Passed
Push — master ( 1c4ceb...50b2e6 )
by Doug
44:53
created

GeographicPoint::americanPolyconic()   A

Complexity

Conditions 2
Paths 2

Size

Total Lines 30
Code Lines 18

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 16
CRAP Score 2.0054

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 2
eloc 18
nc 2
nop 5
dl 0
loc 30
rs 9.6666
c 1
b 0
f 0
ccs 16
cts 18
cp 0.8889
crap 2.0054
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicValue;
34
use PHPCoord\CoordinateOperation\NADCON5Grid;
35
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
36
use PHPCoord\CoordinateReferenceSystem\Compound;
37
use PHPCoord\CoordinateReferenceSystem\Geocentric;
38
use PHPCoord\CoordinateReferenceSystem\Geographic;
39
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
40
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
41
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
42
use PHPCoord\CoordinateSystem\Axis;
43
use PHPCoord\CoordinateSystem\Cartesian;
44
use PHPCoord\Datum\Datum;
45
use PHPCoord\Datum\Ellipsoid;
46
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
47
use PHPCoord\Exception\UnknownAxisException;
48
use PHPCoord\Geometry\BoundingArea;
49
use PHPCoord\UnitOfMeasure\Angle\Angle;
50
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
51
use PHPCoord\UnitOfMeasure\Angle\Degree;
52
use PHPCoord\UnitOfMeasure\Angle\Radian;
53
use PHPCoord\UnitOfMeasure\Length\Length;
54
use PHPCoord\UnitOfMeasure\Length\Metre;
55
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
56
use PHPCoord\UnitOfMeasure\Scale\Scale;
57
use PHPCoord\UnitOfMeasure\Scale\Unity;
58
use function sin;
59
use function sinh;
60
use function sprintf;
61
use function sqrt;
62
use function tan;
63
use TypeError;
64
65
/**
66
 * Coordinate representing a point on an ellipsoid.
67
 */
68
class GeographicPoint extends Point implements ConvertiblePoint
69
{
70
    use AutoConversion;
71
72
    /**
73
     * Latitude.
74
     */
75
    protected Angle $latitude;
76
77
    /**
78
     * Longitude.
79
     */
80
    protected Angle $longitude;
81
82
    /**
83
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
84
     */
85
    protected ?Length $height;
86
87
    /**
88
     * Coordinate reference system.
89
     */
90
    protected Geographic $crs;
91
92
    /**
93
     * Coordinate epoch (date for which the specified coordinates represented this point).
94
     */
95
    protected ?DateTimeImmutable $epoch;
96
97 1458
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
98
    {
99 1458
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
100
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
101
        }
102
103 1458
        if ($crs instanceof Geographic2D && $height !== null) {
104 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
105
        }
106
107 1449
        if ($crs instanceof Geographic3D && $height === null) {
108 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
109
        }
110
111 1440
        $this->crs = $crs;
112
113 1440
        $latitude = $this->normaliseLatitude($latitude);
114 1440
        $longitude = $this->normaliseLongitude($longitude);
115
116 1440
        $this->latitude = Angle::convert($latitude, $this->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
117 1440
        $this->longitude = Angle::convert($longitude, $this->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
118
119 1440
        if ($height) {
120 180
            $this->height = Length::convert($height, $this->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
121
        } else {
122 1332
            $this->height = null;
123
        }
124
125 1440
        if ($epoch instanceof DateTime) {
126 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
127
        }
128 1440
        $this->epoch = $epoch;
129 1440
    }
130
131
    /**
132
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
133
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
134
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
135
     */
136 1458
    public static function create(Angle $latitude, Angle $longitude, ?Length $height = null, Geographic $crs, ?DateTimeInterface $epoch = null): self
137
    {
138 1458
        return new static($latitude, $longitude, $height, $crs, $epoch);
139
    }
140
141 747
    public function getLatitude(): Angle
142
    {
143 747
        return $this->latitude;
144
    }
145
146 729
    public function getLongitude(): Angle
147
    {
148 729
        return $this->longitude;
149
    }
150
151 333
    public function getHeight(): ?Length
152
    {
153 333
        return $this->height;
154
    }
155
156 1440
    public function getCRS(): Geographic
157
    {
158 1440
        return $this->crs;
159
    }
160
161 171
    public function getCoordinateEpoch(): ?DateTimeImmutable
162
    {
163 171
        return $this->epoch;
164
    }
165
166 1440
    protected function normaliseLatitude(Angle $latitude): Angle
167
    {
168 1440
        if ($latitude->asDegrees()->getValue() > 90) {
169
            return new Degree(90);
170
        }
171 1440
        if ($latitude->asDegrees()->getValue() < -90) {
172
            return new Degree(-90);
173
        }
174
175 1440
        return $latitude;
176
    }
177
178 1440
    protected function normaliseLongitude(Angle $longitude): Angle
179
    {
180 1440
        while ($longitude->asDegrees()->getValue() > 180) {
181 9
            $longitude = $longitude->subtract(new Degree(360));
182
        }
183 1440
        while ($longitude->asDegrees()->getValue() <= -180) {
184
            $longitude = $longitude->add(new Degree(360));
185
        }
186
187 1440
        return $longitude;
188
    }
189
190
    /**
191
     * Calculate surface distance between two points.
