Passed
Push — master ( 2c19f0...d4552d )
by Doug
46:35
created

GeographicPoint   F

Complexity

Total Complexity 115

Size/Duplication

Total Lines 2214
Duplicated Lines 0 %

Test Coverage

Coverage 94.4%

Importance

Changes 3
Bugs 0 Features 0
Metric Value
eloc 1073
dl 0
loc 2214
ccs 1078
cts 1142
cp 0.944
rs 1.308
c 3
b 0
f 0
wmc 115

72 Methods

Rating   Name   Duplication   Size   Complexity  
A krovakModified() 0 47 1
A coordinateFrameMolodenskyBadekas() 0 37 2
A getHeight() 0 3 1
A __toString() 0 16 5
A normaliseLatitude() 0 10 3
A getCoordinateEpoch() 0 3 1
A create() 0 3 1
A getCRS() 0 3 1
A getLongitude() 0 3 1
A geographicGeocentric() 0 7 1
A getLatitude() 0 3 1
A positionVectorMolodenskyBadekas() 0 37 2
A axisReversal() 0 5 1
A krovak() 0 43 1
A transverseMercatorZonedGrid() 0 16 1
A mercatorVariantB() 0 20 1
A lambertConicConformalWestOrientated() 0 29 1
A lambertAzimuthalEqualAreaSpherical() 0 18 1
A mercatorVariantA() 0 19 1
A obliqueMercatorHotineVariantB() 0 51 2
A polarStereographicVariantA() 0 34 3
A hyperbolicCassiniSoldner() 0 30 1
A lambertConicConformal1SPVariantB() 0 32 1
A lambertAzimuthalEqualArea() 0 27 1
A bonne() 0 29 1
A modifiedAzimuthalEquidistant() 0 33 2
A polarStereographicVariantB() 0 38 3
A americanPolyconic() 0 31 2
A lambertConicConformal1SP() 0 29 1
A molodensky() 0 36 3
A offsetsFromGrid() 0 10 2
A offsetsFromGridNADCON5() 0 10 1
A threeDToTwoD() 0 8 2
A obliqueStereographic() 0 42 1
A lambertConicConformal2SP() 0 34 1
A madridToED50Polynomial() 0 16 3
A guamProjection() 0 24 1
A lambertConicConformal2SPBelgium() 0 37 2
A columbiaUrban() 0 29 1
A abridgedMolodensky() 0 35 3
A cassiniSoldner() 0 29 1
A albersEqualArea() 0 37 1
A lambertConicConformal2SPMichigan() 0 36 1
B __construct() 0 28 7
A geographic2DWithHeightOffsets() 0 14 1
A geographic2DOffsets() 0 9 1
A bonneSouthOrientated() 0 29 1
B transverseMercator() 0 79 5
A longitudeRotation() 0 7 1
A newZealandMapGrid() 0 45 1
A polarStereographicVariantC() 0 38 3
A obliqueMercatorLaborde() 0 44 2
A lambertConicNearConformal() 0 37 1
A asGeographicValue() 0 3 1
A obliqueMercatorHotineVariantA() 0 46 1
A popularVisualisationPseudoMercator() 0 15 1
A lambertCylindricalEqualArea() 0 24 1
A equalEarth() 0 22 1
A normaliseLongitude() 0 10 3
A calculateDistance() 0 13 3
A geographic3DTo2DPlusGravityHeightOSGM15() 0 33 1
A reversiblePolynomial() 0 32 1
A asUTMPoint() 0 25 3
A positionVectorTransformation() 0 22 1
A equidistantCylindrical() 0 37 1
A geographic3DToGravityHeightFromGrid() 0 8 1
A geocentricTranslation() 0 15 1
A geographic3DTo2DPlusGravityHeightFromGrid() 0 23 1
A coordinateFrameRotation() 0 22 1
A OSTN15() 0 15 1
A geographic3DToGravityHeightOSGM15() 0 18 1
A generalPolynomial() 0 38 1

How to fix   Complexity   

Complex Class

Complex classes like GeographicPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

While breaking up the class, it is a good idea to analyze how other classes use GeographicPoint, and based on these observations, apply Extract Interface, too.

