Passed
Push — 4.0.x ( 414ad0...5c8c8d )
by Doug
05:04 queued 12s
created

GeographicPoint::getLatitude()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 3
Code Lines 1

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 2
CRAP Score 1

Importance

Changes 1
Bugs 0 Features 0
Metric Value
eloc 1
c 1
b 0
f 0
dl 0
loc 3
ccs 2
cts 2
cp 1
rs 10
cc 1
nc 1
nop 0
crap 1
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function implode;
23
use function is_nan;
24
use function log;
25
use const M_E;
26
use const M_PI;
27
use function max;
28
use PHPCoord\CoordinateOperation\AutoConversion;
29
use PHPCoord\CoordinateOperation\ComplexNumber;
30
use PHPCoord\CoordinateOperation\ConvertiblePoint;
31
use PHPCoord\CoordinateOperation\GeocentricValue;
32
use PHPCoord\CoordinateOperation\GeographicValue;
33
use PHPCoord\CoordinateReferenceSystem\Compound;
34
use PHPCoord\CoordinateReferenceSystem\Geocentric;
35
use PHPCoord\CoordinateReferenceSystem\Geographic;
36
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
37
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
38
use PHPCoord\CoordinateReferenceSystem\Projected;
39
use PHPCoord\CoordinateSystem\Axis;
40
use PHPCoord\Datum\Ellipsoid;
41
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
42
use PHPCoord\Exception\UnknownAxisException;
43
use PHPCoord\UnitOfMeasure\Angle\Angle;
44
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
45
use PHPCoord\UnitOfMeasure\Angle\Degree;
46
use PHPCoord\UnitOfMeasure\Angle\Radian;
47
use PHPCoord\UnitOfMeasure\Length\Length;
48
use PHPCoord\UnitOfMeasure\Length\Metre;
49
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
50
use PHPCoord\UnitOfMeasure\Scale\Scale;
51
use PHPCoord\UnitOfMeasure\Scale\Unity;
52
use function sin;
53
use function sinh;
54
use function sprintf;
55
use function sqrt;
56
use function tan;
57
use TypeError;
58
59
/**
60
 * Coordinate representing a point on an ellipsoid.
61
 */
62
class GeographicPoint extends Point implements ConvertiblePoint
63
{
64
    use AutoConversion;
65
66
    /**
67
     * Latitude.
68
     */
69
    protected $latitude;
70
71
    /**
72
     * Longitude.
73
     */
74
    protected $longitude;
75
76
    /**
77
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
78
     */
79
    protected $height;
80
81
    /**
82
     * Coordinate reference system.
83
     */
84
    protected $crs;
85
86
    /**
87
     * Coordinate epoch (date for which the specified coordinates represented this point).
88
     */
89
    protected $epoch;
90
91 151
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
92
    {
93 151
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
94
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
95
        }
96
97 151
        if ($crs instanceof Geographic2D && $height !== null) {
98 1
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
99
        }
100
101 150
        if ($crs instanceof Geographic3D && $height === null) {
102 1
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
103
        }
104
105 149
        $this->crs = $crs;
106
107 149
        $latitude = $this->normaliseLatitude($latitude);
108 149
        $longitude = $this->normaliseLongitude($longitude);
109
110 149
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
111 149
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
112
113 149
        if ($height) {
114 20
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
115
        } else {
116 137
            $this->height = null;
117
        }
118
119 149
        if ($epoch instanceof DateTime) {
120 1
            $epoch = DateTimeImmutable::createFromMutable($epoch);
121
        }
122 149
        $this->epoch = $epoch;
123 149
    }
124
125
    /**
126
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
127
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
128
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
129
     */
130 151
    public static function create(Angle $latitude, Angle $longitude, ?Length $height = null, Geographic $crs, ?DateTimeInterface $epoch = null): self
131
    {
132 151
        return new static($latitude, $longitude, $height, $crs, $epoch);
133
    }
134
135 77
    public function getLatitude(): Angle
136
    {
137 77
        return $this->latitude;
138
    }
139
140 77
    public function getLongitude(): Angle
141
    {
142 77
        return $this->longitude;
143
    }
144
145 37
    public function getHeight(): ?Length
146
    {
147 37
        return $this->height;
148
    }
149
150 149
    public function getCRS(): Geographic
151
    {
152 149
        return $this->crs;
153
    }
154
155 15
    public function getCoordinateEpoch(): ?DateTimeImmutable
156
    {
157 15
        return $this->epoch;
158
    }
159
160 149
    protected function normaliseLatitude(Angle $latitude): Angle
161
    {
162 149
        if ($latitude->asDegrees()->getValue() > 90) {
163
            return new Degree(90);
164
        }
165 149
        if ($latitude->asDegrees()->getValue() < -90) {
166
            return new Degree(-90);
167
        }
168
169 149
        return $latitude;
170
    }
171
172 149
    protected function normaliseLongitude(Angle $longitude): Angle
173
    {
174 149
        while ($longitude->asDegrees()->getValue() > 180) {
175
            $longitude = $longitude->subtract(new Degree(360));
176
        }
177 149
        while ($longitude->asDegrees()->getValue() <= -180) {
178
            $longitude = $longitude->add(new Degree(360));
179
        }
180
181 149
        return $longitude;
182
    }
183
184
    /**
185
     * Calculate surface distance between two points.
186
     */
187 15
    public function calculateDistance(Point $to): Length
188
    {
189
        try {
190 15
            if ($to instanceof ConvertiblePoint) {
191 14
                $to = $to->convert($this->crs);
192
            }
193
        } finally {
194 15
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
195 1
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
196
            }
197
198
            /* @var GeographicPoint $to */
199 14
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
200
        }
201
    }
202
203 4
    public function __toString(): string
204
    {
205 4
        $values = [];
206 4
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
207 4
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
208 4
                $values[] = $this->latitude;
209 4
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
210 4
                $values[] = $this->longitude;
211 1
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
212 1
                $values[] = $this->height;
213
            } else {
214
                throw new UnknownAxisException(); // @codeCoverageIgnore
215
            }
216
        }
217
218 4
        return '(' . implode(', ', $values) . ')';
219
    }
220
221
    /**
222
     * Geographic/geocentric conversions
223
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
224
     * 9636 to form a geographic to geographic transformation.
225
     */
226 1
    public function geographicGeocentric(
227
        Geocentric $to
228
    ): GeocentricPoint {
229 1
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
230 1
        $asGeocentric = $geographicValue->asGeocentricValue();
231
232 1
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
233
    }
234
235
    /**
236
     * Coordinate Frame rotation (geog2D/geog3D domain)
237
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
238
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
239
     * between other CRS types.
240
     */
241 6
    public function coordinateFrameRotation(
242
        Geographic $to,
243
        Length $xAxisTranslation,
244
        Length $yAxisTranslation,
245
        Length $zAxisTranslation,
246
        Angle $xAxisRotation,
247
        Angle $yAxisRotation,
248
        Angle $zAxisRotation,
249
        Scale $scaleDifference
250
    ): self {
251 6
        return $this->coordinateFrameMolodenskyBadekas(
252 6
            $to,
253
            $xAxisTranslation,
254
            $yAxisTranslation,
255
            $zAxisTranslation,
256
            $xAxisRotation,
257
            $yAxisRotation,
258
            $zAxisRotation,
259
            $scaleDifference,
260 6
            new Metre(0),
261 6
            new Metre(0),
262 6
            new Metre(0)
263
        );
264
    }
265
266
    /**
267
     * Molodensky-Badekas (CF geog2D/geog3D domain)
268
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
269
     * opposite rotation convention in geographic 2D domain.