192
     */
193 153
    public function calculateDistance(Point $to): Length
194
    {
195
        try {
196 153
            if ($to instanceof ConvertiblePoint) {
197 144
                $to = $to->convert($this->crs);
198
            }
199
        } finally {
200 153
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
201 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
202
            }
203
204
            /* @var GeographicPoint $to */
205 144
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
206
        }
207
    }
208
209 36
    public function __toString(): string
210
    {
211 36
        $values = [];
212 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
213 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
214 36
                $values[] = $this->latitude;
215 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
216 36
                $values[] = $this->longitude;
217 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
218 9
                $values[] = $this->height;
219
            } else {
220
                throw new UnknownAxisException(); // @codeCoverageIgnore
221
            }
222
        }
223
224 36
        return '(' . implode(', ', $values) . ')';
225
    }
226
227
    /**
228
     * Geographic/geocentric conversions
229
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
230
     * 9636 to form a geographic to geographic transformation.
231
     */
232 9
    public function geographicGeocentric(
233
        Geocentric $to
234
    ): GeocentricPoint {
235 9
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
236 9
        $asGeocentric = $geographicValue->asGeocentricValue();
237
238 9
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
239
    }
240
241
    /**
242
     * Coordinate Frame rotation (geog2D/geog3D domain)
243
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
244
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
245
     * between other CRS types.
246
     */
247 63
    public function coordinateFrameRotation(
248
        Geographic $to,
249
        Length $xAxisTranslation,
250
        Length $yAxisTranslation,
251
        Length $zAxisTranslation,
252
        Angle $xAxisRotation,
253
        Angle $yAxisRotation,
254
        Angle $zAxisRotation,
255
        Scale $scaleDifference
256
    ): self {
257 63
        return $this->coordinateFrameMolodenskyBadekas(
258 63
            $to,
259
            $xAxisTranslation,
260
            $yAxisTranslation,
261
            $zAxisTranslation,
262
            $xAxisRotation,
263
            $yAxisRotation,
264
            $zAxisRotation,
265
            $scaleDifference,
266 63
            new Metre(0),
267 63
            new Metre(0),
268 63
            new Metre(0)
269
        );
270
    }
271
272
    /**
273
     * Molodensky-Badekas (CF geog2D/geog3D domain)
274
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
275
     * opposite rotation convention in geographic 2D domain.
276
     */
277 81
    public function coordinateFrameMolodenskyBadekas(
278
        Geographic $to,
279
        Length $xAxisTranslation,
280
        Length $yAxisTranslation,
281
        Length $zAxisTranslation,
282
        Angle $xAxisRotation,
283
        Angle $yAxisRotation,
284
        Angle $zAxisRotation,
285
        Scale $scaleDifference,
286
        Length $ordinate1OfEvaluationPoint,
287
        Length $ordinate2OfEvaluationPoint,
288
        Length $ordinate3OfEvaluationPoint
289
    ): self {
290 81
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
291 81
        $asGeocentric = $geographicValue->asGeocentricValue();
292
293 81
        $xs = $asGeocentric->getX()->asMetres()->getValue();
294 81
        $ys = $asGeocentric->getY()->asMetres()->getValue();
295 81
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
296 81
        $tx = $xAxisTranslation->asMetres()->getValue();
297 81
        $ty = $yAxisTranslation->asMetres()->getValue();
298 81
        $tz = $zAxisTranslation->asMetres()->getValue();
299 81
        $rx = $xAxisRotation->asRadians()->getValue();
300 81
        $ry = $yAxisRotation->asRadians()->getValue();
301 81
        $rz = $zAxisRotation->asRadians()->getValue();
302 81
        $M = 1 + $scaleDifference->asUnity()->getValue();
303 81
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
304 81
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
305 81
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
306
307 81
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
308 81
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
309 81
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
310 81
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
311 81
        $newGeographic = $newGeocentric->asGeographicValue();
312
313 81
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
314
    }
315
316
    /**
317
     * Position Vector transformation (geog2D/geog3D domain)
318
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
319
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
320
     * operating between other CRS types.
321
     */
322 180
    public function positionVectorTransformation(
323
        Geographic $to,
324
        Length $xAxisTranslation,
325
        Length $yAxisTranslation,
326
        Length $zAxisTranslation,
327
        Angle $xAxisRotation,
328
        Angle $yAxisRotation,
329
        Angle $zAxisRotation,
330
        Scale $scaleDifference
331
    ): self {
332 180
        return $this->positionVectorMolodenskyBadekas(
333 180
            $to,
334
            $xAxisTranslation,
335
            $yAxisTranslation,
336
            $zAxisTranslation,
337
            $xAxisRotation,
338
            $yAxisRotation,
339
            $zAxisRotation,
340
            $scaleDifference,
341 180
            new Metre(0),
342 180
            new Metre(0),
343 180
            new Metre(0)
344
        );
345
    }
346
347
    /**
348
     * Molodensky-Badekas (PV geog2D/geog3D domain)
349
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
350
     * rotation in geographic 2D/3D domain.
351
     */
352 198
    public function positionVectorMolodenskyBadekas(
353
        Geographic $to,
354
        Length $xAxisTranslation,
355
        Length $yAxisTranslation,
356
        Length $zAxisTranslation,
357
        Angle $xAxisRotation,
358
        Angle $yAxisRotation,
359
        Angle $zAxisRotation,
360
        Scale $scaleDifference,
361
        Length $ordinate1OfEvaluationPoint,
362
        Length $ordinate2OfEvaluationPoint,
363
        Length $ordinate3OfEvaluationPoint
364
    ): self {
365 198
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
366 198
        $asGeocentric = $geographicValue->asGeocentricValue();
367
368 198
        $xs = $asGeocentric->getX()->asMetres()->getValue();
369 198
        $ys = $asGeocentric->getY()->asMetres()->getValue();
370 198
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
371 198
        $tx = $xAxisTranslation->asMetres()->getValue();
372 198
        $ty = $yAxisTranslation->asMetres()->getValue();
373 198
        $tz = $zAxisTranslation->asMetres()->getValue();
374 198
        $rx = $xAxisRotation->asRadians()->getValue();
375 198
        $ry = $yAxisRotation->asRadians()->getValue();
376 198
        $rz = $zAxisRotation->asRadians()->getValue();
377 198
        $M = 1 + $scaleDifference->asUnity()->getValue();
378 198
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
379 198
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
380 198
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
381
382 198
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
383 198
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
384 198
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
385 198
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
386 198
        $newGeographic = $newGeocentric->asGeographicValue();
387
388 198
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
389
    }
390
391
    /**
392
     * Geocentric translations
393
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
394
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
395
     * operating between other CRSs types.