1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use DateTime;
12
use DateTimeImmutable;
13
use DateTimeInterface;
14
use PHPCoord\CoordinateOperation\AutoConversion;
15
use PHPCoord\CoordinateOperation\ComplexNumber;
16
use PHPCoord\CoordinateOperation\ConvertiblePoint;
17
use PHPCoord\CoordinateOperation\GeocentricValue;
18
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
19
use PHPCoord\CoordinateOperation\GeographicGrid;
20
use PHPCoord\CoordinateOperation\GeographicValue;
21
use PHPCoord\CoordinateOperation\NADCON5Grid;
22
use PHPCoord\CoordinateOperation\NADCON5Grids;
23
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
24
use PHPCoord\CoordinateReferenceSystem\Compound;
25
use PHPCoord\CoordinateReferenceSystem\Geocentric;
26
use PHPCoord\CoordinateReferenceSystem\Geographic;
27
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
28
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
29
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
30
use PHPCoord\CoordinateReferenceSystem\Vertical;
31
use PHPCoord\CoordinateSystem\Axis;
32
use PHPCoord\CoordinateSystem\Cartesian;
33
use PHPCoord\Datum\Datum;
34
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
35
use PHPCoord\Exception\UnknownAxisException;
36
use PHPCoord\Geometry\BoundingArea;
37
use PHPCoord\UnitOfMeasure\Angle\Angle;
38
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
39
use PHPCoord\UnitOfMeasure\Angle\Degree;
40
use PHPCoord\UnitOfMeasure\Angle\Radian;
41
use PHPCoord\UnitOfMeasure\Length\Length;
42
use PHPCoord\UnitOfMeasure\Length\Metre;
43
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
44
use PHPCoord\UnitOfMeasure\Scale\Scale;
45
use PHPCoord\UnitOfMeasure\Scale\Unity;
46
47
use function abs;
48
use function asinh;
49
use function atan;
50
use function atan2;
51
use function atanh;
52
use function cos;
53
use function cosh;
54
use function count;
55
use function hypot;
56
use function implode;
57
use function is_nan;
58
use function log;
59
use function max;
60
use function sin;
61
use function sinh;
62
use function sqrt;
63
use function str_replace;
64
use function tan;
65
66
use const M_E;
67
use const M_PI;
68
69
/**
70
 * Coordinate representing a point on an ellipsoid.
71
 */
72
class GeographicPoint extends Point implements ConvertiblePoint
73
{
74
    use AutoConversion;
75
76
    /**
77
     * Latitude.
78
     */
79
    protected Angle $latitude;
80
81
    /**
82
     * Longitude.
83
     */
84
    protected Angle $longitude;
85
86
    /**
87
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
88
     */
89
    protected ?Length $height;
90
91
    /**
92
     * Coordinate reference system.
93
     */
94
    protected Geographic2D|Geographic3D $crs;
95
96
    /**
97
     * Coordinate epoch (date for which the specified coordinates represented this point).
98
     */
99
    protected ?DateTimeImmutable $epoch;
100
101 6725
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
102
    {
103 6725
        if ($crs instanceof Geographic2D && $height !== null) {
104 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
105
        }
106
107 6716
        if ($crs instanceof Geographic3D && $height === null) {
108 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
109
        }
110
111 6707
        $this->crs = $crs;
112
113 6707
        $latitude = $this->normaliseLatitude($latitude);
114 6707
        $longitude = $this->normaliseLongitude($longitude);
115
116 6707
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
117 6707
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
118
119 6707
        if ($height) {
120 1245
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
121
        } else {
122 5537
            $this->height = null;
123
        }
124
125 6707
        if ($epoch instanceof DateTime) {
126 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
127
        }
128 6707
        $this->epoch = $epoch;
129
    }
130
131
    /**
132
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
133
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
134
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
135
     */
136 6725
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
137
    {
138 6725
        return new static($crs, $latitude, $longitude, $height, $epoch);
139
    }
140
141 5895
    public function getLatitude(): Angle
142
    {
143 5895
        return $this->latitude;
144
    }
145
146 5859
    public function getLongitude(): Angle
147
    {
148 5859
        return $this->longitude;
149
    }
150
151 1294
    public function getHeight(): ?Length
152
    {
153 1294
        return $this->height;
154
    }
155
156 2343
    public function getCRS(): Geographic
157
    {
158 2343
        return $this->crs;
159
    }
160
161 126
    public function getCoordinateEpoch(): ?DateTimeImmutable
162
    {
163 126
        return $this->epoch;
164
    }
165
166 6707
    protected function normaliseLatitude(Angle $latitude): Angle
167
    {
168 6707
        if ($latitude->asDegrees()->getValue() > 90) {
169
            return new Degree(90);
170
        }
171 6707
        if ($latitude->asDegrees()->getValue() < -90) {
172
            return new Degree(-90);
173
        }
174
175 6707
        return $latitude;
176
    }
177
178 6707
    protected function normaliseLongitude(Angle $longitude): Angle
179
    {
180 6707
        while ($longitude->asDegrees()->getValue() > 180) {
181 36
            $longitude = $longitude->subtract(new Degree(360));
182
        }
183 6707
        while ($longitude->asDegrees()->getValue() <= -180) {
184 72
            $longitude = $longitude->add(new Degree(360));
185
        }
186
187 6707
        return $longitude;
188
    }
189
190
    /**
191
     * Calculate surface distance between two points.
192
     */
193 162
    public function calculateDistance(Point $to): Length
194
    {
195
        try {
196 162
            if ($to instanceof ConvertiblePoint) {
197 153
                $to = $to->convert($this->crs);
198
            }
199
        } finally {
200 162
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
201 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
202
            }
203
204
            /* @var GeographicPoint $to */
205 153
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
206
        }
207
    }
208
209 36
    public function __toString(): string
210
    {
211 36
        $values = [];
212 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
213 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
214 36
                $values[] = $this->latitude;
215 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
216 36
                $values[] = $this->longitude;
217 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
218 9
                $values[] = $this->height;
219
            } else {
220
                throw new UnknownAxisException(); // @codeCoverageIgnore
221
            }
222
        }
223
224 36
        return '(' . implode(', ', $values) . ')';
225
    }
226
227
    /**
228
     * Geographic/geocentric conversions
229
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
230
     * 9636 to form a geographic to geographic transformation.
231
     */
232 144
    public function geographicGeocentric(
233
        Geocentric $to
234
    ): GeocentricPoint {
235 144
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
236 144
        $asGeocentric = $geographicValue->asGeocentricValue();
237
238 144
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
239
    }
240
241
    /**
242
     * Coordinate Frame rotation (geog2D/geog3D domain)
243
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
244
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
245
     * between other CRS types.
246
     */
247 342
    public function coordinateFrameRotation(
248
        Geographic2D|Geographic3D $to,
249
        Length $xAxisTranslation,
250
        Length $yAxisTranslation,
251
        Length $zAxisTranslation,
252
        Angle $xAxisRotation,
253
        Angle $yAxisRotation,
254
        Angle $zAxisRotation,
255
        Scale $scaleDifference
256
    ): self {
257 342
        return $this->coordinateFrameMolodenskyBadekas(
258 342
            $to,
259 342
            $xAxisTranslation,
260 342
            $yAxisTranslation,
261 342
            $zAxisTranslation,
262 342
            $xAxisRotation,
263 342
            $yAxisRotation,
264 342
            $zAxisRotation,
265 342
            $scaleDifference,
266 342
            new Metre(0),
267 342
            new Metre(0),
268 342
            new Metre(0)
269 342
        );
270
    }
271
272
    /**
273
     * Molodensky-Badekas (CF geog2D/geog3D domain)
274
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
275
     * opposite rotation convention in geographic 2D domain.
276
     */
277 567
    public function coordinateFrameMolodenskyBadekas(
278
        Geographic2D|Geographic3D $to,
279
        Length $xAxisTranslation,
280
        Length $yAxisTranslation,
281
        Length $zAxisTranslation,
282
        Angle $xAxisRotation,
283
        Angle $yAxisRotation,
284
        Angle $zAxisRotation,
285
        Scale $scaleDifference,
286
        Length $ordinate1OfEvaluationPoint,
287
        Length $ordinate2OfEvaluationPoint,
288
        Length $ordinate3OfEvaluationPoint
289
    ): self {
290 567
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
291 567
        $asGeocentric = $geographicValue->asGeocentricValue();
292
293 567
        $xs = $asGeocentric->getX()->asMetres()->getValue();
294 567
        $ys = $asGeocentric->getY()->asMetres()->getValue();
295 567
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
296 567
        $tx = $xAxisTranslation->asMetres()->getValue();
297 567
        $ty = $yAxisTranslation->asMetres()->getValue();
298 567
        $tz = $zAxisTranslation->asMetres()->getValue();
299 567
        $rx = $xAxisRotation->asRadians()->getValue();
300 567
        $ry = $yAxisRotation->asRadians()->getValue();
301 567
        $rz = $zAxisRotation->asRadians()->getValue();
302 567
        $M = 1 + $scaleDifference->asUnity()->getValue();
303 567
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
304 567
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
305 567
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
306
307 567
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
308 567
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
309 567
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
310 567
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
311 567
        $newGeographic = $newGeocentric->asGeographicValue();
312
313 567
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
314
    }
315
316
    /**
317
     * Position Vector transformation (geog2D/geog3D domain)
318
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
319
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
320
     * operating between other CRS types.
321
     */
322 887
    public function positionVectorTransformation(
323
        Geographic2D|Geographic3D $to,
324
        Length $xAxisTranslation,
325
        Length $yAxisTranslation,
326
        Length $zAxisTranslation,
327
        Angle $xAxisRotation,
328
        Angle $yAxisRotation,
329
        Angle $zAxisRotation,
330
        Scale $scaleDifference
331
    ): self {
332 887
        return $this->positionVectorMolodenskyBadekas(
333 887
            $to,
334 887
            $xAxisTranslation,
335 887
            $yAxisTranslation,
336 887
            $zAxisTranslation,
337 887
            $xAxisRotation,
338 887
            $yAxisRotation,
339 887
            $zAxisRotation,
340 887
            $scaleDifference,
341 887
            new Metre(0),
342 887
            new Metre(0),
343 887
            new Metre(0)
344 887
        );
345
    }
346
347
    /**
348
     * Molodensky-Badekas (PV geog2D/geog3D domain)
349
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
350
     * rotation in geographic 2D/3D domain.
351
     */
352 905
    public function positionVectorMolodenskyBadekas(
353
        Geographic2D|Geographic3D $to,
354
        Length $xAxisTranslation,
355
        Length $yAxisTranslation,
356
        Length $zAxisTranslation,
357
        Angle $xAxisRotation,
358
        Angle $yAxisRotation,
359
        Angle $zAxisRotation,
360
        Scale $scaleDifference,
361
        Length $ordinate1OfEvaluationPoint,
362
        Length $ordinate2OfEvaluationPoint,
363
        Length $ordinate3OfEvaluationPoint
364
    ): self {
365 905
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
366 905
        $asGeocentric = $geographicValue->asGeocentricValue();
367
368 905
        $xs = $asGeocentric->getX()->asMetres()->getValue();
369 905
        $ys = $asGeocentric->getY()->asMetres()->getValue();
370 905
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
371 905
        $tx = $xAxisTranslation->asMetres()->getValue();
372 905
        $ty = $yAxisTranslation->asMetres()->getValue();
373 905
        $tz = $zAxisTranslation->asMetres()->getValue();
374 905
        $rx = $xAxisRotation->asRadians()->getValue();
375 905
        $ry = $yAxisRotation->asRadians()->getValue();
376 905