270
     */
271 8
    public function coordinateFrameMolodenskyBadekas(
272
        Geographic $to,
273
        Length $xAxisTranslation,
274
        Length $yAxisTranslation,
275
        Length $zAxisTranslation,
276
        Angle $xAxisRotation,
277
        Angle $yAxisRotation,
278
        Angle $zAxisRotation,
279
        Scale $scaleDifference,
280
        Length $ordinate1OfEvaluationPoint,
281
        Length $ordinate2OfEvaluationPoint,
282
        Length $ordinate3OfEvaluationPoint
283
    ): self {
284 8
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
285 8
        $asGeocentric = $geographicValue->asGeocentricValue();
286
287 8
        $xs = $asGeocentric->getX()->asMetres()->getValue();
288 8
        $ys = $asGeocentric->getY()->asMetres()->getValue();
289 8
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
290 8
        $tx = $xAxisTranslation->asMetres()->getValue();
291 8
        $ty = $yAxisTranslation->asMetres()->getValue();
292 8
        $tz = $zAxisTranslation->asMetres()->getValue();
293 8
        $rx = $xAxisRotation->asRadians()->getValue();
294 8
        $ry = $yAxisRotation->asRadians()->getValue();
295 8
        $rz = $zAxisRotation->asRadians()->getValue();
296 8
        $M = 1 + $scaleDifference->asUnity()->getValue();
297 8
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
298 8
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
299 8
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
300
301 8
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
302 8
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
303 8
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
304 8
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
305 8
        $newGeographic = $newGeocentric->asGeographicValue();
306
307 8
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
308
    }
309
310
    /**
311
     * Position Vector transformation (geog2D/geog3D domain)
312
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
313
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
314
     * operating between other CRS types.
315
     */
316 16
    public function positionVectorTransformation(
317
        Geographic $to,
318
        Length $xAxisTranslation,
319
        Length $yAxisTranslation,
320
        Length $zAxisTranslation,
321
        Angle $xAxisRotation,
322
        Angle $yAxisRotation,
323
        Angle $zAxisRotation,
324
        Scale $scaleDifference
325
    ): self {
326 16
        return $this->positionVectorMolodenskyBadekas(
327 16
            $to,
328
            $xAxisTranslation,
329
            $yAxisTranslation,
330
            $zAxisTranslation,
331
            $xAxisRotation,
332
            $yAxisRotation,
333
            $zAxisRotation,
334
            $scaleDifference,
335 16
            new Metre(0),
336 16
            new Metre(0),
337 16
            new Metre(0)
338
        );
339
    }
340
341
    /**
342
     * Molodensky-Badekas (PV geog2D/geog3D domain)
343
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
344
     * rotation in geographic 2D/3D domain.
345
     */
346 18
    public function positionVectorMolodenskyBadekas(
347
        Geographic $to,
348
        Length $xAxisTranslation,
349
        Length $yAxisTranslation,
350
        Length $zAxisTranslation,
351
        Angle $xAxisRotation,
352
        Angle $yAxisRotation,
353
        Angle $zAxisRotation,
354
        Scale $scaleDifference,
355
        Length $ordinate1OfEvaluationPoint,
356
        Length $ordinate2OfEvaluationPoint,
357
        Length $ordinate3OfEvaluationPoint
358
    ): self {
359 18
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
360 18
        $asGeocentric = $geographicValue->asGeocentricValue();
361
362 18
        $xs = $asGeocentric->getX()->asMetres()->getValue();
363 18
        $ys = $asGeocentric->getY()->asMetres()->getValue();
364 18
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
365 18
        $tx = $xAxisTranslation->asMetres()->getValue();
366 18
        $ty = $yAxisTranslation->asMetres()->getValue();
367 18
        $tz = $zAxisTranslation->asMetres()->getValue();
368 18
        $rx = $xAxisRotation->asRadians()->getValue();
369 18
        $ry = $yAxisRotation->asRadians()->getValue();
370 18
        $rz = $zAxisRotation->asRadians()->getValue();
371 18
        $M = 1 + $scaleDifference->asUnity()->getValue();
372 18
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
373 18
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
374 18
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
375
376 18
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
377 18
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
378 18
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
379 18
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
380 18
        $newGeographic = $newGeocentric->asGeographicValue();
381
382 18
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
383
    }
384
385
    /**
386
     * Geocentric translations
387
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
388
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
389
     * operating between other CRSs types.
390
     */
391 4
    public function geocentricTranslation(
392
        Geographic $to,
393
        Length $xAxisTranslation,
394
        Length $yAxisTranslation,
395
        Length $zAxisTranslation
396
    ): self {
397 4
        return $this->positionVectorTransformation(
398 4
            $to,
399
            $xAxisTranslation,
400
            $yAxisTranslation,
401
            $zAxisTranslation,
402 4
            new Radian(0),
403 4
            new Radian(0),
404 4
            new Radian(0),
405 4
            new Unity(0)
406
        );
407
    }
408
409
    /**
410
     * Abridged Molodensky
411
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
412
     * systems, modelled as a set of geocentric translations.
413
     */
414 2
    public function abridgedMolodensky(
415
        Geographic $to,
416
        Length $xAxisTranslation,
417
        Length $yAxisTranslation,
418
        Length $zAxisTranslation,
419
        Length $differenceInSemiMajorAxis,
420
        Scale $differenceInFlattening
421
    ): self {
422 2
        $latitude = $this->latitude->asRadians()->getValue();
423 2
        $longitude = $this->longitude->asRadians()->getValue();
424 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
425 2
        $tx = $xAxisTranslation->asMetres()->getValue();
426 2
        $ty = $yAxisTranslation->asMetres()->getValue();
427 2
        $tz = $zAxisTranslation->asMetres()->getValue();
428 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
429 2
        $df = $differenceInFlattening->asUnity()->getValue();
430
431 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
432 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
433
434 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
435 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
436
437 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
438
439 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
440 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
441 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
442
443 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
444 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
445 2
        $toHeight = $fromHeight + $dHeight;
446
447 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
448
    }
449
450
    /**
451
     * Molodensky
452
     * See Abridged Molodensky.
453
     */
454 2
    public function molodensky(
455
        Geographic $to,
456
        Length $xAxisTranslation,
457
        Length $yAxisTranslation,
458
        Length $zAxisTranslation,
459
        Length $differenceInSemiMajorAxis,
460
        Scale $differenceInFlattening
461
    ): self {
462 2
        $latitude = $this->latitude->asRadians()->getValue();
463 2
        $longitude = $this->longitude->asRadians()->getValue();
464 2
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
465 2
        $tx = $xAxisTranslation->asMetres()->getValue();
466 2
        $ty = $yAxisTranslation->asMetres()->getValue();
467 2
        $tz = $zAxisTranslation->asMetres()->getValue();
468 2
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
469 2
        $df = $differenceInFlattening->asUnity()->getValue();
470
471 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
472 2
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
473 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
474
475 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
476 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
477
478 2
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
479
480 2
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
481 2
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
482 2
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
483
484 2
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
485 2
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
486 2
        $toHeight = $fromHeight + $dHeight;
487
488 2
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
489
    }
490
491
    /**
492
     * Albers Equal Area.
493
     */
494 2
    public function albersEqualArea(
495
        Projected $to,
496
        Angle $latitudeOfFalseOrigin,
497
        Angle $longitudeOfFalseOrigin,
498
        Angle $latitudeOf1stStandardParallel,
499
        Angle $latitudeOf2ndStandardParallel,
500
        Length $eastingAtFalseOrigin,
501
        Length $northingAtFalseOrigin
502
    ): ProjectedPoint {
503 2
        $latitude = $this->latitude->asRadians()->getValue();
504 2
        $longitude = $this->longitude->asRadians()->getValue();
505 2
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
506 2
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
507 2
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
508 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
509 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
510 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
511
512 2
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
513 2
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
514
515 2
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
516 2
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
517 2
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
518 2
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
519
520 2
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
521 2
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
522 2
        $theta = $n * ($longitude - $longitudeOfFalseOrigin->asRadians()->getValue());
523 2
        $rho = $a * sqrt($C - $n * $alpha) / $n;
524 2
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
525
526 2
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
527 2
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
528
529 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
530
    }
531
532
    /**
533
     * American Polyconic.