396
     */
397 72
    public function geocentricTranslation(
398
        Geographic $to,
399
        Length $xAxisTranslation,
400
        Length $yAxisTranslation,
401
        Length $zAxisTranslation
402
    ): self {
403 72
        return $this->positionVectorTransformation(
404 72
            $to,
405
            $xAxisTranslation,
406
            $yAxisTranslation,
407
            $zAxisTranslation,
408 72
            new Radian(0),
409 72
            new Radian(0),
410 72
            new Radian(0),
411 72
            new Unity(0)
412
        );
413
    }
414
415
    /**
416
     * Abridged Molodensky
417
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
418
     * systems, modelled as a set of geocentric translations.
419
     */
420 18
    public function abridgedMolodensky(
421
        Geographic $to,
422
        Length $xAxisTranslation,
423
        Length $yAxisTranslation,
424
        Length $zAxisTranslation,
425
        Length $differenceInSemiMajorAxis,
426
        Scale $differenceInFlattening
427
    ): self {
428 18
        $latitude = $this->latitude->asRadians()->getValue();
429 18
        $longitude = $this->longitude->asRadians()->getValue();
430 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
431 18
        $tx = $xAxisTranslation->asMetres()->getValue();
432 18
        $ty = $yAxisTranslation->asMetres()->getValue();
433 18
        $tz = $zAxisTranslation->asMetres()->getValue();
434 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
435 18
        $df = $differenceInFlattening->asUnity()->getValue();
436
437 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
438 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
439
440 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
441 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
442
443 18
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
444
445 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($this->crs->getDatum()->getEllipsoid()->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
446 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
447 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
448
449 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
450 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
451 18
        $toHeight = $fromHeight + $dHeight;
452
453 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
454
    }
455
456
    /**
457
     * Molodensky
458
     * See Abridged Molodensky.
459
     */
460 18
    public function molodensky(
461
        Geographic $to,
462
        Length $xAxisTranslation,
463
        Length $yAxisTranslation,
464
        Length $zAxisTranslation,
465
        Length $differenceInSemiMajorAxis,
466
        Scale $differenceInFlattening
467
    ): self {
468 18
        $latitude = $this->latitude->asRadians()->getValue();
469 18
        $longitude = $this->longitude->asRadians()->getValue();
470 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
471 18
        $tx = $xAxisTranslation->asMetres()->getValue();
472 18
        $ty = $yAxisTranslation->asMetres()->getValue();
473 18
        $tz = $zAxisTranslation->asMetres()->getValue();
474 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
475 18
        $df = $differenceInFlattening->asUnity()->getValue();
476
477 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
478 18
        $b = $this->crs->getDatum()->getEllipsoid()->getSemiMinorAxis()->asMetres()->getValue();
479 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
480
481 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
482 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
483
484 18
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
485
486 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
487 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
488 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
489
490 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
491 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
492 18
        $toHeight = $fromHeight + $dHeight;
493
494 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
495
    }
496
497
    /**
498
     * Albers Equal Area.
499
     */
500 18
    public function albersEqualArea(
501
        Projected $to,
502
        Angle $latitudeOfFalseOrigin,
503
        Angle $longitudeOfFalseOrigin,
504
        Angle $latitudeOf1stStandardParallel,
505
        Angle $latitudeOf2ndStandardParallel,
506
        Length $eastingAtFalseOrigin,
507
        Length $northingAtFalseOrigin
508
    ): ProjectedPoint {
509 18
        $latitude = $this->latitude->asRadians()->getValue();
510 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
511 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
512 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
513 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
514 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
515 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
516 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
517
518 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
519 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
520
521 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
522 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
523 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
524 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
525
526 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
527 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
528 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
529 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
530 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
531
532 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
533 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
534
535 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
536
    }
537
538
    /**
539
     * American Polyconic.
540
     */
541 9
    public function americanPolyconic(
542
        Projected $to,
543
        Angle $latitudeOfNaturalOrigin,
544
        Angle $longitudeOfNaturalOrigin,
545
        Length $falseEasting,
546
        Length $falseNorthing
547
    ): ProjectedPoint {
548 9
        $latitude = $this->latitude->asRadians()->getValue();
549 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
550 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
551 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
552 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
553 9
        $e4 = $e ** 4;
554 9
        $e6 = $e ** 6;
555
556 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
557 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
558
559 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
560
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
561
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
562
        } else {
563 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
564 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
565
566 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
567 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
568
        }
569
570 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
571
    }
572
573
    /**
574
     * Bonne.
575
     */
576 9
    public function bonne(
577
        Projected $to,
578
        Angle $latitudeOfNaturalOrigin,
579
        Angle $longitudeOfNaturalOrigin,
580
        Length $falseEasting,
581
        Length $falseNorthing
582
    ): ProjectedPoint {
583 9
        $latitude = $this->latitude->asRadians()->getValue();
584 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
585 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
586 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
587 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
588 9
        $e4 = $e ** 4;
589 9
        $e6 = $e ** 6;
590
591 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
592 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
593
594 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
595 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
596
597 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
598 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
599
600 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
601 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
602
603 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
604
    }
605
606
    /**
607
     * Bonne South Orientated.