        $rz = $zAxisRotation->asRadians()->getValue();
377 905
        $M = 1 + $scaleDifference->asUnity()->getValue();
378 905
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
379 905
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
380 905
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
381
382 905
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
383 905
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
384 905
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
385 905
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
386 905
        $newGeographic = $newGeocentric->asGeographicValue();
387
388 905
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
389
    }
390
391
    /**
392
     * Geocentric translations
393
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
394
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
395
     * operating between other CRSs types.
396
     */
397 493
    public function geocentricTranslation(
398
        Geographic2D|Geographic3D $to,
399
        Length $xAxisTranslation,
400
        Length $yAxisTranslation,
401
        Length $zAxisTranslation
402
    ): self {
403 493
        return $this->positionVectorTransformation(
404 493
            $to,
405 493
            $xAxisTranslation,
406 493
            $yAxisTranslation,
407 493
            $zAxisTranslation,
408 493
            new Radian(0),
409 493
            new Radian(0),
410 493
            new Radian(0),
411 493
            new Unity(0)
412 493
        );
413
    }
414
415
    /**
416
     * Abridged Molodensky
417
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
418
     * systems, modelled as a set of geocentric translations.
419
     */
420 18
    public function abridgedMolodensky(
421
        Geographic2D|Geographic3D $to,
422
        Length $xAxisTranslation,
423
        Length $yAxisTranslation,
424
        Length $zAxisTranslation,
425
        Length $differenceInSemiMajorAxis,
426
        Scale $differenceInFlattening
427
    ): self {
428 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
429 18
        $latitude = $this->latitude->asRadians()->getValue();
430 18
        $longitude = $this->longitude->asRadians()->getValue();
431 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
432 18
        $tx = $xAxisTranslation->asMetres()->getValue();
433 18
        $ty = $yAxisTranslation->asMetres()->getValue();
434 18
        $tz = $zAxisTranslation->asMetres()->getValue();
435 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
436 18
        $df = $differenceInFlattening->asUnity()->getValue();
437
438 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
439 18
        $e2 = $ellipsoid->getEccentricitySquared();
440
441 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
442 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
443
444 18
        $f = $ellipsoid->getFlattening();
445
446 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
447 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
448 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
449
450 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
451 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
452 18
        $toHeight = $fromHeight + $dHeight;
453
454 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
455
    }
456
457
    /**
458
     * Molodensky
459
     * See Abridged Molodensky.
460
     */
461 18
    public function molodensky(
462
        Geographic2D|Geographic3D $to,
463
        Length $xAxisTranslation,
464
        Length $yAxisTranslation,
465
        Length $zAxisTranslation,
466
        Length $differenceInSemiMajorAxis,
467
        Scale $differenceInFlattening
468
    ): self {
469 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
470 18
        $latitude = $this->latitude->asRadians()->getValue();
471 18
        $longitude = $this->longitude->asRadians()->getValue();
472 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
473 18
        $tx = $xAxisTranslation->asMetres()->getValue();
474 18
        $ty = $yAxisTranslation->asMetres()->getValue();
475 18
        $tz = $zAxisTranslation->asMetres()->getValue();
476 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
477 18
        $df = $differenceInFlattening->asUnity()->getValue();
478
479 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
480 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
481 18
        $e2 = $ellipsoid->getEccentricitySquared();
482
483 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
484 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
485
486 18
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
487
488 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
489 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
490 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
491
492 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
493 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
494 18
        $toHeight = $fromHeight + $dHeight;
495
496 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
497
    }
498
499
    /**
500
     * Albers Equal Area.
501
     */
502 72
    public function albersEqualArea(
503
        Projected $to,
504
        Angle $latitudeOfFalseOrigin,
505
        Angle $longitudeOfFalseOrigin,
506
        Angle $latitudeOf1stStandardParallel,
507
        Angle $latitudeOf2ndStandardParallel,
508
        Length $eastingAtFalseOrigin,
509
        Length $northingAtFalseOrigin
510
    ): ProjectedPoint {
511 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
512 72
        $latitude = $this->latitude->asRadians()->getValue();
513 72
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
514 72
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
515 72
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
516 72
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
517 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
518 72
        $e = $ellipsoid->getEccentricity();
519 72
        $e2 = $ellipsoid->getEccentricitySquared();
520
521 72
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
522 72
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
523
524 72
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
525 72
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
526 72
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
527 72
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
528
529 72
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
530 72
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
531 72
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
532 72
        $rho = $a * sqrt($C - $n * $alpha) / $n;
533 72
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
534
535 72
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
536 72
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
537
538 72
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
539
    }
540
541
    /**
542
     * American Polyconic.
543
     */
544 72
    public function americanPolyconic(
545
        Projected $to,
546
        Angle $latitudeOfNaturalOrigin,
547
        Angle $longitudeOfNaturalOrigin,
548
        Length $falseEasting,
549
        Length $falseNorthing
550
    ): ProjectedPoint {
551 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
552 72
        $latitude = $this->latitude->asRadians()->getValue();
553 72
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
554 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
555 72
        $e = $ellipsoid->getEccentricity();
556 72
        $e2 = $ellipsoid->getEccentricitySquared();
557 72
        $e4 = $e ** 4;
558 72
        $e6 = $e ** 6;
559
560 72
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
561 72
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
562
563 72
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
564 9
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
565 9
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
566
        } else {
567 63
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
568 63
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
569
570 63
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
571 63
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
572
        }
573
574 72
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
575
    }
576
577
    /**
578
     * Bonne.
579
     */
580 9
    public function bonne(
581
        Projected $to,
582
        Angle $latitudeOfNaturalOrigin,
583
        Angle $longitudeOfNaturalOrigin,
584
        Length $falseEasting,
585
        Length $falseNorthing
586
    ): ProjectedPoint {
587 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
588 9
        $latitude = $this->latitude->asRadians()->getValue();
589 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
590 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
591 9
        $e = $ellipsoid->getEccentricity();
592 9
        $e2 = $ellipsoid->getEccentricitySquared();
593 9
        $e4 = $e ** 4;
594 9
        $e6 = $e ** 6;
595
596 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
597 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
598
599 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
600 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
601
602 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
603 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
604
605 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
606 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
607
608 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
609
    }
610
611
    /**
612
     * Bonne South Orientated.
613
     */
614 9
    public function bonneSouthOrientated(
615
        Projected $to,
616
        Angle $latitudeOfNaturalOrigin,
617
        Angle $longitudeOfNaturalOrigin,
618
        Length $falseEasting,
619
        Length $falseNorthing
620
    ): ProjectedPoint {
621 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
622 9
        $latitude = $this->latitude->asRadians()->getValue();
623 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
624 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
625 9
        $e = $ellipsoid->getEccentricity();
626 9
        $e2 = $ellipsoid->getEccentricitySquared();
627 9
        $e4 = $e ** 4;
628 9
        $e6 = $e ** 6;
629
630 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
631 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
632
633 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
634 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
635
636 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
637 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
638
639 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
640 9
        $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
641
642 9
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
643
    }
644
645
    /**
646
     * Cassini-Soldner.
647
     */
648 90
    public function cassiniSoldner(
649
        Projected $to,
650
        Angle $latitudeOfNaturalOrigin,
651
        Angle $longitudeOfNaturalOrigin,
652
        Length $falseEasting,
653
        Length $falseNorthing
654
    ): ProjectedPoint {
655 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
656 90
        $latitude = $this->latitude->asRadians()->getValue();
657 90
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
658 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
659 90
        $e = $ellipsoid->getEccentricity();
660 90
        $e2 = $ellipsoid->getEccentricitySquared();
661 90
        $e4 = $e ** 4;
662 90
        $e6 = $e ** 6;
663
664 90
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
665 90
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
666
667 90
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
668 90
        $T = tan($latitude) ** 2;
669 90
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
670 90
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
671 90
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
672
673 90
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
674 90
        $northing = $falseNorthing->asMetres()->getValue() + $X;
675
676 90
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
677
    }
678
679
    /**
680
     * Hyperbolic Cassini-Soldner.
681
     */
682 18
    public function hyperbolicCassiniSoldner(
683
        Projected $to,
684
        Angle $latitudeOfNaturalOrigin,
685
        Angle $longitudeOfNaturalOrigin,
686
        Length $falseEasting,
687
        Length $falseNorthing
688
    ): ProjectedPoint {
689 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
690 18
        $latitude = $this->latitude->asRadians()->getValue();
691 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
692 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
693 18
        $e = $ellipsoid->getEccentricity();
694 18
        $e2 = $ellipsoid->getEccentricitySquared();
695 18
        $e4 = $e ** 4;
696 18
        $e6 = $e ** 6;
697
698 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
699 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
700
701 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
702 18
        $T = tan($latitude) ** 2;
703 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