534
     */
535 1
    public function americanPolyconic(
536
        Projected $to,
537
        Angle $latitudeOfNaturalOrigin,
538
        Angle $longitudeOfNaturalOrigin,
539
        Length $falseEasting,
540
        Length $falseNorthing
541
    ): ProjectedPoint {
542 1
        $latitude = $this->latitude->asRadians()->getValue();
543 1
        $longitude = $this->longitude->asRadians()->getValue();
544 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
545 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
546 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
547 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
548 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
549 1
        $e4 = $e ** 4;
550 1
        $e6 = $e ** 6;
551
552 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
553 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
554
555 1
        if ($latitude === 0.0) {
556
            $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
557
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
558
        } else {
559 1
            $L = ($longitude - $longitudeOrigin) * sin($latitude);
560 1
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
561
562 1
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
563 1
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
564
        }
565
566 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
567
    }
568
569
    /**
570
     * Bonne.
571
     */
572 1
    public function bonne(
573
        Projected $to,
574
        Angle $latitudeOfNaturalOrigin,
575
        Angle $longitudeOfNaturalOrigin,
576
        Length $falseEasting,
577
        Length $falseNorthing
578
    ): ProjectedPoint {
579 1
        $latitude = $this->latitude->asRadians()->getValue();
580 1
        $longitude = $this->longitude->asRadians()->getValue();
581 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
582 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
583 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
584 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
585 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
586 1
        $e4 = $e ** 4;
587 1
        $e6 = $e ** 6;
588
589 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
590 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
591
592 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
593 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
594
595 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
596 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
597
598 1
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
599 1
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
600
601 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
602
    }
603
604
    /**
605
     * Bonne South Orientated.
606
     */
607 1
    public function bonneSouthOrientated(
608
        Projected $to,
609
        Angle $latitudeOfNaturalOrigin,
610
        Angle $longitudeOfNaturalOrigin,
611
        Length $falseEasting,
612
        Length $falseNorthing
613
    ): ProjectedPoint {
614 1
        $latitude = $this->latitude->asRadians()->getValue();
615 1
        $longitude = $this->longitude->asRadians()->getValue();
616 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
617 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
618 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
619 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
620 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
621 1
        $e4 = $e ** 4;
622 1
        $e6 = $e ** 6;
623
624 1
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
625 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
626
627 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
628 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
629
630 1
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
631 1
        $tau = $a * $m * ($longitude - $longitudeOrigin) / $rho;
632
633 1
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
634 1
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
635
636 1
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
637
    }
638
639
    /**
640
     * Cassini-Soldner.
641
     */
642 1
    public function cassiniSoldner(
643
        Projected $to,
644
        Angle $latitudeOfNaturalOrigin,
645
        Angle $longitudeOfNaturalOrigin,
646
        Length $falseEasting,
647
        Length $falseNorthing
648
    ): ProjectedPoint {
649 1
        $latitude = $this->latitude->asRadians()->getValue();
650 1
        $longitude = $this->longitude->asRadians()->getValue();
651 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
652 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
653 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
654 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
655 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
656 1
        $e4 = $e ** 4;
657 1
        $e6 = $e ** 6;
658
659 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
660 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
661
662 1
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
663 1
        $T = tan($latitude) ** 2;
664 1
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
665 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
666 1
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
667
668 1
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
669 1
        $northing = $falseNorthing->asMetres()->getValue() + $X;
670
671 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
672
    }
673
674
    /**
675
     * Hyperbolic Cassini-Soldner.
676
     */
677 2
    public function hyperbolicCassiniSoldner(
678
        Projected $to,
679
        Angle $latitudeOfNaturalOrigin,
680
        Angle $longitudeOfNaturalOrigin,
681
        Length $falseEasting,
682
        Length $falseNorthing
683
    ): ProjectedPoint {
684 2
        $latitude = $this->latitude->asRadians()->getValue();
685 2
        $longitude = $this->longitude->asRadians()->getValue();
686 2
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
687 2
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
688 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
689 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
690 2
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
691 2
        $e4 = $e ** 4;
692 2
        $e6 = $e ** 6;
693
694 2
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
695 2
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
696
697 2
        $A = ($longitude - $longitudeOrigin) * cos($latitude);
698 2
        $T = tan($latitude) ** 2;
699 2
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
700 2
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
701 2
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
702 2
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
703
704 2
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
705 2
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
706
707 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
708
    }
709
710
    /**
711
     * Colombia Urban.
712
     */
713 1
    public function columbiaUrban(
714
        Projected $to,
715
        Angle $latitudeOfNaturalOrigin,
716
        Angle $longitudeOfNaturalOrigin,
717
        Length $falseEasting,
718
        Length $falseNorthing,
719
        Length $projectionPlaneOriginHeight
720
    ): ProjectedPoint {
721 1
        $latitude = $this->latitude->asRadians()->getValue();
722 1
        $longitude = $this->longitude->asRadians()->getValue();
723 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
724 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
725 1
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
726 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
727 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
728
729 1
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
0 ignored issues
show
Unused Code introduced by
The assignment to $rho is dead and can be removed.
Loading history...
730 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
731 1
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
732
733 1
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
734 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
735
736 1
        $A = 1 + $heightOrigin / $nuOrigin;
737 1
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
738 1
        $G = 1 + $heightOrigin / $rhoMid;
739
740 1
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * ($longitude - $longitudeOrigin);
741 1
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * ($longitude - $longitudeOrigin) ** 2 * $nu ** 2 * cos($latitude) ** 2));
742
743 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
744
    }
745
746
    /**
747
     * Equal Earth.
748
     */
749 1
    public function equalEarth(
750
        Projected $to,
751
        Angle $longitudeOfNaturalOrigin,
752
        Length $falseEasting,
753
        Length $falseNorthing
754
    ): ProjectedPoint {
755 1
        $latitude = $this->latitude->asRadians()->getValue();
756 1
        $longitude = $this->longitude->asRadians()->getValue();
757 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
758 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
759 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
760 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
761
762 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
763 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
764 1
        $beta = self::asin($q / $qP);
765 1
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
766 1
        $Rq = $a * sqrt($qP / 2);
767
768 1
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * ($longitude - $longitudeOrigin) * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
769 1
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
770
771 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
772
    }
773
774
    /**
775
     * Equidistant Cylindrical
776
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
777
     */
778 1
    public function equidistantCylindrical(
779
        Projected $to,
780
        Angle $latitudeOf1stStandardParallel,
781
        Angle $longitudeOfNaturalOrigin,
782
        Length $falseEasting,
783
        Length $falseNorthing
784
    ): ProjectedPoint {
785 1
        $latitude = $this->latitude->asRadians()->getValue();
786 1
        $longitude = $this->longitude->asRadians()->getValue();
787 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
788 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
789 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
790 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
791 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
792 1
        $e4 = $e ** 4;
793 1
        $e6 = $e ** 6;
794 1
        $e8 = $e ** 8;
795 1
        $e10 = $e ** 10;
796 1
        $e12 = $e ** 12;
797 1
        $e14 = $e ** 14;
798
799 1
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
800
801
        $M = $a * (
802 1
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
803 1
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
804 1
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
805 1
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
806 1
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
807 1
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
808 1
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
809 1
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
810
        );
811
812 1
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * ($longitude - $longitudeOrigin);
813 1
        $northing = $falseNorthing->asMetres()->getValue() + $M;
814
815 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
816
    }
817
818
    /**
819
     * Guam Projection
820
     * Simplified form of Oblique Azimuthal Equidistant projection method.