608
     */
609 9
    public function bonneSouthOrientated(
610
        Projected $to,
611
        Angle $latitudeOfNaturalOrigin,
612
        Angle $longitudeOfNaturalOrigin,
613
        Length $falseEasting,
614
        Length $falseNorthing
615
    ): ProjectedPoint {
616 9
        $latitude = $this->latitude->asRadians()->getValue();
617 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
618 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
619 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
620 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
621 9
        $e4 = $e ** 4;
622 9
        $e6 = $e ** 6;
623
624 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
625 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
626
627 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
628 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
629
630 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
631 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
632
633 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
634 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
635
636 9
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
637
    }
638
639
    /**
640
     * Cassini-Soldner.
641
     */
642 9
    public function cassiniSoldner(
643
        Projected $to,
644
        Angle $latitudeOfNaturalOrigin,
645
        Angle $longitudeOfNaturalOrigin,
646
        Length $falseEasting,
647
        Length $falseNorthing
648
    ): ProjectedPoint {
649 9
        $latitude = $this->latitude->asRadians()->getValue();
650 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
651 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
652 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
653 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
654 9
        $e4 = $e ** 4;
655 9
        $e6 = $e ** 6;
656
657 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
658 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
659
660 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
661 9
        $T = tan($latitude) ** 2;
662 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
663 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
664 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
665
666 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
667 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
668
669 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
670
    }
671
672
    /**
673
     * Hyperbolic Cassini-Soldner.
674
     */
675 18
    public function hyperbolicCassiniSoldner(
676
        Projected $to,
677
        Angle $latitudeOfNaturalOrigin,
678
        Angle $longitudeOfNaturalOrigin,
679
        Length $falseEasting,
680
        Length $falseNorthing
681
    ): ProjectedPoint {
682 18
        $latitude = $this->latitude->asRadians()->getValue();
683 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
684 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
685 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
686 18
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
687 18
        $e4 = $e ** 4;
688 18
        $e6 = $e ** 6;
689
690 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
691 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
692
693 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
694 18
        $T = tan($latitude) ** 2;
695 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
696 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
697 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
698 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
699
700 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
701 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
702
703 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
704
    }
705
706
    /**
707
     * Colombia Urban.
708
     */
709 9
    public function columbiaUrban(
710
        Projected $to,
711
        Angle $latitudeOfNaturalOrigin,
712
        Angle $longitudeOfNaturalOrigin,
713
        Length $falseEasting,
714
        Length $falseNorthing,
715
        Length $projectionPlaneOriginHeight
716
    ): ProjectedPoint {
717 9
        $latitude = $this->latitude->asRadians()->getValue();
718 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
719 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
720 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
721 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
722
723 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
724 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
725
726 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
727 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
728
729 9
        $A = 1 + $heightOrigin / $nuOrigin;
730 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
731 9
        $G = 1 + $heightOrigin / $rhoMid;
732
733 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
734 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
735
736 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
737
    }
738
739
    /**
740
     * Equal Earth.
741
     */
742 9
    public function equalEarth(
743
        Projected $to,
744
        Angle $longitudeOfNaturalOrigin,
745
        Length $falseEasting,
746
        Length $falseNorthing
747
    ): ProjectedPoint {
748 9
        $latitude = $this->latitude->asRadians()->getValue();
749 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
750 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
751 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
752
753 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
754 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
755 9
        $beta = self::asin($q / $qP);
756 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
757 9
        $Rq = $a * sqrt($qP / 2);
758
759 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
760 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
761
762 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
763
    }
764
765
    /**
766
     * Equidistant Cylindrical
767
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
768
     */
769 9
    public function equidistantCylindrical(
770
        Projected $to,
771
        Angle $latitudeOf1stStandardParallel,
772
        Angle $longitudeOfNaturalOrigin,
773
        Length $falseEasting,
774
        Length $falseNorthing
775
    ): ProjectedPoint {
776 9
        $latitude = $this->latitude->asRadians()->getValue();
777 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
778 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
779 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
780 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
781 9
        $e4 = $e ** 4;
782 9
        $e6 = $e ** 6;
783 9
        $e8 = $e ** 8;
784 9
        $e10 = $e ** 10;
785 9
        $e12 = $e ** 12;
786 9
        $e14 = $e ** 14;
787
788 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
789
790
        $M = $a * (
791 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
792 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
793 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
794 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
795 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
796 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
797 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
798 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
799
        );
800
801 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
802 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
803
804 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
805
    }
806
807
    /**
808
     * Guam Projection
809
     * Simplified form of Oblique Azimuthal Equidistant projection method.
810
     */
811 9
    public function guamProjection(
812
        Projected $to,
813
        Angle $latitudeOfNaturalOrigin,
814
        Angle $longitudeOfNaturalOrigin,
815
        Length $falseEasting,
816
        Length $falseNorthing
817
    ): ProjectedPoint {
818 9
        $latitude = $this->latitude->asRadians()->getValue();
819 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
820 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
821 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
822 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
823 9
        $e4 = $e ** 4;
824 9
        $e6 = $e ** 6;
825
826 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
827 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
828 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
829
830 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
831 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
832
833 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
834
    }
835
836
    /**
837
     * Krovak.
