betaO = atan(sinh($qO));
1762 2
            $xiO0 = self::asin(sin($betaO));
1763 2
            $xiO1 = $h1 * sin(2 * $xiO0);
1764 2
            $xiO2 = $h2 * sin(4 * $xiO0);
1765 2
            $xiO3 = $h3 * sin(6 * $xiO0);
1766 2
            $xiO4 = $h4 * sin(8 * $xiO0);
1767 2
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1768 2
            $mO = $B * $xiO;
1769
        }
1770
1771 7
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1772 7
        $beta = atan(sinh($Q));
1773 7
        $eta0 = atanh(cos($beta) * sin($longitude - $longitudeOrigin));
1774 7
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1775 7
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1776 7
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1777 7
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1778 7
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1779 7
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1780 7
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1781 7
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1782 7
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1783 7
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1784 7
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1785
1786 7
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1787 7
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1788
1789 7
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1790
    }
1791
1792
    /**
1793
     * Transverse Mercator Zoned Grid System
1794
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1795
     * each zone.
1796
     */
1797 3
    public function transverseMercatorZonedGrid(
1798
        Projected $to,
1799
        Angle $latitudeOfNaturalOrigin,
1800
        Angle $initialLongitude,
1801
        Angle $zoneWidth,
1802
        Scale $scaleFactorAtNaturalOrigin,
1803
        Length $falseEasting,
1804
        Length $falseNorthing
1805
    ): ProjectedPoint {
1806 3
        $W = $zoneWidth->asDegrees()->getValue();
1807 3
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1;
1808
1809 3
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1810 3
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1811
1812 3
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1813
    }
1814
1815
    /**
1816
     * New Zealand Map Grid.
1817
     */
1818 3
    public function newZealandMapGrid(
1819
        Projected $to,
1820
        Angle $latitudeOfNaturalOrigin,
1821
        Angle $longitudeOfNaturalOrigin,
1822
        Length $falseEasting,
1823
        Length $falseNorthing
1824
    ): ProjectedPoint {
1825 3
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1826
1827 3
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1828 3
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1829
1830 3
        $deltaPsi = 0;
1831 3
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1832 3
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1833 3
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1834 3
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1835 3
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1836 3
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1837 3
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1838 3
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1839 3
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1840 3
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1841
1842 3
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1843
1844 3
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1845 3
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1846 3
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1847 3
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1848 3
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1849 3
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1850 3
        $z = new ComplexNumber(0, 0);
1851 3
        $z = $z->add($B1->multiply($zeta->pow(1)));
1852 3
        $z = $z->add($B2->multiply($zeta->pow(2)));
1853 3
        $z = $z->add($B3->multiply($zeta->pow(3)));
1854 3
        $z = $z->add($B4->multiply($zeta->pow(4)));
1855 3
        $z = $z->add($B5->multiply($zeta->pow(5)));
1856 3
        $z = $z->add($B6->multiply($zeta->pow(6)));
1857
1858 3
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1859 3
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1860
1861 3
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1862
    }
1863
1864
    /**
1865
     * Madrid to ED50 polynomial.
1866
     */
1867 1
    public function madridToED50Polynomial(
1868
        Geographic2D $to,
1869
        Scale $A0,
1870
        Scale $A1,
1871
        Scale $A2,
1872
        Scale $A3,
1873
        Angle $B00,
1874
        Scale $B0,
1875
        Scale $B1,
1876
        Scale $B2,
1877
        Scale $B3
1878
    ): self {
1879 1
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1880 1
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1881
1882 1
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1883
    }
1884
1885
    /**
1886
     * Geographic3D to 2D conversion.
1887
     */
1888 1
    public function threeDToTwoD(
1889
        Geographic $to
1890
    ): self {
1891 1
        if ($to instanceof Geographic2D) {
1892 1
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1893
        }
1894
1895
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1896
    }
1897
1898
    /**
1899
     * Geographic2D offsets.
1900
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1901
     * coordinate values of the point in the source system.
1902
     */
1903 1
    public function geographic2DOffsets(
1904
        Geographic $to,
1905
        Angle $latitudeOffset,
1906
        Angle $longitudeOffset
1907
    ): self {
1908 1
        $toLatitude = $this->latitude->add($latitudeOffset);
1909 1
        $toLongitude = $this->longitude->add($longitudeOffset);
1910
1911 1
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1912
    }
1913
1914
    /*
1915
     * Geographic2D with Height Offsets.
1916
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1917
     * coordinate values of the point in the source system.