821
     */
822 1
    public function guamProjection(
823
        Projected $to,
824
        Angle $latitudeOfNaturalOrigin,
825
        Angle $longitudeOfNaturalOrigin,
826
        Length $falseEasting,
827
        Length $falseNorthing
828
    ): ProjectedPoint {
829 1
        $latitude = $this->latitude->asRadians()->getValue();
830 1
        $longitude = $this->longitude->asRadians()->getValue();
831 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
832 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
833 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
834 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
835 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
836 1
        $e4 = $e ** 4;
837 1
        $e6 = $e ** 6;
838
839 1
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
840 1
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
841 1
        $x = ($a * ($longitude - $longitudeOrigin) * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
842
843 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
844 1
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
845
846 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
847
    }
848
849
    /**
850
     * Krovak.
851
     */
852 4
    public function krovak(
853
        Projected $to,
854
        Angle $latitudeOfProjectionCentre,
855
        Angle $longitudeOfOrigin,
856
        Angle $coLatitudeOfConeAxis,
857
        Angle $latitudeOfPseudoStandardParallel,
858
        Scale $scaleFactorOnPseudoStandardParallel,
859
        Length $falseEasting,
860
        Length $falseNorthing
861
    ): ProjectedPoint {
862 4
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
863 4
        $latitude = $this->latitude->asRadians()->getValue();
864 4
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
865 4
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
866 4
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
867 4
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
868 4
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
869 4
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
870 4
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
871 4
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
872 4
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
873
874 4
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
875 4
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
876 4
        $upsilonO = self::asin(sin($latitudeC) / $B);
877 4
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
878 4
        $n = sin($latitudeP);
879 4
        $rO = $kP * $A / tan($latitudeP);
880
881 4
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
882 4
        $V = $B * ($longitudeO - $longitude);
883 4
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
884 4
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
885 4
        $theta = $n * $D;
886 4
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
887 4
        $X = $r * cos($theta);
888 4
        $Y = $r * sin($theta);
889
890 4
        $westing = $Y + $falseEasting->asMetres()->getValue();
891 4
        $southing = $X + $falseNorthing->asMetres()->getValue();
892
893 4
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
894
    }
895
896
    /**
897
     * Krovak Modified
898
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
899
     * to be a map projection.
900
     */
901 2
    public function krovakModified(
902
        Projected $to,
903
        Angle $latitudeOfProjectionCentre,
904
        Angle $longitudeOfOrigin,
905
        Angle $coLatitudeOfConeAxis,
906
        Angle $latitudeOfPseudoStandardParallel,
907
        Scale $scaleFactorOnPseudoStandardParallel,
908
        Length $falseEasting,
909
        Length $falseNorthing,
910
        Length $ordinate1OfEvaluationPoint,
911
        Length $ordinate2OfEvaluationPoint,
912
        Coefficient $C1,
913
        Coefficient $C2,
914
        Coefficient $C3,
915
        Coefficient $C4,
916
        Coefficient $C5,
917
        Coefficient $C6,
918
        Coefficient $C7,
919
        Coefficient $C8,
920
        Coefficient $C9,
921
        Coefficient $C10
922
    ): ProjectedPoint {
923 2
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
924
925 2
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
926 2
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
927 2
        $c1 = $C1->asUnity()->getValue();
928 2
        $c2 = $C2->asUnity()->getValue();
929 2
        $c3 = $C3->asUnity()->getValue();
930 2
        $c4 = $C4->asUnity()->getValue();
931 2
        $c5 = $C5->asUnity()->getValue();
932 2
        $c6 = $C6->asUnity()->getValue();
933 2
        $c7 = $C7->asUnity()->getValue();
934 2
        $c8 = $C8->asUnity()->getValue();
935 2
        $c9 = $C9->asUnity()->getValue();
936 2
        $c10 = $C10->asUnity()->getValue();
937
938 2
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
939 2
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
940
941 2
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
942 2
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
943
944 2
        $westing += $falseEasting->asMetres()->getValue() - $dY;
945 2
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
946
947 2
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
948
    }
949
950
    /**
951
     * Lambert Azimuthal Equal Area
952
     * This is the ellipsoidal form of the projection.
953
     */
954 1
    public function lambertAzimuthalEqualArea(
955
        Projected $to,
956
        Angle $latitudeOfNaturalOrigin,
957
        Angle $longitudeOfNaturalOrigin,
958
        Length $falseEasting,
959
        Length $falseNorthing
960
    ): ProjectedPoint {
961 1
        $latitude = $this->latitude->asRadians()->getValue();
962 1
        $longitude = $this->longitude->asRadians()->getValue();
963 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
964 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
965 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
966 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
967 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
968
969 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
970 1
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
971 1
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
972 1
        $beta = self::asin($q / $qP);
973 1
        $betaO = self::asin($qO / $qP);
974 1
        $Rq = $a * sqrt($qP / 2);
975 1
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($longitude - $longitudeOrigin))));
976 1
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
977
978 1
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($longitude - $longitudeOrigin)));
979 1
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($longitude - $longitudeOrigin)));
980
981 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
982
    }
983
984
    /**
985
     * Lambert Azimuthal Equal Area (Spherical)
986
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
987
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
988
     * methods.
989
     */
990 1
    public function lambertAzimuthalEqualAreaSpherical(
991
        Projected $to,
992
        Angle $latitudeOfNaturalOrigin,
993
        Angle $longitudeOfNaturalOrigin,
994
        Length $falseEasting,
995
        Length $falseNorthing
996
    ): ProjectedPoint {
997 1
        $latitude = $this->latitude->asRadians()->getValue();
998 1
        $longitude = $this->longitude->asRadians()->getValue();
999 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1000 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1001 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1002
1003 1
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
1004
1005 1
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($longitude - $longitudeOrigin));
1006 1
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($longitude - $longitudeOrigin)));
1007
1008 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1009
    }
1010
1011
    /**
1012
     * Lambert Conic Conformal (1SP).
1013
     */
1014 1
    public function lambertConicConformal1SP(
1015
        Projected $to,
1016
        Angle $latitudeOfNaturalOrigin,
1017
        Angle $longitudeOfNaturalOrigin,
1018
        Scale $scaleFactorAtNaturalOrigin,
1019
        Length $falseEasting,
1020
        Length $falseNorthing
1021
    ): ProjectedPoint {
1022 1
        $latitude = $this->latitude->asRadians()->getValue();
1023 1
        $longitude = $this->longitude->asRadians()->getValue();
1024 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1025 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1026 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1027 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1028 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1029 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1030
1031 1
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1032 1
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1033 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1034 1
        $n = sin($latitudeOrigin);
1035 1
        $F = $mO / ($n * $tO ** $n);
1036 1
        $rO = $a * $F * $tO ** $n * $kO;
1037 1
        $r = $a * $F * $t ** $n * $kO;
1038 1
        $theta = $n * ($longitude - $longitudeOrigin);
1039
1040 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1041 1
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1042
1043 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1044
    }
1045
1046
    /**
1047
     * Lambert Conic Conformal (1SP) Variant B.
1048
     */
1049
    public function lambertConicConformal1SPVariantB(
1050
        Projected $to,
1051
        Angle $latitudeOfNaturalOrigin,
1052
        Scale $scaleFactorAtNaturalOrigin,
1053
        Angle $latitudeOfFalseOrigin,
1054
        Angle $longitudeOfFalseOrigin,
1055
        Length $eastingAtFalseOrigin,
1056
        Length $northingAtFalseOrigin
1057
    ): ProjectedPoint {
1058
        $latitude = $this->latitude->asRadians()->getValue();
1059
        $longitude = $this->longitude->asRadians()->getValue();
1060
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1061
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1062
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1063
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1064
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1065
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1066
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1067
1068
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1069
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1070
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1071
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1072
        $n = sin($latitudeNaturalOrigin);
1073
        $F = $mO / ($n * $tO ** $n);
1074
        $rF = $a * $F * $tF ** $n * $kO;
1075
        $r = $a * $F * $t ** $n * $kO;
1076
        $theta = $n * ($longitude - $longitudeFalseOrigin);
1077
1078
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1079
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1080
1081
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1082
    }
1083
1084
    /**
1085
     * Lambert Conic Conformal (2SP Belgium)
1086
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1087
     * with appropriately modified parameter values.