838
     */
839 36
    public function krovak(
840
        Projected $to,
841
        Angle $latitudeOfProjectionCentre,
842
        Angle $longitudeOfOrigin,
843
        Angle $coLatitudeOfConeAxis,
844
        Angle $latitudeOfPseudoStandardParallel,
845
        Scale $scaleFactorOnPseudoStandardParallel,
846
        Length $falseEasting,
847
        Length $falseNorthing
848
    ): ProjectedPoint {
849 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
850 36
        $latitude = $this->latitude->asRadians()->getValue();
851 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
852 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
853 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
854 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
855 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
856 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
857 36
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
858 36
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
859 36
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
860
861 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
862 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
863 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
864 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
865 36
        $n = sin($latitudeP);
866 36
        $rO = $kP * $A / tan($latitudeP);
867
868 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
869 36
        $V = $B * ($longitudeO - $longitude);
870 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
871 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
872 36
        $theta = $n * $D;
873 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
874 36
        $X = $r * cos($theta);
875 36
        $Y = $r * sin($theta);
876
877 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
878 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
879
880 36
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
881
    }
882
883
    /**
884
     * Krovak Modified
885
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
886
     * to be a map projection.
887
     */
888 18
    public function krovakModified(
889
        Projected $to,
890
        Angle $latitudeOfProjectionCentre,
891
        Angle $longitudeOfOrigin,
892
        Angle $coLatitudeOfConeAxis,
893
        Angle $latitudeOfPseudoStandardParallel,
894
        Scale $scaleFactorOnPseudoStandardParallel,
895
        Length $falseEasting,
896
        Length $falseNorthing,
897
        Length $ordinate1OfEvaluationPoint,
898
        Length $ordinate2OfEvaluationPoint,
899
        Coefficient $C1,
900
        Coefficient $C2,
901
        Coefficient $C3,
902
        Coefficient $C4,
903
        Coefficient $C5,
904
        Coefficient $C6,
905
        Coefficient $C7,
906
        Coefficient $C8,
907
        Coefficient $C9,
908
        Coefficient $C10
909
    ): ProjectedPoint {
910 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
911
912 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
913 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
914 18
        $c1 = $C1->asUnity()->getValue();
915 18
        $c2 = $C2->asUnity()->getValue();
916 18
        $c3 = $C3->asUnity()->getValue();
917 18
        $c4 = $C4->asUnity()->getValue();
918 18
        $c5 = $C5->asUnity()->getValue();
919 18
        $c6 = $C6->asUnity()->getValue();
920 18
        $c7 = $C7->asUnity()->getValue();
921 18
        $c8 = $C8->asUnity()->getValue();
922 18
        $c9 = $C9->asUnity()->getValue();
923 18
        $c10 = $C10->asUnity()->getValue();
924
925 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
926 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
927
928 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
929 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
930
931 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
932 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
933
934 18
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
935
    }
936
937
    /**
938
     * Lambert Azimuthal Equal Area
939
     * This is the ellipsoidal form of the projection.
940
     */
941 9
    public function lambertAzimuthalEqualArea(
942
        Projected $to,
943
        Angle $latitudeOfNaturalOrigin,
944
        Angle $longitudeOfNaturalOrigin,
945
        Length $falseEasting,
946
        Length $falseNorthing
947
    ): ProjectedPoint {
948 9
        $latitude = $this->latitude->asRadians()->getValue();
949 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
950 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
951 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
952 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
953
954 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
955 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
956 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
957 9
        $beta = self::asin($q / $qP);
958 9
        $betaO = self::asin($qO / $qP);
959 9
        $Rq = $a * sqrt($qP / 2);
960 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
961 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
962
963 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
964 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
965
966 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
967
    }
968
969
    /**
970
     * Lambert Azimuthal Equal Area (Spherical)
971
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
972
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
973
     * methods.
974
     */
975 9
    public function lambertAzimuthalEqualAreaSpherical(
976
        Projected $to,
977
        Angle $latitudeOfNaturalOrigin,
978
        Angle $longitudeOfNaturalOrigin,
979
        Length $falseEasting,
980
        Length $falseNorthing
981
    ): ProjectedPoint {
982 9
        $latitude = $this->latitude->asRadians()->getValue();
983 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
984 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
985
986 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
987
988 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
989 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
990
991 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
992
    }
993
994
    /**
995
     * Lambert Conic Conformal (1SP).
996
     */
997 9
    public function lambertConicConformal1SP(
998
        Projected $to,
999
        Angle $latitudeOfNaturalOrigin,
1000
        Angle $longitudeOfNaturalOrigin,
1001
        Scale $scaleFactorAtNaturalOrigin,
1002
        Length $falseEasting,
1003
        Length $falseNorthing
1004
    ): ProjectedPoint {
1005 9
        $latitude = $this->latitude->asRadians()->getValue();
1006 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1007 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1008 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1009 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1010 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1011
1012 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1013 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1014 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1015 9
        $n = sin($latitudeOrigin);
1016 9
        $F = $mO / ($n * $tO ** $n);
1017 9
        $rO = $a * $F * $tO ** $n * $kO;
1018 9
        $r = $a * $F * $t ** $n * $kO;
1019 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1020
1021 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1022 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1023
1024 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1025
    }
1026
1027
    /**
1028
     * Lambert Conic Conformal (1SP) Variant B.
1029
     */
1030
    public function lambertConicConformal1SPVariantB(
1031
        Projected $to,
1032
        Angle $latitudeOfNaturalOrigin,
1033
        Scale $scaleFactorAtNaturalOrigin,
1034
        Angle $latitudeOfFalseOrigin,
1035
        Angle $longitudeOfFalseOrigin,
1036
        Length $eastingAtFalseOrigin,
1037
        Length $northingAtFalseOrigin
1038
    ): ProjectedPoint {
1039
        $latitude = $this->latitude->asRadians()->getValue();
1040
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1041
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1042
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1043
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1044
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1045
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1046
1047
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1048
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1049
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1050
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1051
        $n = sin($latitudeNaturalOrigin);
1052
        $F = $mO / ($n * $tO ** $n);
1053
        $rF = $a * $F * $tF ** $n * $kO;
1054
        $r = $a * $F * $t ** $n * $kO;
1055
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1056
1057
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1058
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1059
1060
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1061
    }
1062
1063
    /**
1064
     * Lambert Conic Conformal (2SP Belgium)
1065
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1066
     * with appropriately modified parameter values.