704 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
705 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
706 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
707
708 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
709 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
710
711 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
712
    }
713
714
    /**
715
     * Colombia Urban.
716
     */
717 9
    public function columbiaUrban(
718
        Projected $to,
719
        Angle $latitudeOfNaturalOrigin,
720
        Angle $longitudeOfNaturalOrigin,
721
        Length $falseEasting,
722
        Length $falseNorthing,
723
        Length $projectionPlaneOriginHeight
724
    ): ProjectedPoint {
725 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
726 9
        $latitude = $this->latitude->asRadians()->getValue();
727 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
728 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
729 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
730 9
        $e2 = $ellipsoid->getEccentricitySquared();
731
732 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
733 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
734
735 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
736 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
737
738 9
        $A = 1 + $heightOrigin / $nuOrigin;
739 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
740 9
        $G = 1 + $heightOrigin / $rhoMid;
741
742 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
743 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
744
745 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
746
    }
747
748
    /**
749
     * Equal Earth.
750
     */
751 9
    public function equalEarth(
752
        Projected $to,
753
        Angle $longitudeOfNaturalOrigin,
754
        Length $falseEasting,
755
        Length $falseNorthing
756
    ): ProjectedPoint {
757 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
758 9
        $latitude = $this->latitude->asRadians()->getValue();
759 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
760 9
        $e = $ellipsoid->getEccentricity();
761 9
        $e2 = $ellipsoid->getEccentricitySquared();
762
763 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
764 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
765 9
        $beta = self::asin($q / $qP);
766 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
767 9
        $Rq = $a * sqrt($qP / 2);
768
769 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
770 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
771
772 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
773
    }
774
775
    /**
776
     * Equidistant Cylindrical
777
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
778
     */
779 9
    public function equidistantCylindrical(
780
        Projected $to,
781
        Angle $latitudeOf1stStandardParallel,
782
        Angle $longitudeOfNaturalOrigin,
783
        Length $falseEasting,
784
        Length $falseNorthing
785
    ): ProjectedPoint {
786 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
787 9
        $latitude = $this->latitude->asRadians()->getValue();
788 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
789 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
790 9
        $e = $ellipsoid->getEccentricity();
791 9
        $e2 = $ellipsoid->getEccentricitySquared();
792 9
        $e4 = $e ** 4;
793 9
        $e6 = $e ** 6;
794 9
        $e8 = $e ** 8;
795 9
        $e10 = $e ** 10;
796 9
        $e12 = $e ** 12;
797 9
        $e14 = $e ** 14;
798
799 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
800
801 9
        $M = $a * (
802 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
803 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
804 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
805 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
806 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
807 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
808 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
809 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
810 9
        );
811
812 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
813 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
814
815 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
816
    }
817
818
    /**
819
     * Guam Projection
820
     * Simplified form of Oblique Azimuthal Equidistant projection method.
821
     */
822 9
    public function guamProjection(
823
        Projected $to,
824
        Angle $latitudeOfNaturalOrigin,
825
        Angle $longitudeOfNaturalOrigin,
826
        Length $falseEasting,
827
        Length $falseNorthing
828
    ): ProjectedPoint {
829 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
830 9
        $latitude = $this->latitude->asRadians()->getValue();
831 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
832 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
833 9
        $e = $ellipsoid->getEccentricity();
834 9
        $e2 = $ellipsoid->getEccentricitySquared();
835 9
        $e4 = $e ** 4;
836 9
        $e6 = $e ** 6;
837
838 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
839 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
840 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
841
842 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
843 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
844
845 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
846
    }
847
848
    /**
849
     * Krovak.
850
     */
851 36
    public function krovak(
852
        Projected $to,
853
        Angle $latitudeOfProjectionCentre,
854
        Angle $longitudeOfOrigin,
855
        Angle $coLatitudeOfConeAxis,
856
        Angle $latitudeOfPseudoStandardParallel,
857
        Scale $scaleFactorOnPseudoStandardParallel,
858
        Length $falseEasting,
859
        Length $falseNorthing
860
    ): ProjectedPoint {
861 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
862 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
863 36
        $latitude = $this->latitude->asRadians()->getValue();
864 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
865 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
866 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
867 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
868 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
869 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
870 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
871 36
        $e = $ellipsoid->getEccentricity();
872 36
        $e2 = $ellipsoid->getEccentricitySquared();
873
874 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
875 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
876 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
877 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
878 36
        $n = sin($latitudeP);
879 36
        $rO = $kP * $A / tan($latitudeP);
880
881 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
882 36
        $V = $B * ($longitudeO - $longitude);
883 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
884 36
        $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T)));
885 36
        $theta = $n * $D;
886 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
887 36
        $X = $r * cos($theta);
888 36
        $Y = $r * sin($theta);
889
890 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
891 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
892
893 36
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
894
    }
895
896
    /**
897
     * Krovak Modified
898
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
899
     * to be a map projection.
900
     */
901 18
    public function krovakModified(
902
        Projected $to,
903
        Angle $latitudeOfProjectionCentre,
904
        Angle $longitudeOfOrigin,
905
        Angle $coLatitudeOfConeAxis,
906
        Angle $latitudeOfPseudoStandardParallel,
907
        Scale $scaleFactorOnPseudoStandardParallel,
908
        Length $falseEasting,
909
        Length $falseNorthing,
910
        Length $ordinate1OfEvaluationPoint,
911
        Length $ordinate2OfEvaluationPoint,
912
        Coefficient $C1,
913
        Coefficient $C2,
914
        Coefficient $C3,
915
        Coefficient $C4,
916
        Coefficient $C5,
917
        Coefficient $C6,
918
        Coefficient $C7,
919
        Coefficient $C8,
920
        Coefficient $C9,
921
        Coefficient $C10
922
    ): ProjectedPoint {
923 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
924
925 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
926 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
927 18
        $c1 = $C1->asUnity()->getValue();
928 18
        $c2 = $C2->asUnity()->getValue();
929 18
        $c3 = $C3->asUnity()->getValue();
930 18
        $c4 = $C4->asUnity()->getValue();
931 18
        $c5 = $C5->asUnity()->getValue();
932 18
        $c6 = $C6->asUnity()->getValue();
933 18
        $c7 = $C7->asUnity()->getValue();
934 18
        $c8 = $C8->asUnity()->getValue();
935 18
        $c9 = $C9->asUnity()->getValue();
936 18
        $c10 = $C10->asUnity()->getValue();
937
938 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
939 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
940
941 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
942 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
943
944 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
945 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
946
947 18
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
948
    }
949
950
    /**
951
     * Lambert Azimuthal Equal Area
952
     * This is the ellipsoidal form of the projection.
953
     */
954 72
    public function lambertAzimuthalEqualArea(
955
        Projected $to,
956
        Angle $latitudeOfNaturalOrigin,
957
        Angle $longitudeOfNaturalOrigin,
958
        Length $falseEasting,
959
        Length $falseNorthing
960
    ): ProjectedPoint {
961 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
962 72
        $latitude = $this->latitude->asRadians()->getValue();
963 72
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
964 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
965 72
        $e = $ellipsoid->getEccentricity();
966 72
        $e2 = $ellipsoid->getEccentricitySquared();
967
968 72
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
969 72
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
970 72
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
971 72
        $beta = self::asin($q / $qP);
972 72
        $betaO = self::asin($qO / $qP);
973 72
        $Rq = $a * sqrt($qP / 2);
974 72
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
975 72
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
976
977 72
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
978 72
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
979
980 72
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
981
    }
982
983
    /**
984
     * Lambert Azimuthal Equal Area (Spherical)
985
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
986
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
987
     * methods.
988
     */
989 9
    public function lambertAzimuthalEqualAreaSpherical(
990
        Projected $to,
991
        Angle $latitudeOfNaturalOrigin,
992
        Angle $longitudeOfNaturalOrigin,
993
        Length $falseEasting,
994
        Length $falseNorthing
995
    ): ProjectedPoint {
996 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
997 9
        $latitude = $this->latitude->asRadians()->getValue();
998 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
999 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1000
1001 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1002
1003 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1004 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1005
1006 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1007
    }
1008
1009
    /**
1010
     * Lambert Conic Conformal (1SP).
1011
     */
1012 189
    public function lambertConicConformal1SP(
1013
        Projected $to,
1014
        Angle $latitudeOfNaturalOrigin,
1015
        Angle $longitudeOfNaturalOrigin,
1016
        Scale $scaleFactorAtNaturalOrigin,
1017
        Length $falseEasting,
1018
        Length $falseNorthing
1019
    ): ProjectedPoint {
1020 189
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1021 189
        $latitude = $this->latitude->asRadians()->getValue();
1022 189
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1023 189
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1024 189
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1025 189
        $e = $ellipsoid->getEccentricity();
1026 189
        $e2 = $ellipsoid->getEccentricitySquared();
1027
1028 189
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1029 189
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1030 189
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1031 189
        $n = sin($latitudeOrigin);
1032 189
        $F = $mO / ($n * $tO ** $n);
1033 189