1088
     */
1089 1
    public function lambertConicConformal2SPBelgium(
1090
        Projected $to,
1091
        Angle $latitudeOfFalseOrigin,
1092
        Angle $longitudeOfFalseOrigin,
1093
        Angle $latitudeOf1stStandardParallel,
1094
        Angle $latitudeOf2ndStandardParallel,
1095
        Length $eastingAtFalseOrigin,
1096
        Length $northingAtFalseOrigin
1097
    ): ProjectedPoint {
1098 1
        $latitude = $this->latitude->asRadians()->getValue();
1099 1
        $longitude = $this->longitude->asRadians()->getValue();
1100 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1101 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1102 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1103 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1104 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1105 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1106 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1107
1108 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1109 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1110 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1111 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1112 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1113 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1114 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1115 1
        $F = $m1 / ($n * $t1 ** $n);
1116 1
        $r = $a * $F * $t ** $n;
1117 1
        $rF = $a * $F * $tF ** $n;
1118 1
        if (is_nan($rF)) {
1119 1
            $rF = 0;
1120
        }
1121 1
        $theta = ($n * ($longitude - $lambdaF)) - (new ArcSecond(29.2985))->asRadians()->getValue();
1122
1123 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1124 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1125
1126 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1127
    }
1128
1129
    /**
1130
     * Lambert Conic Conformal (2SP Michigan).
1131
     */
1132 1
    public function lambertConicConformal2SPMichigan(
1133
        Projected $to,
1134
        Angle $latitudeOfFalseOrigin,
1135
        Angle $longitudeOfFalseOrigin,
1136
        Angle $latitudeOf1stStandardParallel,
1137
        Angle $latitudeOf2ndStandardParallel,
1138
        Length $eastingAtFalseOrigin,
1139
        Length $northingAtFalseOrigin,
1140
        Scale $ellipsoidScalingFactor
1141
    ): ProjectedPoint {
1142 1
        $latitude = $this->latitude->asRadians()->getValue();
1143 1
        $longitude = $this->longitude->asRadians()->getValue();
1144 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1145 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1146 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1147 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1148 1
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1149 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1150 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1151 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1152
1153 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1154 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1155 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1156 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1157 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1158 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1159 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1160 1
        $F = $m1 / ($n * $t1 ** $n);
1161 1
        $r = $a * $K * $F * $t ** $n;
1162 1
        $rF = $a * $K * $F * $tF ** $n;
1163 1
        $theta = $n * ($longitude - $lambdaF);
1164
1165 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1166 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1167
1168 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1169
    }
1170
1171
    /**
1172
     * Lambert Conic Conformal (2SP).
1173
     */
1174 1
    public function lambertConicConformal2SP(
1175
        Projected $to,
1176
        Angle $latitudeOfFalseOrigin,
1177
        Angle $longitudeOfFalseOrigin,
1178
        Angle $latitudeOf1stStandardParallel,
1179
        Angle $latitudeOf2ndStandardParallel,
1180
        Length $eastingAtFalseOrigin,
1181
        Length $northingAtFalseOrigin
1182
    ): ProjectedPoint {
1183 1
        $latitude = $this->latitude->asRadians()->getValue();
1184 1
        $longitude = $this->longitude->asRadians()->getValue();
1185 1
        $lambdaF = $longitudeOfFalseOrigin->asRadians()->getValue();
1186 1
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1187 1
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1188 1
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1189 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1190 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1191 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1192
1193 1
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1194 1
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1195 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1196 1
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1197 1
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1198 1
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1199 1
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1200 1
        $F = $m1 / ($n * $t1 ** $n);
1201 1
        $r = $a * $F * $t ** $n;
1202 1
        $rF = $a * $F * $tF ** $n;
1203 1
        $theta = $n * ($longitude - $lambdaF);
1204
1205 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1206 1
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1207
1208 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1209
    }
1210
1211
    /**
1212
     * Lambert Conic Conformal (West Orientated).
1213
     */
1214
    public function lambertConicConformalWestOrientated(
1215
        Projected $to,
1216
        Angle $latitudeOfNaturalOrigin,
1217
        Angle $longitudeOfNaturalOrigin,
1218
        Scale $scaleFactorAtNaturalOrigin,
1219
        Length $falseEasting,
1220
        Length $falseNorthing
1221
    ): ProjectedPoint {
1222
        $latitude = $this->latitude->asRadians()->getValue();
1223
        $longitude = $this->longitude->asRadians()->getValue();
1224
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1225
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1226
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1227
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1228
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1229
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1230
1231
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1232
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1233
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1234
        $n = sin($latitudeOrigin);
1235
        $F = $mO / ($n * $tO ** $n);
1236
        $rO = $a * $F * $tO ** $n ** $kO;
1237
        $r = $a * $F * $t ** $n ** $kO;
1238
        $theta = $n * ($longitude - $longitudeOrigin);
1239
1240
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1241
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1242
1243
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1244
    }
1245
1246
    /**
1247
     * Lambert Conic Near-Conformal
1248
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1249
     * series expansion of the projection formulae.
1250
     */
1251 1
    public function lambertConicNearConformal(
1252
        Projected $to,
1253
        Angle $latitudeOfNaturalOrigin,
1254
        Angle $longitudeOfNaturalOrigin,
1255
        Scale $scaleFactorAtNaturalOrigin,
1256
        Length $falseEasting,
1257
        Length $falseNorthing
1258
    ): ProjectedPoint {
1259 1
        $latitude = $this->latitude->asRadians()->getValue();
1260 1
        $longitude = $this->longitude->asRadians()->getValue();
1261 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1262 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1263 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1264 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1265 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1266 1
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1267
1268 1
        $n = $f / (2 - $f);
1269 1
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1270 1
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1271 1
        $A = 1 / (6 * $rhoO * $nuO);
1272 1
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1273 1
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1274 1
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1275 1
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1276 1
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1277 1
        $rO = $kO * $nuO / tan($latitudeOrigin);
1278 1
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1279 1
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1280 1
        $m = $s - $sO;
1281 1
        $M = $kO * ($m + $A * $m ** 3);
1282 1
        $r = $rO - $M;
1283 1
        $theta = ($longitude - $longitudeOrigin) * sin($latitudeOrigin);
1284
1285 1
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1286 1
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1287
1288 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1289
    }
1290
1291
    /**
1292
     * Lambert Cylindrical Equal Area
1293
     * This is the ellipsoidal form of the projection.
1294
     */
1295 1
    public function lambertCylindricalEqualArea(
1296
        Projected $to,
1297
        Angle $latitudeOf1stStandardParallel,
1298
        Angle $longitudeOfNaturalOrigin,
1299
        Length $falseEasting,
1300
        Length $falseNorthing
1301
    ): ProjectedPoint {
1302 1
        $latitude = $this->latitude->asRadians()->getValue();
1303 1
        $longitude = $this->longitude->asRadians()->getValue();
1304 1
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1305 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1306 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1307 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1308 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1309
1310 1
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1311 1
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1312
1313 1
        $x = $a * $k * ($longitude - $longitudeOrigin);
1314 1
        $y = $a * $q / (2 * $k);
1315
1316 1
        $easting = $falseEasting->asMetres()->getValue() + $x;
1317 1
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1318
1319 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1320
    }
1321
1322
    /**
1323
     * Modified Azimuthal Equidistant
1324
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1325
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1326
     */
1327 1
    public function modifiedAzimuthalEquidistant(
1328
        Projected $to,
1329
        Angle $latitudeOfNaturalOrigin,
1330
        Angle $longitudeOfNaturalOrigin,
1331
        Length $falseEasting,
1332
        Length $falseNorthing
1333
    ): ProjectedPoint {
1334 1
        $latitude = $this->latitude->asRadians()->getValue();
1335 1
        $longitude = $this->longitude->asRadians()->getValue();
1336 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1337 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1338 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1339 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1340 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1341
1342 1
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1343 1
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1344 1
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1345 1
        $alpha = atan2(sin($longitude - $longitudeOrigin), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($longitude - $longitudeOrigin)));
1346 1
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1347 1
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1348
1349 1
        if (sin($alpha) === 0.0) {
1350
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1351
        } else {
1352 1
            $s = self::asin(sin($longitude - $longitudeOrigin) * cos($psi) / sin($alpha));
1353
        }
1354
1355 1
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1356
1357 1
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1358 1
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1359
1360 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1361
    }
1362
1363
    /**
1364
     * Oblique Stereographic
1365
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1366
     * Projections - A Working Manual" by John P. Snyder.