1067
     */
1068 9
    public function lambertConicConformal2SPBelgium(
1069
        Projected $to,
1070
        Angle $latitudeOfFalseOrigin,
1071
        Angle $longitudeOfFalseOrigin,
1072
        Angle $latitudeOf1stStandardParallel,
1073
        Angle $latitudeOf2ndStandardParallel,
1074
        Length $eastingAtFalseOrigin,
1075
        Length $northingAtFalseOrigin
1076
    ): ProjectedPoint {
1077 9
        $latitude = $this->latitude->asRadians()->getValue();
1078 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1079 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1080 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1081 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1082 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1083 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1084
1085 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1086 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1087 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1088 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1089 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1090 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1091 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1092 9
        $F = $m1 / ($n * $t1 ** $n);
1093 9
        $r = $a * $F * $t ** $n;
1094 9
        $rF = $a * $F * $tF ** $n;
1095 9
        if (is_nan($rF)) {
1096 9
            $rF = 0;
1097
        }
1098 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1099
1100 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1101 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1102
1103 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1104
    }
1105
1106
    /**
1107
     * Lambert Conic Conformal (2SP Michigan).
1108
     */
1109 9
    public function lambertConicConformal2SPMichigan(
1110
        Projected $to,
1111
        Angle $latitudeOfFalseOrigin,
1112
        Angle $longitudeOfFalseOrigin,
1113
        Angle $latitudeOf1stStandardParallel,
1114
        Angle $latitudeOf2ndStandardParallel,
1115
        Length $eastingAtFalseOrigin,
1116
        Length $northingAtFalseOrigin,
1117
        Scale $ellipsoidScalingFactor
1118
    ): ProjectedPoint {
1119 9
        $latitude = $this->latitude->asRadians()->getValue();
1120 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1121 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1122 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1123 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1124 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1125 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1126 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1127
1128 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1129 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1130 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1131 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1132 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1133 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1134 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1135 9
        $F = $m1 / ($n * $t1 ** $n);
1136 9
        $r = $a * $K * $F * $t ** $n;
1137 9
        $rF = $a * $K * $F * $tF ** $n;
1138 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1139
1140 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1141 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1142
1143 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1144
    }
1145
1146
    /**
1147
     * Lambert Conic Conformal (2SP).
1148
     */
1149 9
    public function lambertConicConformal2SP(
1150
        Projected $to,
1151
        Angle $latitudeOfFalseOrigin,
1152
        Angle $longitudeOfFalseOrigin,
1153
        Angle $latitudeOf1stStandardParallel,
1154
        Angle $latitudeOf2ndStandardParallel,
1155
        Length $eastingAtFalseOrigin,
1156
        Length $northingAtFalseOrigin
1157
    ): ProjectedPoint {
1158 9
        $latitude = $this->latitude->asRadians()->getValue();
1159 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1160 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1161 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1162 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1163 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1164 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1165
1166 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1167 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1168 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1169 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1170 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1171 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1172 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1173 9
        $F = $m1 / ($n * $t1 ** $n);
1174 9
        $r = $a * $F * $t ** $n;
1175 9
        $rF = $a * $F * $tF ** $n;
1176 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1177
1178 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1179 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1180
1181 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1182
    }
1183
1184
    /**
1185
     * Lambert Conic Conformal (West Orientated).
1186
     */
1187
    public function lambertConicConformalWestOrientated(
1188
        Projected $to,
1189
        Angle $latitudeOfNaturalOrigin,
1190
        Angle $longitudeOfNaturalOrigin,
1191
        Scale $scaleFactorAtNaturalOrigin,
1192
        Length $falseEasting,
1193
        Length $falseNorthing
1194
    ): ProjectedPoint {
1195
        $latitude = $this->latitude->asRadians()->getValue();
1196
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1197
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1198
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1199
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1200
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1201
1202
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1203
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1204
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1205
        $n = sin($latitudeOrigin);
1206
        $F = $mO / ($n * $tO ** $n);
1207
        $rO = $a * $F * $tO ** $n ** $kO;
1208
        $r = $a * $F * $t ** $n ** $kO;
1209
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1210
1211
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1212
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1213
1214
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1215
    }
1216
1217
    /**
1218
     * Lambert Conic Near-Conformal
1219
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1220
     * series expansion of the projection formulae.
1221
     */
1222 9
    public function lambertConicNearConformal(
1223
        Projected $to,
1224
        Angle $latitudeOfNaturalOrigin,
1225
        Angle $longitudeOfNaturalOrigin,
1226
        Scale $scaleFactorAtNaturalOrigin,
1227
        Length $falseEasting,
1228
        Length $falseNorthing
1229
    ): ProjectedPoint {
1230 9
        $latitude = $this->latitude->asRadians()->getValue();
1231 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1232 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1233 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1234 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1235 9
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1236
1237 9
        $n = $f / (2 - $f);
1238 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1239 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1240 9
        $A = 1 / (6 * $rhoO * $nuO);
1241 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1242 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1243 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1244 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1245 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1246 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1247 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1248 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1249 9
        $m = $s - $sO;
1250 9
        $M = $kO * ($m + $A * $m ** 3);
1251 9
        $r = $rO - $M;
1252 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1253
1254 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1255 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1256
1257 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1258
    }
1259
1260
    /**
1261
     * Lambert Cylindrical Equal Area
1262
     * This is the ellipsoidal form of the projection.