        $rO = $a * $F * $tO ** $n * $kO;
1034 189
        $r = $a * $F * $t ** $n * $kO;
1035 189
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1036
1037 189
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1038 189
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1039
1040 189
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1041
    }
1042
1043
    /**
1044
     * Lambert Conic Conformal (1SP) Variant B.
1045
     */
1046
    public function lambertConicConformal1SPVariantB(
1047
        Projected $to,
1048
        Angle $latitudeOfNaturalOrigin,
1049
        Scale $scaleFactorAtNaturalOrigin,
1050
        Angle $latitudeOfFalseOrigin,
1051
        Angle $longitudeOfFalseOrigin,
1052
        Length $eastingAtFalseOrigin,
1053
        Length $northingAtFalseOrigin
1054
    ): ProjectedPoint {
1055
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1056
        $latitude = $this->latitude->asRadians()->getValue();
1057
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1058
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1059
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1060
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1061
        $e = $ellipsoid->getEccentricity();
1062
        $e2 = $ellipsoid->getEccentricitySquared();
1063
1064
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1065
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1066
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1067
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1068
        $n = sin($latitudeNaturalOrigin);
1069
        $F = $mO / ($n * $tO ** $n);
1070
        $rF = $a * $F * $tF ** $n * $kO;
1071
        $r = $a * $F * $t ** $n * $kO;
1072
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1073
1074
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1075
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1076
1077
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1078
    }
1079
1080
    /**
1081
     * Lambert Conic Conformal (2SP Belgium)
1082
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1083
     * with appropriately modified parameter values.
1084
     */
1085 9
    public function lambertConicConformal2SPBelgium(
1086
        Projected $to,
1087
        Angle $latitudeOfFalseOrigin,
1088
        Angle $longitudeOfFalseOrigin,
1089
        Angle $latitudeOf1stStandardParallel,
1090
        Angle $latitudeOf2ndStandardParallel,
1091
        Length $eastingAtFalseOrigin,
1092
        Length $northingAtFalseOrigin
1093
    ): ProjectedPoint {
1094 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1095 9
        $latitude = $this->latitude->asRadians()->getValue();
1096 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1097 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1098 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1099 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1100 9
        $e = $ellipsoid->getEccentricity();
1101 9
        $e2 = $ellipsoid->getEccentricitySquared();
1102
1103 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1104 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1105 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1106 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1107 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1108 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1109 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1110 9
        $F = $m1 / ($n * $t1 ** $n);
1111 9
        $r = $a * $F * $t ** $n;
1112 9
        $rF = $a * $F * $tF ** $n;
1113 9
        if (is_nan($rF)) {
1114 9
            $rF = 0;
1115
        }
1116 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1117
1118 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1119 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1120
1121 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1122
    }
1123
1124
    /**
1125
     * Lambert Conic Conformal (2SP Michigan).
1126
     */
1127 9
    public function lambertConicConformal2SPMichigan(
1128
        Projected $to,
1129
        Angle $latitudeOfFalseOrigin,
1130
        Angle $longitudeOfFalseOrigin,
1131
        Angle $latitudeOf1stStandardParallel,
1132
        Angle $latitudeOf2ndStandardParallel,
1133
        Length $eastingAtFalseOrigin,
1134
        Length $northingAtFalseOrigin,
1135
        Scale $ellipsoidScalingFactor
1136
    ): ProjectedPoint {
1137 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1138 9
        $latitude = $this->latitude->asRadians()->getValue();
1139 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1140 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1141 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1142 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1143 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1144 9
        $e = $ellipsoid->getEccentricity();
1145 9
        $e2 = $ellipsoid->getEccentricitySquared();
1146
1147 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1148 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1149 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1150 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1151 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1152 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1153 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1154 9
        $F = $m1 / ($n * $t1 ** $n);
1155 9
        $r = $a * $K * $F * $t ** $n;
1156 9
        $rF = $a * $K * $F * $tF ** $n;
1157 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1158
1159 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1160 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1161
1162 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1163
    }
1164
1165
    /**
1166
     * Lambert Conic Conformal (2SP).
1167
     */
1168 208
    public function lambertConicConformal2SP(
1169
        Projected $to,
1170
        Angle $latitudeOfFalseOrigin,
1171
        Angle $longitudeOfFalseOrigin,
1172
        Angle $latitudeOf1stStandardParallel,
1173
        Angle $latitudeOf2ndStandardParallel,
1174
        Length $eastingAtFalseOrigin,
1175
        Length $northingAtFalseOrigin
1176
    ): ProjectedPoint {
1177 208
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1178 208
        $latitude = $this->latitude->asRadians()->getValue();
1179 208
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1180 208
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1181 208
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1182 208
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1183 208
        $e = $ellipsoid->getEccentricity();
1184 208
        $e2 = $ellipsoid->getEccentricitySquared();
1185
1186 208
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1187 208
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1188 208
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1189 208
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1190 208
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1191 208
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1192 208
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1193 208
        $F = $m1 / ($n * $t1 ** $n);
1194 208
        $r = $a * $F * $t ** $n;
1195 208
        $rF = $a * $F * $tF ** $n;
1196 208
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1197
1198 208
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1199 208
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1200
1201 208
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1202
    }
1203
1204
    /**
1205
     * Lambert Conic Conformal (West Orientated).
1206
     */
1207
    public function lambertConicConformalWestOrientated(
1208
        Projected $to,
1209
        Angle $latitudeOfNaturalOrigin,
1210
        Angle $longitudeOfNaturalOrigin,
1211
        Scale $scaleFactorAtNaturalOrigin,
1212
        Length $falseEasting,
1213
        Length $falseNorthing
1214
    ): ProjectedPoint {
1215
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1216
        $latitude = $this->latitude->asRadians()->getValue();
1217
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1218
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1219
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1220
        $e = $ellipsoid->getEccentricity();
1221
        $e2 = $ellipsoid->getEccentricitySquared();
1222
1223
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1224
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1225
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1226
        $n = sin($latitudeOrigin);
1227
        $F = $mO / ($n * $tO ** $n);
1228
        $rO = $a * $F * $tO ** $n ** $kO;
1229
        $r = $a * $F * $t ** $n ** $kO;
1230
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1231
1232
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1233
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1234
1235
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1236
    }
1237
1238
    /**
1239
     * Lambert Conic Near-Conformal
1240
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1241
     * series expansion of the projection formulae.
1242
     */
1243 9
    public function lambertConicNearConformal(
1244
        Projected $to,
1245
        Angle $latitudeOfNaturalOrigin,
1246
        Angle $longitudeOfNaturalOrigin,
1247
        Scale $scaleFactorAtNaturalOrigin,
1248
        Length $falseEasting,
1249
        Length $falseNorthing
1250
    ): ProjectedPoint {
1251 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1252 9
        $latitude = $this->latitude->asRadians()->getValue();
1253 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1254 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1255 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1256 9
        $e2 = $ellipsoid->getEccentricitySquared();
1257 9
        $f = $ellipsoid->getFlattening();
1258
1259 9
        $n = $f / (2 - $f);
1260 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1261 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1262 9
        $A = 1 / (6 * $rhoO * $nuO);
1263 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1264 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1265 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1266 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1267 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1268 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1269 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1270 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1271 9
        $m = $s - $sO;
1272 9
        $M = $kO * ($m + $A * $m ** 3);
1273 9
        $r = $rO - $M;
1274 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1275
1276 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1277 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1278
1279 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1280
    }
1281
1282
    /**
1283
     * Lambert Cylindrical Equal Area
1284
     * This is the ellipsoidal form of the projection.
1285
     */
1286 9
    public function lambertCylindricalEqualArea(
1287
        Projected $to,
1288
        Angle $latitudeOf1stStandardParallel,
1289
        Angle $longitudeOfNaturalOrigin,
1290
        Length $falseEasting,
1291
        Length $falseNorthing
1292
    ): ProjectedPoint {
1293 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1294 9
        $latitude = $this->latitude->asRadians()->getValue();
1295 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1296 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1297 9
        $e = $ellipsoid->getEccentricity();
1298 9
        $e2 = $ellipsoid->getEccentricitySquared();
1299
1300 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1301 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1302
1303 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1304 9
        $y = $a * $q / (2 * $k);
1305
1306 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1307 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1308
1309 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1310
    }
1311
1312
    /**
1313
     * Modified Azimuthal Equidistant
1314
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1315
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1316
     */
1317 9
    public function modifiedAzimuthalEquidistant(
1318
        Projected $to,
1319
        Angle $latitudeOfNaturalOrigin,
1320
        Angle $longitudeOfNaturalOrigin,
1321
        Length $falseEasting,
1322
        Length $falseNorthing
1323
    ): ProjectedPoint {
1324 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1325 9
        $latitude = $this->latitude->asRadians()->getValue();
1326 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1327 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1328 9
        $e = $ellipsoid->getEccentricity();
1329 9
        $e2 = $ellipsoid->getEccentricitySquared();
1330
1331 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1332 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1333 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1334 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1335 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1336 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1337