1367
     */
1368 1
    public function obliqueStereographic(
1369
        Projected $to,
1370
        Angle $latitudeOfNaturalOrigin,
1371
        Angle $longitudeOfNaturalOrigin,
1372
        Scale $scaleFactorAtNaturalOrigin,
1373
        Length $falseEasting,
1374
        Length $falseNorthing
1375
    ): ProjectedPoint {
1376 1
        $latitude = $this->latitude->asRadians()->getValue();
1377 1
        $longitude = $this->longitude->asRadians()->getValue();
1378 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1379 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1380 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1381 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1382 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1383 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1384
1385 1
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1386 1
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1387 1
        $R = sqrt($rhoOrigin * $nuOrigin);
1388
1389 1
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1390 1
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1391 1
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1392 1
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1393 1
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1394 1
        $w2 = $c * $w1;
1395 1
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1396
1397 1
        $lambda = $n * ($longitude - $longitudeOrigin) + $longitudeOrigin;
1398
1399 1
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1400 1
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1401 1
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1402 1
        $chi = self::asin(($w - 1) / ($w + 1));
1403
1404 1
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1405
1406 1
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1407 1
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1408
1409 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1410
    }
1411
1412
    /**
1413
     * Polar Stereographic (variant A)
1414
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1415
     */
1416 1
    public function polarStereographicVariantA(
1417
        Projected $to,
1418
        Angle $latitudeOfNaturalOrigin,
1419
        Angle $longitudeOfNaturalOrigin,
1420
        Scale $scaleFactorAtNaturalOrigin,
1421
        Length $falseEasting,
1422
        Length $falseNorthing
1423
    ): ProjectedPoint {
1424 1
        $latitude = $this->latitude->asRadians()->getValue();
1425 1
        $longitude = $this->longitude->asRadians()->getValue();
1426 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1427 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1428 1
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1429 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1430 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1431
1432 1
        if ($latitudeOrigin < 0) {
1433
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1434
        } else {
1435 1
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1436
        }
1437 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1438
1439 1
        $theta = $longitude - $longitudeOrigin;
1440 1
        $dE = $rho * sin($theta);
1441 1
        $dN = $rho * cos($theta);
1442
1443 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1444 1
        if ($latitudeOrigin < 0) {
1445
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1446
        } else {
1447 1
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1448
        }
1449
1450 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1451
    }
1452
1453
    /**
1454
     * Polar Stereographic (variant B).
1455
     */
1456 1
    public function polarStereographicVariantB(
1457
        Projected $to,
1458
        Angle $latitudeOfStandardParallel,
1459
        Angle $longitudeOfOrigin,
1460
        Length $falseEasting,
1461
        Length $falseNorthing
1462
    ): ProjectedPoint {
1463 1
        $latitude = $this->latitude->asRadians()->getValue();
1464 1
        $longitude = $this->longitude->asRadians()->getValue();
1465 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1466 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1467 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1468 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1469 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1470
1471 1
        if ($firstStandardParallel < 0) {
1472 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1473 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1474
        } else {
1475
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1476
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1477
        }
1478 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1479 1
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1480
1481 1
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1482
1483 1
        $theta = $longitude - $longitudeOrigin;
1484 1
        $dE = $rho * sin($theta);
1485 1
        $dN = $rho * cos($theta);
1486
1487 1
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1488 1
        if ($firstStandardParallel < 0) {
1489 1
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1490
        } else {
1491
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1492
        }
1493
1494 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1495
    }
1496
1497
    /**
1498
     * Polar Stereographic (variant C).
1499
     */
1500 1
    public function polarStereographicVariantC(
1501
        Projected $to,
1502
        Angle $latitudeOfStandardParallel,
1503
        Angle $longitudeOfOrigin,
1504
        Length $eastingAtFalseOrigin,
1505
        Length $northingAtFalseOrigin
1506
    ): ProjectedPoint {
1507 1
        $latitude = $this->latitude->asRadians()->getValue();
1508 1
        $longitude = $this->longitude->asRadians()->getValue();
1509 1
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1510 1
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1511 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1512 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1513 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1514
1515 1
        if ($firstStandardParallel < 0) {
1516 1
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1517 1
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1518
        } else {
1519
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1520
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1521
        }
1522 1
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1523
1524 1
        $rhoF = $a * $mF;
1525 1
        $rho = $rhoF * $t / $tF;
1526
1527 1
        $theta = $longitude - $longitudeOrigin;
1528 1
        $dE = $rho * sin($theta);
1529 1
        $dN = $rho * cos($theta);
1530
1531 1
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1532 1
        if ($firstStandardParallel < 0) {
1533 1
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1534
        } else {
1535
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1536
        }
1537
1538 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1539
    }
1540
1541
    /**
1542
     * Popular Visualisation Pseudo Mercator
1543
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1544
     */
1545 1
    public function popularVisualisationPseudoMercator(
1546
        Projected $to,
1547
        Angle $latitudeOfNaturalOrigin,
1548
        Angle $longitudeOfNaturalOrigin,
1549
        Length $falseEasting,
1550
        Length $falseNorthing
1551
    ): ProjectedPoint {
1552 1
        $latitude = $this->latitude->asRadians()->getValue();
1553 1
        $longitude = $this->longitude->asRadians()->getValue();
1554 1
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1555 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1556 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1557
1558 1
        $easting = $falseEasting->asMetres()->getValue() + $a * ($longitude - $longitudeOrigin);
1559 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1560
1561 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1562
    }
1563
1564
    /**
1565
     * Mercator (variant A)
1566
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1567
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1568
     * completeness in CRS labelling.
1569
     */
1570 2
    public function mercatorVariantA(
1571
        Projected $to,
1572
        Angle $latitudeOfNaturalOrigin,
1573
        Angle $longitudeOfNaturalOrigin,
1574
        Scale $scaleFactorAtNaturalOrigin,
1575
        Length $falseEasting,
1576
        Length $falseNorthing
1577
    ): ProjectedPoint {
1578 2
        $latitude = $this->latitude->asRadians()->getValue();
1579 2
        $longitude = $this->longitude->asRadians()->getValue();
1580
1581 2
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1582 2
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1583 2
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1584
1585 2
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1586 2
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1587
1588 2
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1589 2
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1590
1591 2
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1592
    }
1593
1594
    /**
1595
     * Mercator (variant B)
1596
     * Used for most nautical charts.
1597
     */
1598 1
    public function mercatorVariantB(
1599
        Projected $to,
1600
        Angle $latitudeOf1stStandardParallel,
1601
        Angle $longitudeOfNaturalOrigin,
1602
        Length $falseEasting,
1603
        Length $falseNorthing
1604
    ): ProjectedPoint {
1605 1
        $latitude = $this->latitude->asRadians()->getValue();
1606 1
        $longitude = $this->longitude->asRadians()->getValue();
1607 1
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1608 1
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1609 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1610 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1611 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1612
1613 1
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1614
1615 1
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * ($longitude - $longitudeOrigin);
1616 1
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1617
1618 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1619
    }
1620
1621
    /**
1622
     * Longitude rotation
1623
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1624
     * value to the longitude value of the point in the source system.