1918
     */
1919
    public function geographic2DWithHeightOffsets(
1920
        Compound $to,
1921
        Angle $latitudeOffset,
1922
        Angle $longitudeOffset,
1923
        Length $geoidUndulation
1924
    ): CompoundPoint {
1925
        $toLatitude = $this->latitude->add($latitudeOffset);
1926
        $toLongitude = $this->longitude->add($longitudeOffset);
1927
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1927
        /** @scrutinizer ignore-call */ 
1928
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1928
1929
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
1930
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1930
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
1931
1932
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
1933
    }
1934
1935
    /**
1936
     * General polynomial of degree.
1937
     * @param Coefficient[] $powerCoefficients
1938
     */
1939 1
    public function generalPolynomial(
1940
        Geographic $to,
1941
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1942
        Angle $ordinate2OfEvaluationPointInSourceCRS,
1943
        Angle $ordinate1OfEvaluationPointInTargetCRS,
1944
        Angle $ordinate2OfEvaluationPointInTargetCRS,
1945
        Scale $scalingFactorForSourceCRSCoordDifferences,
1946
        Scale $scalingFactorForTargetCRSCoordDifferences,
1947
        Scale $A0,
1948
        Scale $B0,
1949
        array $powerCoefficients
1950
    ): self {
1951 1
        $xs = $this->latitude->getValue();
1952 1
        $ys = $this->longitude->getValue();
1953
1954 1
        $t = $this->generalPolynomialUnitless(
1955 1
            $xs,
1956
            $ys,
1957
            $ordinate1OfEvaluationPointInSourceCRS,
1958
            $ordinate2OfEvaluationPointInSourceCRS,
1959
            $ordinate1OfEvaluationPointInTargetCRS,
1960
            $ordinate2OfEvaluationPointInTargetCRS,
1961
            $scalingFactorForSourceCRSCoordDifferences,
1962
            $scalingFactorForTargetCRSCoordDifferences,
1963
            $A0,
1964
            $B0,
1965
            $powerCoefficients
1966
        );
1967
1968 1
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
1969 1
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1970 1
            $xtUnit = Angle::EPSG_DEGREE;
1971
        }
1972 1
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
1973 1
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1974 1
            $ytUnit = Angle::EPSG_DEGREE;
1975
        }
1976
1977 1
        return static::create(
1978 1
            Angle::makeUnit($t['xt'], $xtUnit),
1979 1
            Angle::makeUnit($t['yt'], $ytUnit),
1980 1
            $this->height,
1981
            $to,
1982 1
            $this->epoch
1983
        );
1984
    }
1985
1986
    /**
1987
     * Reversible polynomial.
1988
     * @param Coefficient[] $powerCoefficients
1989
     */
1990 2
    public function reversiblePolynomial(
1991
        Geographic $to,
1992
        Angle $ordinate1OfEvaluationPoint,
1993
        Angle $ordinate2OfEvaluationPoint,
1994
        Scale $scalingFactorForCoordDifferences,
1995
        Scale $A0,
1996
        Scale $B0,
1997
        $powerCoefficients
1998
    ): self {
1999 2
        $xs = $this->latitude->getValue();
2000 2
        $ys = $this->longitude->getValue();
2001
2002 2
        $t = $this->reversiblePolynomialUnitless(
2003 2
            $xs,
2004
            $ys,
2005
            $ordinate1OfEvaluationPoint,
2006
            $ordinate2OfEvaluationPoint,
2007
            $scalingFactorForCoordDifferences,
2008
            $A0,
2009
            $B0,
2010
            $powerCoefficients
2011
        );
2012
2013 2
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2014 2
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2015 2
            $xtUnit = Angle::EPSG_DEGREE;
2016
        }
2017 2
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2018 2
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2019 2
            $ytUnit = Angle::EPSG_DEGREE;
2020
        }
2021
2022 2
        return static::create(
2023 2
            Angle::makeUnit($t['xt'], $xtUnit),
2024 2
            Angle::makeUnit($t['yt'], $ytUnit),
2025 2
            $this->height,
2026
            $to,
2027 2
            $this->epoch
2028
        );
2029
    }
2030
2031
    /**
2032
     * Axis Order Reversal.
2033
     */
2034
    public function axisReversal(
2035
        Geographic $to
2036
    ) {
2037
        // axes are read in from the CRS, this is a book-keeping adjustment only
2038
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2039
    }
2040
2041 7
    public function asGeographicValue(): GeographicValue
2042
    {
2043 7
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2044
    }
2045
}
2046