1338 9
        if (sin($alpha) === 0.0) {
1339
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1340
        } else {
1341 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1342
        }
1343
1344 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1345
1346 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1347 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1348
1349 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1350
    }
1351
1352
    /**
1353
     * Oblique Stereographic
1354
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1355
     * Projections - A Working Manual" by John P. Snyder.
1356
     */
1357 99
    public function obliqueStereographic(
1358
        Projected $to,
1359
        Angle $latitudeOfNaturalOrigin,
1360
        Angle $longitudeOfNaturalOrigin,
1361
        Scale $scaleFactorAtNaturalOrigin,
1362
        Length $falseEasting,
1363
        Length $falseNorthing
1364
    ): ProjectedPoint {
1365 99
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1366 99
        $latitude = $this->latitude->asRadians()->getValue();
1367 99
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1368 99
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1369 99
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1370 99
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1371 99
        $e = $ellipsoid->getEccentricity();
1372 99
        $e2 = $ellipsoid->getEccentricitySquared();
1373
1374 99
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1375 99
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1376 99
        $R = sqrt($rhoOrigin * $nuOrigin);
1377
1378 99
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1379 99
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1380 99
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1381 99
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1382 99
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1383 99
        $w2 = $c * $w1;
1384 99
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1385
1386 99
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1387
1388 99
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1389 99
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1390 99
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1391 99
        $chi = self::asin(($w - 1) / ($w + 1));
1392
1393 99
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1394
1395 99
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1396 99
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1397
1398 99
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1399
    }
1400
1401
    /**
1402
     * Polar Stereographic (variant A)
1403
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1404
     */
1405 9
    public function polarStereographicVariantA(
1406
        Projected $to,
1407
        Angle $latitudeOfNaturalOrigin,
1408
        Angle $longitudeOfNaturalOrigin,
1409
        Scale $scaleFactorAtNaturalOrigin,
1410
        Length $falseEasting,
1411
        Length $falseNorthing
1412
    ): ProjectedPoint {
1413 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1414 9
        $latitude = $this->latitude->asRadians()->getValue();
1415 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1416 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1417 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1418 9
        $e = $ellipsoid->getEccentricity();
1419
1420 9
        if ($latitudeOrigin < 0) {
1421
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1422
        } else {
1423 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1424
        }
1425 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1426
1427 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1428 9
        $dE = $rho * sin($theta);
1429 9
        $dN = $rho * cos($theta);
1430
1431 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1432 9
        if ($latitudeOrigin < 0) {
1433
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1434
        } else {
1435 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1436
        }
1437
1438 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1439
    }
1440
1441
    /**
1442
     * Polar Stereographic (variant B).
1443
     */
1444 9
    public function polarStereographicVariantB(
1445
        Projected $to,
1446
        Angle $latitudeOfStandardParallel,
1447
        Angle $longitudeOfOrigin,
1448
        Length $falseEasting,
1449
        Length $falseNorthing
1450
    ): ProjectedPoint {
1451 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1452 9
        $latitude = $this->latitude->asRadians()->getValue();
1453 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1454 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1455 9
        $e = $ellipsoid->getEccentricity();
1456 9
        $e2 = $ellipsoid->getEccentricitySquared();
1457
1458 9
        if ($firstStandardParallel < 0) {
1459 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1460 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1461
        } else {
1462
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1463
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1464
        }
1465 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1466 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1467
1468 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1469
1470 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1471 9
        $dE = $rho * sin($theta);
1472 9
        $dN = $rho * cos($theta);
1473
1474 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1475 9
        if ($firstStandardParallel < 0) {
1476 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1477
        } else {
1478
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1479
        }
1480
1481 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1482
    }
1483
1484
    /**
1485
     * Polar Stereographic (variant C).
1486
     */
1487 9
    public function polarStereographicVariantC(
1488
        Projected $to,
1489
        Angle $latitudeOfStandardParallel,
1490
        Angle $longitudeOfOrigin,
1491
        Length $eastingAtFalseOrigin,
1492
        Length $northingAtFalseOrigin
1493
    ): ProjectedPoint {
1494 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1495 9
        $latitude = $this->latitude->asRadians()->getValue();
1496 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1497 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1498 9
        $e = $ellipsoid->getEccentricity();
1499 9
        $e2 = $ellipsoid->getEccentricitySquared();
1500
1501 9
        if ($firstStandardParallel < 0) {
1502 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1503 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1504
        } else {
1505
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1506
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1507
        }
1508 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1509
1510 9
        $rhoF = $a * $mF;
1511 9
        $rho = $rhoF * $t / $tF;
1512
1513 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1514 9
        $dE = $rho * sin($theta);
1515 9
        $dN = $rho * cos($theta);
1516
1517 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1518 9
        if ($firstStandardParallel < 0) {
1519 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1520
        } else {
1521
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1522
        }
1523
1524 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1525
    }
1526
1527
    /**
1528
     * Popular Visualisation Pseudo Mercator
1529
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1530
     */
1531 9
    public function popularVisualisationPseudoMercator(
1532
        Projected $to,
1533
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1533
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1534
        Angle $longitudeOfNaturalOrigin,
1535
        Length $falseEasting,
1536
        Length $falseNorthing
1537
    ): ProjectedPoint {
1538 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1539 9
        $latitude = $this->latitude->asRadians()->getValue();
1540 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1541
1542 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1543 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1544
1545 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1546
    }
1547
1548
    /**
1549
     * Mercator (variant A)
1550
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1551
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1552
     * completeness in CRS labelling.
1553
     */
1554 324
    public function mercatorVariantA(
1555
        Projected $to,
1556
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1556
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1557
        Angle $longitudeOfNaturalOrigin,
1558
        Scale $scaleFactorAtNaturalOrigin,
1559
        Length $falseEasting,
1560
        Length $falseNorthing
1561
    ): ProjectedPoint {
1562 324
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1563 324
        $latitude = $this->latitude->asRadians()->getValue();
1564 324
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1565
1566 324
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1567 324
        $e = $ellipsoid->getEccentricity();
1568
1569 324
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1570 324
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1571
1572 324
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1573
    }
1574
1575
    /**
1576
     * Mercator (variant B)
1577
     * Used for most nautical charts.
1578
     */
1579 36
    public function mercatorVariantB(
1580
        Projected $to,
1581
        Angle $latitudeOf1stStandardParallel,
1582
        Angle $longitudeOfNaturalOrigin,
1583
        Length $falseEasting,
1584
        Length $falseNorthing
1585
    ): ProjectedPoint {
1586 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1587 36
        $latitude = $this->latitude->asRadians()->getValue();
1588 36
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1589 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1590 36
        $e = $ellipsoid->getEccentricity();
1591 36
        $e2 = $ellipsoid->getEccentricitySquared();
1592
1593 36
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1594
1595 36
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1596 36
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1597
1598 36
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1599
    }
1600
1601
    /**
1602
     * Longitude rotation
1603
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1604
     * value to the longitude value of the point in the source system.
1605
     */
1606 27
    public function longitudeRotation(
1607
        Geographic2D|Geographic3D $to,
1608
        Angle $longitudeOffset
1609
    ): self {
1610 27
        $newLongitude = $this->longitude->add($longitudeOffset);
1611
1612 27
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1613
    }
1614
1615
    /**
1616
     * Hotine Oblique Mercator (variant A).
1617
     */
1618 117
    public function obliqueMercatorHotineVariantA(
1619
        Projected $to,
1620
        Angle $latitudeOfProjectionCentre,
1621
        Angle $longitudeOfProjectionCentre,
1622
        Angle $azimuthOfInitialLine,
1623
        Angle $angleFromRectifiedToSkewGrid,
1624
        Scale $scaleFactorOnInitialLine,
1625
        Length $falseEasting,
1626
        Length $falseNorthing
1627
    ): ProjectedPoint {
1628 117
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1629 117
        $latitude = $this->latitude->asRadians()->getValue();
1630 117
        $longitude = $this->longitude->asRadians()->getValue();
1631 117
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1632 117
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1633 117
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1634 117
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1635 117
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1636 117
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1637 117
        $e = $ellipsoid->getEccentricity();
1638 117
        $e2 = $ellipsoid->getEccentricitySquared();
1639
1640 117
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1641 117
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1642 117
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1643 117
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1644 117
        $DD = max(1, $D ** 2);
1645 117
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1646 117
        $H = $F * $tO ** $B;
1647 117
        $G = ($F - 1 / $F) / 2;
1648 117
        $gammaO = self::asin(sin($alphaC) / $D);
1649 117
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1650
1651 117
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1652 117
        $Q = $H / $t ** $B;
1653 117
        $S = ($Q - 1 / $Q) / 2;
1654 117
        $T = ($Q + 1 / $Q) / 2;
1655 117
        $V = sin($B * ($longitude - $lonO));
1656 117
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1657 117
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1658 117