1625
     */
1626 1
    public function longitudeRotation(
1627
        Geographic $to,
1628
        Angle $longitudeOffset
1629
    ): self {
1630 1
        $newLongitude = $this->longitude->add($longitudeOffset);
1631
1632 1
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1633
    }
1634
1635
    /**
1636
     * Hotine Oblique Mercator (variant A).
1637
     */
1638 1
    public function obliqueMercatorHotineVariantA(
1639
        Projected $to,
1640
        Angle $latitudeOfProjectionCentre,
1641
        Angle $longitudeOfProjectionCentre,
1642
        Angle $azimuthOfInitialLine,
1643
        Angle $angleFromRectifiedToSkewGrid,
1644
        Scale $scaleFactorOnInitialLine,
1645
        Length $falseEasting,
1646
        Length $falseNorthing
1647
    ): ProjectedPoint {
1648 1
        $latitude = $this->latitude->asRadians()->getValue();
1649 1
        $longitude = $this->longitude->asRadians()->getValue();
1650 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1651 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1652 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1653 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1654 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1655 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1656 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1657 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1658
1659 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1660 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1661 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1662 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1663 1
        $DD = max(1, $D ** 2);
1664 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1665 1
        $H = $F * ($tO) ** $B;
1666 1
        $G = ($F - 1 / $F) / 2;
1667 1
        $gammaO = self::asin(sin($alphaC) / $D);
1668 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1669
1670 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1671 1
        $Q = $H / $t ** $B;
1672 1
        $S = ($Q - 1 / $Q) / 2;
1673 1
        $T = ($Q + 1 / $Q) / 2;
1674 1
        $V = sin($B * ($longitude - $lonO));
1675 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1676 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1677 1
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1678
1679 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1680 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1681
1682 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1683
    }
1684
1685
    /**
1686
     * Hotine Oblique Mercator (variant B).
1687
     */
1688 1
    public function obliqueMercatorHotineVariantB(
1689
        Projected $to,
1690
        Angle $latitudeOfProjectionCentre,
1691
        Angle $longitudeOfProjectionCentre,
1692
        Angle $azimuthOfInitialLine,
1693
        Angle $angleFromRectifiedToSkewGrid,
1694
        Scale $scaleFactorOnInitialLine,
1695
        Length $eastingAtProjectionCentre,
1696
        Length $northingAtProjectionCentre
1697
    ): ProjectedPoint {
1698 1
        $latitude = $this->latitude->asRadians()->getValue();
1699 1
        $longitude = $this->longitude->asRadians()->getValue();
1700 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1701 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1702 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1703 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1704 1
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1705 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1706 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1707 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1708
1709 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1710 1
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1711 1
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1712 1
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1713 1
        $DD = max(1, $D ** 2);
1714 1
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1715 1
        $H = $F * ($tO) ** $B;
1716 1
        $G = ($F - 1 / $F) / 2;
1717 1
        $gammaO = self::asin(sin($alphaC) / $D);
1718 1
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1719 1
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1720 1
        if ($alphaC === M_PI / 2) {
1721
            $uC = $A * ($lonC - $lonO);
1722
        } else {
1723 1
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1724
        }
1725
1726 1
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1727 1
        $Q = $H / $t ** $B;
1728 1
        $S = ($Q - 1 / $Q) / 2;
1729 1
        $T = ($Q + 1 / $Q) / 2;
1730 1
        $V = sin($B * ($longitude - $lonO));
1731 1
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1732 1
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1733
1734 1
        if ($alphaC === M_PI / 2) {
1735
            if ($longitude === $lonC) {
1736
                $u = 0;
1737
            } else {
1738
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1739
            }
1740
        } else {
1741 1
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1742
        }
1743
1744 1
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1745 1
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1746
1747 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1748
    }
1749
1750
    /**
1751
     * Laborde Oblique Mercator.
1752
     */
1753 1
    public function obliqueMercatorLaborde(
1754
        Projected $to,
1755
        Angle $latitudeOfProjectionCentre,
1756
        Angle $longitudeOfProjectionCentre,
1757
        Angle $azimuthOfInitialLine,
1758
        Scale $scaleFactorOnInitialLine,
1759
        Length $falseEasting,
1760
        Length $falseNorthing
1761
    ): ProjectedPoint {
1762 1
        $latitude = $this->latitude->asRadians()->getValue();
1763 1
        $longitude = $this->longitude->asRadians()->getValue();
1764 1
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1765 1
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1766 1
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1767 1
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1768 1
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1769 1
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1770 1
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1771
1772 1
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1773 1
        $latS = self::asin(sin($latC) / $B);
1774 1
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1775 1
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1776
1777 1
        $L = $B * ($longitude - $lonC);
1778 1
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1779 1
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1780 1
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1781 1
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1782 1
        $W = cos($P) * sin($L);
1783 1
        $d = sqrt($U ** 2 + $V ** 2);
1784 1
        if ($d === 0.0) {
1785
            $LPrime = 0;
1786
            $PPrime = static::sign($W) * M_PI / 2;
1787
        } else {
1788 1
            $LPrime = 2 * atan($V / ($U + $d));
1789 1
            $PPrime = atan($W / $d);
1790
        }
1791 1
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1792 1
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1793
1794 1
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1795 1
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1796
1797 1
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1798
    }
1799
1800
    /**
1801
     * Transverse Mercator.
1802
     */
1803 8
    public function transverseMercator(
1804
        Projected $to,
1805
        Angle $latitudeOfNaturalOrigin,
1806
        Angle $longitudeOfNaturalOrigin,
1807
        Scale $scaleFactorAtNaturalOrigin,
1808
        Length $falseEasting,
1809
        Length $falseNorthing
1810
    ): ProjectedPoint {
1811 8
        $latitude = $this->latitude->asRadians()->getValue();
1812 8
        $longitude = $this->longitude->asRadians()->getValue();
1813 8
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1814 8
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1815 8
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1816 8
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1817 8
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1818 8
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1819
1820 8
        $n = $f / (2 - $f);
1821 8
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1822
1823 8
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1824 8
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1825 8
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1826 8
        $h4 = (49561 / 161280) * $n ** 4;
1827
1828 8
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1829 6
            $mO = 0;
1830 2
        } elseif ($latitudeOrigin === M_PI / 2) {
1831
            $mO = $B * M_PI / 2;
1832 2
        } elseif ($latitudeOrigin === -M_PI / 2) {
1833
            $mO = $B * -M_PI / 2;
1834
        } else {
1835 2
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1836 2
            $betaO = atan(sinh($qO));
1837 2
            $xiO0 = self::asin(sin($betaO));
1838 2
            $xiO1 = $h1 * sin(2 * $xiO0);
1839 2
            $xiO2 = $h2 * sin(4 * $xiO0);
1840 2
            $xiO3 = $h3 * sin(6 * $xiO0);
1841 2
            $xiO4 = $h4 * sin(8 * $xiO0);
1842 2
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1843 2
            $mO = $B * $xiO;
1844
        }
1845
1846 8
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1847 8
        $beta = atan(sinh($Q));
1848 8
        $eta0 = atanh(cos($beta) * sin($longitude - $longitudeOrigin));
1849 8
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1850 8
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1851 8
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1852 8
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1853 8
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1854 8
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1855 8
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1856 8
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1857 8
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1858 8
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1859 8
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1860
1861 8
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1862 8
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1863
1864 8
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1865
    }
1866
1867
    /**
1868
     * Transverse Mercator Zoned Grid System
1869
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1870
     * each zone.