1263
     */
1264 9
    public function lambertCylindricalEqualArea(
1265
        Projected $to,
1266
        Angle $latitudeOf1stStandardParallel,
1267
        Angle $longitudeOfNaturalOrigin,
1268
        Length $falseEasting,
1269
        Length $falseNorthing
1270
    ): ProjectedPoint {
1271 9
        $latitude = $this->latitude->asRadians()->getValue();
1272 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1273 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1274 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1275 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1276
1277 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1278 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1279
1280 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1281 9
        $y = $a * $q / (2 * $k);
1282
1283 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1284 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1285
1286 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1287
    }
1288
1289
    /**
1290
     * Modified Azimuthal Equidistant
1291
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1292
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1293
     */
1294 9
    public function modifiedAzimuthalEquidistant(
1295
        Projected $to,
1296
        Angle $latitudeOfNaturalOrigin,
1297
        Angle $longitudeOfNaturalOrigin,
1298
        Length $falseEasting,
1299
        Length $falseNorthing
1300
    ): ProjectedPoint {
1301 9
        $latitude = $this->latitude->asRadians()->getValue();
1302 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1303 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1304 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1305 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1306
1307 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1308 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1309 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1310 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1311 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1312 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1313
1314 9
        if (sin($alpha) === 0.0) {
1315
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1316
        } else {
1317 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1318
        }
1319
1320 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1321
1322 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1323 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1324
1325 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1326
    }
1327
1328
    /**
1329
     * Oblique Stereographic
1330
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1331
     * Projections - A Working Manual" by John P. Snyder.
1332
     */
1333 9
    public function obliqueStereographic(
1334
        Projected $to,
1335
        Angle $latitudeOfNaturalOrigin,
1336
        Angle $longitudeOfNaturalOrigin,
1337
        Scale $scaleFactorAtNaturalOrigin,
1338
        Length $falseEasting,
1339
        Length $falseNorthing
1340
    ): ProjectedPoint {
1341 9
        $latitude = $this->latitude->asRadians()->getValue();
1342 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1343 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1344 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1345 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1346 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1347 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1348
1349 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1350 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1351 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1352
1353 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1354 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1355 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1356 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1357 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1358 9
        $w2 = $c * $w1;
1359 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1360
1361 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1362
1363 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1364 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1365 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1366 9
        $chi = self::asin(($w - 1) / ($w + 1));
1367
1368 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1369
1370 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1371 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1372
1373 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1374
    }
1375
1376
    /**
1377
     * Polar Stereographic (variant A)
1378
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1379
     */
1380 9
    public function polarStereographicVariantA(
1381
        Projected $to,
1382
        Angle $latitudeOfNaturalOrigin,
1383
        Angle $longitudeOfNaturalOrigin,
1384
        Scale $scaleFactorAtNaturalOrigin,
1385
        Length $falseEasting,
1386
        Length $falseNorthing
1387
    ): ProjectedPoint {
1388 9
        $latitude = $this->latitude->asRadians()->getValue();
1389 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1390 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1391 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1392 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1393
1394 9
        if ($latitudeOrigin < 0) {
1395
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1396
        } else {
1397 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1398
        }
1399 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1400
1401 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1402 9
        $dE = $rho * sin($theta);
1403 9
        $dN = $rho * cos($theta);
1404
1405 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1406 9
        if ($latitudeOrigin < 0) {
1407
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1408
        } else {
1409 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1410
        }
1411
1412 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1413
    }
1414
1415
    /**
1416
     * Polar Stereographic (variant B).
1417
     */
1418 9
    public function polarStereographicVariantB(
1419
        Projected $to,
1420
        Angle $latitudeOfStandardParallel,
1421
        Angle $longitudeOfOrigin,
1422
        Length $falseEasting,
1423
        Length $falseNorthing
1424
    ): ProjectedPoint {
1425 9
        $latitude = $this->latitude->asRadians()->getValue();
1426 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1427 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1428 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1429 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1430
1431 9
        if ($firstStandardParallel < 0) {
1432 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1433 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1434
        } else {
1435
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1436
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1437
        }
1438 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1439 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1440
1441 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1442
1443 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1444 9
        $dE = $rho * sin($theta);
1445 9
        $dN = $rho * cos($theta);
1446
1447 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1448 9
        if ($firstStandardParallel < 0) {
1449 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1450
        } else {
1451
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1452
        }
1453
1454 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1455
    }
1456
1457
    /**
1458
     * Polar Stereographic (variant C).
1459
     */
1460 9
    public function polarStereographicVariantC(
1461
        Projected $to,
1462
        Angle $latitudeOfStandardParallel,
1463
        Angle $longitudeOfOrigin,
1464
        Length $eastingAtFalseOrigin,
1465
        Length $northingAtFalseOrigin
1466
    ): ProjectedPoint {
1467 9
        $latitude = $this->latitude->asRadians()->getValue();
1468 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1469 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1470 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1471 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1472
1473 9
        if ($firstStandardParallel < 0) {
1474 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1475 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1476
        } else {
1477
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1478
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1479
        }
1480 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1481
1482 9
        $rhoF = $a * $mF;
1483 9
        $rho = $rhoF * $t / $tF;
1484
1485 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1486 9
        $dE = $rho * sin($theta);
1487 9
        $dN = $rho * cos($theta);
1488
1489 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1490 9
        if ($firstStandardParallel < 0) {
1491 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1492
        } else {
1493
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1494
        }
1495
1496 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1497
    }
1498
1499
    /**
1500
     * Popular Visualisation Pseudo Mercator
1501
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1502
     */
1503 9
    public function popularVisualisationPseudoMercator(
1504
        Projected $to,
1505
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1505
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1506
        Angle $longitudeOfNaturalOrigin,
1507
        Length $falseEasting,
1508
        Length $falseNorthing
1509
    ): ProjectedPoint {
1510 9
        $latitude = $this->latitude->asRadians()->getValue();
1511 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1512
1513 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1514 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1515
1516 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1517
    }
1518
1519
    /**
1520
     * Mercator (variant A)
1521
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1522
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1523
     * completeness in CRS labelling.