        $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B;
1659
1660 117
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1661 117
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1662
1663 117
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1664
    }
1665
1666
    /**
1667
     * Hotine Oblique Mercator (variant B).
1668
     */
1669 162
    public function obliqueMercatorHotineVariantB(
1670
        Projected $to,
1671
        Angle $latitudeOfProjectionCentre,
1672
        Angle $longitudeOfProjectionCentre,
1673
        Angle $azimuthOfInitialLine,
1674
        Angle $angleFromRectifiedToSkewGrid,
1675
        Scale $scaleFactorOnInitialLine,
1676
        Length $eastingAtProjectionCentre,
1677
        Length $northingAtProjectionCentre
1678
    ): ProjectedPoint {
1679 162
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1680 162
        $latitude = $this->latitude->asRadians()->getValue();
1681 162
        $longitude = $this->longitude->asRadians()->getValue();
1682 162
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1683 162
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1684 162
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1685 162
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1686 162
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1687 162
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1688 162
        $e = $ellipsoid->getEccentricity();
1689 162
        $e2 = $ellipsoid->getEccentricitySquared();
1690
1691 162
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1692 162
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1693 162
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1694 162
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1695 162
        $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC);
1696 162
        $H = $F * $tO ** $B;
1697 162
        $G = ($F - 1 / $F) / 2;
1698 162
        $gammaO = self::asin(sin($alphaC) / $D);
1699 162
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1700 162
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1701 162
        if ($alphaC === M_PI / 2) {
1702 54
            $uC = $A * ($lonC - $lonO);
1703
        } else {
1704 108
            $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC);
1705
        }
1706
1707 162
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1708 162
        $Q = $H / $t ** $B;
1709 162
        $S = ($Q - 1 / $Q) / 2;
1710 162
        $T = ($Q + 1 / $Q) / 2;
1711 162
        $V = sin($B * ($longitude - $lonO));
1712 162
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1713 162
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1714 162
        $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1715
1716 162
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1717 162
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1718
1719 162
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1720
    }
1721
1722
    /**
1723
     * Laborde Oblique Mercator.
1724
     */
1725 9
    public function obliqueMercatorLaborde(
1726
        Projected $to,
1727
        Angle $latitudeOfProjectionCentre,
1728
        Angle $longitudeOfProjectionCentre,
1729
        Angle $azimuthOfInitialLine,
1730
        Scale $scaleFactorOnInitialLine,
1731
        Length $falseEasting,
1732
        Length $falseNorthing
1733
    ): ProjectedPoint {
1734 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1735 9
        $latitude = $this->latitude->asRadians()->getValue();
1736 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1737 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1738 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1739 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1740 9
        $e = $ellipsoid->getEccentricity();
1741 9
        $e2 = $ellipsoid->getEccentricitySquared();
1742
1743 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1744 9
        $latS = self::asin(sin($latC) / $B);
1745 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1746 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1747
1748 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1749 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1750 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1751 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1752 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1753 9
        $W = cos($P) * sin($L);
1754 9
        $d = hypot($U, $V);
1755 9
        if ($d === 0.0) {
1756
            $LPrime = 0;
1757
            $PPrime = static::sign($W) * M_PI / 2;
1758
        } else {
1759 9
            $LPrime = 2 * atan($V / ($U + $d));
1760 9
            $PPrime = atan($W / $d);
1761
        }
1762 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1763 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1764
1765 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1766 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1767
1768 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1769
    }
1770
1771
    /**
1772
     * Transverse Mercator.
1773
     */
1774 734
    public function transverseMercator(
1775
        Projected $to,
1776
        Angle $latitudeOfNaturalOrigin,
1777
        Angle $longitudeOfNaturalOrigin,
1778
        Scale $scaleFactorAtNaturalOrigin,
1779
        Length $falseEasting,
1780
        Length $falseNorthing
1781
    ): ProjectedPoint {
1782 734
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1783 734
        $latitude = $this->latitude->asRadians()->getValue();
1784 734
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1785 734
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1786 734
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1787 734
        $e = $ellipsoid->getEccentricity();
1788 734
        $f = $ellipsoid->getFlattening();
1789
1790 734
        $n = $f / (2 - $f);
1791 734
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1792
1793 734
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1794 734
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1795 734
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1796 734
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1797 734
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1798 734
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1799 734
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1800 734
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1801
1802 734
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1803 324
            $mO = 0;
1804 410
        } elseif ($latitudeOrigin === M_PI / 2) {
1805
            $mO = $B * M_PI / 2;
1806 410
        } elseif ($latitudeOrigin === -M_PI / 2) {
1807 108
            $mO = $B * -M_PI / 2;
1808
        } else {
1809 302
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1810 302
            $betaO = atan(sinh($qO));
1811 302
            $xiO0 = self::asin(sin($betaO));
1812 302
            $xiO1 = $h1 * sin(2 * $xiO0);
1813 302
            $xiO2 = $h2 * sin(4 * $xiO0);
1814 302
            $xiO3 = $h3 * sin(6 * $xiO0);
1815 302
            $xiO4 = $h4 * sin(8 * $xiO0);
1816 302
            $xiO5 = $h5 * sin(10 * $xiO0);
1817 302
            $xiO6 = $h6 * sin(12 * $xiO0);
1818 302
            $xiO7 = $h7 * sin(14 * $xiO0);
1819 302
            $xiO8 = $h8 * sin(16 * $xiO0);
1820 302
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1821 302
            $mO = $B * $xiO;
1822
        }
1823
1824 734
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1825 734
        $beta = atan(sinh($Q));
1826 734
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1827 734
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1828 734
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1829 734
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1830 734
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1831 734
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1832 734
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1833 734
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1834 734
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1835 734
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1836 734
        $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0);
1837 734
        $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0);
1838 734
        $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0);
1839 734
        $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0);
1840 734
        $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0);
1841 734
        $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0);
1842 734
        $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0);
1843 734
        $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0);
1844 734
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8;
1845 734
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8;
1846
1847 734
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1848 734
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1849
1850 734
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1851
1852 734
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1853
    }
1854
1855
    /**
1856
     * Transverse Mercator Zoned Grid System
1857
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1858
     * each zone.
1859
     */
1860 36
    public function transverseMercatorZonedGrid(
1861
        Projected $to,
1862
        Angle $latitudeOfNaturalOrigin,
1863
        Angle $initialLongitude,
1864
        Angle $zoneWidth,
1865
        Scale $scaleFactorAtNaturalOrigin,
1866
        Length $falseEasting,
1867
        Length $falseNorthing
1868
    ): ProjectedPoint {
1869 36
        $W = $zoneWidth->asDegrees()->getValue();
1870 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1871
1872 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1873 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1874
1875 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1876
    }
1877
1878
    /**
1879
     * New Zealand Map Grid.
1880
     */
1881 27
    public function newZealandMapGrid(
1882
        Projected $to,
1883
        Angle $latitudeOfNaturalOrigin,
1884
        Angle $longitudeOfNaturalOrigin,
1885
        Length $falseEasting,
1886
        Length $falseNorthing
1887
    ): ProjectedPoint {
1888 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1889 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1890
1891 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1892 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1893
1894 27
        $deltaPsi = 0;
1895 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1896 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1897 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1898 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1899 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1900 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1901 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1902 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1903 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1904 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1905
1906 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1907
1908 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1909 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1910 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1911 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1912 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1913 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1914 27
        $z = new ComplexNumber(0, 0);
1915 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1916 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1917 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1918 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1919 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1920 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1921
1922 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1923 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1924
1925 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1926
    }
1927
1928
    /**
1929
     * Madrid to ED50 polynomial.
1930
     */
1931 9
    public function madridToED50Polynomial(
1932
        Geographic2D $to,
1933
        Scale $A0,
1934
        Scale $A1,
1935
        Scale $A2,
1936
        Scale $A3,
1937
        Angle $B00,
1938
        Scale $B0,
1939
        Scale $B1,
1940
        Scale $B2,
1941
        Scale $B3
1942
    ): self {
1943 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1944 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1945
1946 9
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1947
    }
1948
1949
    /**
1950
     * Geographic3D to 2D conversion.
1951
     */
1952 29
    public function threeDToTwoD(
1953
        Geographic2D|Geographic3D $to
1954
    ): self {
1955 29
        if ($to instanceof Geographic2D) {
1956 29
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1957
        }
1958
1959
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1960
    }
1961
1962
    /**
1963
     * Geographic2D offsets.
1964
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1965