1871
     */
1872 4
    public function transverseMercatorZonedGrid(
1873
        Projected $to,
1874
        Angle $latitudeOfNaturalOrigin,
1875
        Angle $initialLongitude,
1876
        Angle $zoneWidth,
1877
        Scale $scaleFactorAtNaturalOrigin,
1878
        Length $falseEasting,
1879
        Length $falseNorthing
1880
    ): ProjectedPoint {
1881 4
        $W = $zoneWidth->asDegrees()->getValue();
1882 4
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1;
1883
1884 4
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1885 4
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1886
1887 4
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1888
    }
1889
1890
    /**
1891
     * New Zealand Map Grid.
1892
     */
1893 3
    public function newZealandMapGrid(
1894
        Projected $to,
1895
        Angle $latitudeOfNaturalOrigin,
1896
        Angle $longitudeOfNaturalOrigin,
1897
        Length $falseEasting,
1898
        Length $falseNorthing
1899
    ): ProjectedPoint {
1900 3
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1901
1902 3
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1903 3
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1904
1905 3
        $deltaPsi = 0;
1906 3
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1907 3
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1908 3
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1909 3
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1910 3
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1911 3
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1912 3
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1913 3
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1914 3
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1915 3
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1916
1917 3
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1918
1919 3
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1920 3
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1921 3
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1922 3
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1923 3
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1924 3
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1925 3
        $z = new ComplexNumber(0, 0);
1926 3
        $z = $z->add($B1->multiply($zeta->pow(1)));
1927 3
        $z = $z->add($B2->multiply($zeta->pow(2)));
1928 3
        $z = $z->add($B3->multiply($zeta->pow(3)));
1929 3
        $z = $z->add($B4->multiply($zeta->pow(4)));
1930 3
        $z = $z->add($B5->multiply($zeta->pow(5)));
1931 3
        $z = $z->add($B6->multiply($zeta->pow(6)));
1932
1933 3
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1934 3
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1935
1936 3
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1937
    }
1938
1939
    /**
1940
     * Madrid to ED50 polynomial.
1941
     */
1942 1
    public function madridToED50Polynomial(
1943
        Geographic2D $to,
1944
        Scale $A0,
1945
        Scale $A1,
1946
        Scale $A2,
1947
        Scale $A3,
1948
        Angle $B00,
1949
        Scale $B0,
1950
        Scale $B1,
1951
        Scale $B2,
1952
        Scale $B3
1953
    ): self {
1954 1
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1955 1
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1956
1957 1
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1958
    }
1959
1960
    /**
1961
     * Geographic3D to 2D conversion.
1962
     */
1963 5
    public function threeDToTwoD(
1964
        Geographic $to
1965
    ): self {
1966 5
        if ($to instanceof Geographic2D) {
1967 5
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1968
        }
1969
1970
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1971
    }
1972
1973
    /**
1974
     * Geographic2D offsets.
1975
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1976
     * coordinate values of the point in the source system.
1977
     */
1978 1
    public function geographic2DOffsets(
1979
        Geographic $to,
1980
        Angle $latitudeOffset,
1981
        Angle $longitudeOffset
1982
    ): self {
1983 1
        $toLatitude = $this->latitude->add($latitudeOffset);
1984 1
        $toLongitude = $this->longitude->add($longitudeOffset);
1985
1986 1
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1987
    }
1988
1989
    /*
1990
     * Geographic2D with Height Offsets.
1991
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1992
     * coordinate values of the point in the source system.
1993
     */
1994
    public function geographic2DWithHeightOffsets(
1995
        Compound $to,
1996
        Angle $latitudeOffset,
1997
        Angle $longitudeOffset,
1998
        Length $geoidUndulation
1999
    ): CompoundPoint {
2000
        $toLatitude = $this->latitude->add($latitudeOffset);
2001
        $toLongitude = $this->longitude->add($longitudeOffset);
2002
        $toHeight = $this->height->add($geoidUndulation);
2003
2004
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2004
        $horizontal = static::create($toLatitude, $toLongitude, null, /** @scrutinizer ignore-type */ $to->getHorizontal(), $this->epoch);
Loading history...
2005
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
2006
2007
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
2008
    }
2009
2010
    /**
2011
     * General polynomial.
2012
     * @param Coefficient[] $powerCoefficients
2013
     */
2014 2
    public function generalPolynomial(
2015
        Geographic $to,
2016
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2017
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2018
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2019
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2020
        Scale $scalingFactorForSourceCRSCoordDifferences,
2021
        Scale $scalingFactorForTargetCRSCoordDifferences,
2022
        Scale $A0,
2023
        Scale $B0,
2024
        array $powerCoefficients
2025
    ): self {
2026 2
        $xs = $this->latitude->getValue();
2027 2
        $ys = $this->longitude->getValue();
2028
2029 2
        $t = $this->generalPolynomialUnitless(
2030 2
            $xs,
2031
            $ys,
2032
            $ordinate1OfEvaluationPointInSourceCRS,
2033
            $ordinate2OfEvaluationPointInSourceCRS,
2034
            $ordinate1OfEvaluationPointInTargetCRS,
2035
            $ordinate2OfEvaluationPointInTargetCRS,
2036
            $scalingFactorForSourceCRSCoordDifferences,
2037
            $scalingFactorForTargetCRSCoordDifferences,
2038
            $A0,
2039
            $B0,
2040
            $powerCoefficients
2041
        );
2042
2043 2
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2044 2
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2045 2
            $xtUnit = Angle::EPSG_DEGREE;
2046
        }
2047 2
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2048 2
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2049 2
            $ytUnit = Angle::EPSG_DEGREE;
2050
        }
2051
2052 2
        return static::create(
2053 2
            Angle::makeUnit($t['xt'], $xtUnit),
2054 2
            Angle::makeUnit($t['yt'], $ytUnit),
2055 2
            $this->height,
2056
            $to,
2057 2
            $this->epoch
2058
        );
2059
    }
2060
2061
    /**
2062
     * Reversible polynomial.
2063
     * @param Coefficient[] $powerCoefficients
2064
     */
2065 4
    public function reversiblePolynomial(
2066
        Geographic $to,
2067
        Angle $ordinate1OfEvaluationPoint,
2068
        Angle $ordinate2OfEvaluationPoint,
2069
        Scale $scalingFactorForCoordDifferences,
2070
        Scale $A0,
2071
        Scale $B0,
2072
        $powerCoefficients
2073
    ): self {
2074 4
        $xs = $this->latitude->getValue();
2075 4
        $ys = $this->longitude->getValue();
2076
2077 4
        $t = $this->reversiblePolynomialUnitless(
2078 4
            $xs,
2079
            $ys,
2080
            $ordinate1OfEvaluationPoint,
2081
            $ordinate2OfEvaluationPoint,
2082
            $scalingFactorForCoordDifferences,
2083
            $A0,
2084
            $B0,
2085
            $powerCoefficients
2086
        );
2087
2088 4
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2089 4
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2090 4
            $xtUnit = Angle::EPSG_DEGREE;
2091
        }
2092 4
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2093 4
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2094 4
            $ytUnit = Angle::EPSG_DEGREE;
2095
        }
2096
2097 4
        return static::create(
2098 4
            Angle::makeUnit($t['xt'], $xtUnit),
2099 4
            Angle::makeUnit($t['yt'], $ytUnit),
2100 4
            $this->height,
2101
            $to,
2102 4
            $this->epoch
2103
        );
2104
    }
2105
2106
    /**
2107
     * Axis Order Reversal.
2108
     */
2109
    public function axisReversal(
2110
        Geographic $to
2111
    ) {
2112
        // axes are read in from the CRS, this is a book-keeping adjustment only
2113
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2114
    }
2115
2116 34
    public function asGeographicValue(): GeographicValue
2117
    {
2118 34
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2119
    }
2120
}
2121