     * coordinate values of the point in the source system.
1966
     */
1967 9
    public function geographic2DOffsets(
1968
        Geographic2D|Geographic3D $to,
1969
        Angle $latitudeOffset,
1970
        Angle $longitudeOffset
1971
    ): self {
1972 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1973 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1974
1975 9
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
1976
    }
1977
1978
    /*
1979
     * Geographic2D with Height Offsets.
1980
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1981
     * coordinate values of the point in the source system.
1982
     */
1983
    public function geographic2DWithHeightOffsets(
1984
        Compound $to,
1985
        Angle $latitudeOffset,
1986
        Angle $longitudeOffset,
1987
        Length $geoidUndulation
1988
    ): CompoundPoint {
1989
        $toLatitude = $this->latitude->add($latitudeOffset);
1990
        $toLongitude = $this->longitude->add($longitudeOffset);
1991
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1991
        /** @scrutinizer ignore-call */ 
1992
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1992
1993
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1993
        $horizontal = static::create(/** @scrutinizer ignore-type */ $to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
Loading history...
1994
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1994
        $vertical = VerticalPoint::create($to->getVertical(), /** @scrutinizer ignore-type */ $toHeight, $this->epoch);
Loading history...
1995
1996
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
1997
    }
1998
1999
    /**
2000
     * General polynomial.
2001
     * @param Coefficient[] $powerCoefficients
2002
     */
2003 18
    public function generalPolynomial(
2004
        Geographic2D|Geographic3D $to,
2005
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2006
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2007
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2008
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2009
        Scale $scalingFactorForSourceCRSCoordDifferences,
2010
        Scale $scalingFactorForTargetCRSCoordDifferences,
2011
        Scale $A0,
2012
        Scale $B0,
2013
        array $powerCoefficients
2014
    ): self {
2015 18
        $xs = $this->latitude->getValue();
2016 18
        $ys = $this->longitude->getValue();
2017
2018 18
        $t = $this->generalPolynomialUnitless(
2019 18
            $xs,
2020 18
            $ys,
2021 18
            $ordinate1OfEvaluationPointInSourceCRS,
2022 18
            $ordinate2OfEvaluationPointInSourceCRS,
2023 18
            $ordinate1OfEvaluationPointInTargetCRS,
2024 18
            $ordinate2OfEvaluationPointInTargetCRS,
2025 18
            $scalingFactorForSourceCRSCoordDifferences,
2026 18
            $scalingFactorForTargetCRSCoordDifferences,
2027 18
            $A0,
2028 18
            $B0,
2029 18
            $powerCoefficients
2030 18
        );
2031
2032 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2033 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2034
2035 18
        return static::create(
2036 18
            $to,
2037 18
            Angle::makeUnit($t['xt'], $xtUnit),
2038 18
            Angle::makeUnit($t['yt'], $ytUnit),
2039 18
            $this->height,
2040 18
            $this->epoch
2041 18
        );
2042
    }
2043
2044
    /**
2045
     * Reversible polynomial.
2046
     * @param Coefficient[] $powerCoefficients
2047
     */
2048 36
    public function reversiblePolynomial(
2049
        Geographic2D|Geographic3D $to,
2050
        Angle $ordinate1OfEvaluationPoint,
2051
        Angle $ordinate2OfEvaluationPoint,
2052
        Scale $scalingFactorForCoordDifferences,
2053
        Scale $A0,
2054
        Scale $B0,
2055
        $powerCoefficients
2056
    ): self {
2057 36
        $xs = $this->latitude->getValue();
2058 36
        $ys = $this->longitude->getValue();
2059
2060 36
        $t = $this->reversiblePolynomialUnitless(
2061 36
            $xs,
2062 36
            $ys,
2063 36
            $ordinate1OfEvaluationPoint,
2064 36
            $ordinate2OfEvaluationPoint,
2065 36
            $scalingFactorForCoordDifferences,
2066 36
            $A0,
2067 36
            $B0,
2068 36
            $powerCoefficients
2069 36
        );
2070
2071 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2072 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2073
2074 36
        return static::create(
2075 36
            $to,
2076 36
            Angle::makeUnit($t['xt'], $xtUnit),
2077 36
            Angle::makeUnit($t['yt'], $ytUnit),
2078 36
            $this->height,
2079 36
            $this->epoch
2080 36
        );
2081
    }
2082
2083
    /**
2084
     * Axis Order Reversal.
2085
     */
2086
    public function axisReversal(
2087
        Geographic2D|Geographic3D $to
2088
    ): self {
2089
        // axes are read in from the CRS, this is a book-keeping adjustment only
2090
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2091
    }
2092
2093
    /**
2094
     * Ordnance Survey National Transformation
2095
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2096
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2097
     */
2098 3
    public function OSTN15(
2099
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2099
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2100
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2101
    ): ProjectedPoint {
2102 3
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2103 3
        $etrs89NationalGrid = new Projected(
2104 3
            'ETRS89 / National Grid',
2105 3
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2106 3
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2107 3
            $osgb36NationalGrid->getBoundingArea()
2108 3
        );
2109
2110 3
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2111
2112 3
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2113
    }
2114
2115
    /**
2116
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2117
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2118
     * coordinate differences.
2119
     */
2120 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2121
        Compound $to,
2122
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2123
    ): CompoundPoint {
2124 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2125 1
        $etrs89NationalGrid = new Projected(
2126 1
            'ETRS89 / National Grid',
2127 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2128 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2129 1
            $osgb36NationalGrid->getBoundingArea()
2130 1
        );
2131
2132 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2133
2134 1
        $horizontalPoint = self::create(
2135 1
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2135
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2136 1
            $this->latitude,
2137 1
            $this->longitude,
2138 1
            null,
2139 1
            $this->getCoordinateEpoch()
2140 1
        );
2141
2142 1
        $verticalPoint = VerticalPoint::create(
2143 1
            $to->getVertical(),
2144 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2144
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2145 1
            $this->getCoordinateEpoch()
2146 1
        );
2147
2148 1
        return CompoundPoint::create(
2149 1
            $to,
2150 1
            $horizontalPoint,
2151 1
            $verticalPoint,
2152 1
            $this->getCoordinateEpoch()
2153 1
        );
2154
    }
2155
2156
    /**
2157
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2158
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2159
     * coordinate differences.
2160
     */
2161 1
    public function geographic3DToGravityHeightOSGM15(
2162
        Vertical $to,
2163
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2164
    ): VerticalPoint {
2165 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2166 1
        $etrs89NationalGrid = new Projected(
2167 1
            'ETRS89 / National Grid',
2168 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2169 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2170 1
            $osgb36NationalGrid->getBoundingArea()
2171 1
        );
2172
2173 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2174
2175 1
        return VerticalPoint::create(
2176 1
            $to,
2177 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2177
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2178 1
            $this->getCoordinateEpoch()
2179 1
        );
2180
    }
2181
2182
    /**
2183
     * Geog3D to Geog2D+GravityRelatedHeight.
2184
     */
2185 12
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2186
        Compound $to,
2187
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2188
    ): CompoundPoint {
2189 12
        $horizontalPoint = self::create(
2190 12
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2190
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2191 12
            $this->latitude,
2192 12
            $this->longitude,
2193 12
            null,
2194 12
            $this->getCoordinateEpoch()
2195 12
        );
2196
2197 12
        $verticalPoint = VerticalPoint::create(
2198 12
            $to->getVertical(),
2199 12
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2199
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2200 12
            $this->getCoordinateEpoch()
2201 12
        );
2202
2203 12
        return CompoundPoint::create(
2204 12
            $to,
2205 12
            $horizontalPoint,
2206 12
            $verticalPoint,
2207 12
            $this->getCoordinateEpoch()
2208 12
        );
2209
    }
2210
2211
    /**
2212
     * Geographic3D to GravityRelatedHeight.
2213
     */
2214 7
    public function geographic3DToGravityHeightFromGrid(
2215
        Vertical $to,
2216
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2217
    ): VerticalPoint {
2218 7
        return VerticalPoint::create(
2219 7
            $to,
2220 7
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2220
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2221 7
            $this->getCoordinateEpoch()
2222 7
        );
2223
    }
2224
2225
    /**
2226
     * NADCON5.
2227
     * @internal just a wrapper
2228
     */
2229 8
    public function offsetsFromGridNADCON5(
2230
        Geographic2D|Geographic3D $to,
2231
        NADCON5Grid $latitudeDifferenceFile,
2232
        NADCON5Grid $longitudeDifferenceFile,
2233
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2234
        bool $inReverse
2235
    ): self {
2236 8
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2237
2238 8
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2239
    }
2240
2241
    /**
2242
     * Geographic offsets from grid.
2243
     */
2244 19
    public function offsetsFromGrid(
2245
        Geographic2D|Geographic3D $to,
2246
        GeographicGrid $offsetsFile,
2247
        bool $inReverse
2248
    ): self {
2249 19
        if (!$inReverse) {
2250 13
            return $offsetsFile->applyForwardAdjustment($this, $to);
2251
        }
2252
2253 8
        return $offsetsFile->applyReverseAdjustment($this, $to);
2254
    }
2255
2256 391
    public function asGeographicValue(): GeographicValue
2257
    {
2258 391
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2259
    }
2260
2261 18
    public function asUTMPoint(): UTMPoint
2262
    {
2263 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2264
2265 18
        $initialLongitude = new Degree(-180);
2266 18
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2267
2268 18
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2269 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2270
        } else {
2271 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2272
        }
2273
2274 18
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2275
2276 18
        $projectedCRS = new Projected(
2277 18
            $srid,
2278 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2279 18
            $this->crs->getDatum(),
2280 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2281 18
        );
2282
2283 18
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2284
2285 18
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $this->crs can also be of type PHPCoord\CoordinateReferenceSystem\Geographic3D; however, parameter $crs of PHPCoord\UTMPoint::__construct() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic2D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2285
        return new UTMPoint(/** @scrutinizer ignore-type */ $this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getEasting() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2285
        return new UTMPoint($this->crs, $asProjected->/** @scrutinizer ignore-call */ getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getNorthing() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2285
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->/** @scrutinizer ignore-call */ getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
2286
    }
2287
}
2288