1524
     */
1525 18
    public function mercatorVariantA(
1526
        Projected $to,
1527
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1527
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1528
        Angle $longitudeOfNaturalOrigin,
1529
        Scale $scaleFactorAtNaturalOrigin,
1530
        Length $falseEasting,
1531
        Length $falseNorthing
1532
    ): ProjectedPoint {
1533 18
        $latitude = $this->latitude->asRadians()->getValue();
1534 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1535
1536 18
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1537 18
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1538
1539 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1540 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1541
1542 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1543
    }
1544
1545
    /**
1546
     * Mercator (variant B)
1547
     * Used for most nautical charts.
1548
     */
1549 9
    public function mercatorVariantB(
1550
        Projected $to,
1551
        Angle $latitudeOf1stStandardParallel,
1552
        Angle $longitudeOfNaturalOrigin,
1553
        Length $falseEasting,
1554
        Length $falseNorthing
1555
    ): ProjectedPoint {
1556 9
        $latitude = $this->latitude->asRadians()->getValue();
1557 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1558 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1559 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1560 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1561
1562 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1563
1564 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1565 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1566
1567 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1568
    }
1569
1570
    /**
1571
     * Longitude rotation
1572
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1573
     * value to the longitude value of the point in the source system.
1574
     */
1575 9
    public function longitudeRotation(
1576
        Geographic $to,
1577
        Angle $longitudeOffset
1578
    ): self {
1579 9
        $newLongitude = $this->longitude->add($longitudeOffset);
1580
1581 9
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1582
    }
1583
1584
    /**
1585
     * Hotine Oblique Mercator (variant A).
1586
     */
1587 9
    public function obliqueMercatorHotineVariantA(
1588
        Projected $to,
1589
        Angle $latitudeOfProjectionCentre,
1590
        Angle $longitudeOfProjectionCentre,
1591
        Angle $azimuthOfInitialLine,
1592
        Angle $angleFromRectifiedToSkewGrid,
1593
        Scale $scaleFactorOnInitialLine,
1594
        Length $falseEasting,
1595
        Length $falseNorthing
1596
    ): ProjectedPoint {
1597 9
        $latitude = $this->latitude->asRadians()->getValue();
1598 9
        $longitude = $this->longitude->asRadians()->getValue();
1599 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1600 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1601 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1602 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1603 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1604 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1605 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1606 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1607
1608 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1609 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1610 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1611 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1612 9
        $DD = max(1, $D ** 2);
1613 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1614 9
        $H = $F * ($tO) ** $B;
1615 9
        $G = ($F - 1 / $F) / 2;
1616 9
        $gammaO = self::asin(sin($alphaC) / $D);
1617 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1618
1619 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1620 9
        $Q = $H / $t ** $B;
1621 9
        $S = ($Q - 1 / $Q) / 2;
1622 9
        $T = ($Q + 1 / $Q) / 2;
1623 9
        $V = sin($B * ($longitude - $lonO));
1624 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1625 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1626 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1627
1628 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1629 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1630
1631 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1632
    }
1633
1634
    /**
1635
     * Hotine Oblique Mercator (variant B).
1636
     */
1637 9
    public function obliqueMercatorHotineVariantB(
1638
        Projected $to,
1639
        Angle $latitudeOfProjectionCentre,
1640
        Angle $longitudeOfProjectionCentre,
1641
        Angle $azimuthOfInitialLine,
1642
        Angle $angleFromRectifiedToSkewGrid,
1643
        Scale $scaleFactorOnInitialLine,
1644
        Length $eastingAtProjectionCentre,
1645
        Length $northingAtProjectionCentre
1646
    ): ProjectedPoint {
1647 9
        $latitude = $this->latitude->asRadians()->getValue();
1648 9
        $longitude = $this->longitude->asRadians()->getValue();
1649 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1650 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1651 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1652 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1653 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1654 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1655 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1656 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1657
1658 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1659 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1660 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1661 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1662 9
        $DD = max(1, $D ** 2);
1663 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1664 9
        $H = $F * ($tO) ** $B;
1665 9
        $G = ($F - 1 / $F) / 2;
1666 9
        $gammaO = self::asin(sin($alphaC) / $D);
1667 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1668 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1669 9
        if ($alphaC === M_PI / 2) {
1670
            $uC = $A * ($lonC - $lonO);
1671
        } else {
1672 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1673
        }
1674
1675 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1676 9
        $Q = $H / $t ** $B;
1677 9
        $S = ($Q - 1 / $Q) / 2;
1678 9
        $T = ($Q + 1 / $Q) / 2;
1679 9
        $V = sin($B * ($longitude - $lonO));
1680 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1681 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1682
1683 9
        if ($alphaC === M_PI / 2) {
1684
            if ($longitude === $lonC) {
1685
                $u = 0;
1686
            } else {
1687
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1688
            }
1689
        } else {
1690 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1691
        }
1692
1693 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1694 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1695
1696 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1697
    }
1698
1699
    /**
1700
     * Laborde Oblique Mercator.
1701
     */
1702 9
    public function obliqueMercatorLaborde(
1703
        Projected $to,
1704
        Angle $latitudeOfProjectionCentre,
1705
        Angle $longitudeOfProjectionCentre,
1706
        Angle $azimuthOfInitialLine,
1707
        Scale $scaleFactorOnInitialLine,
1708
        Length $falseEasting,
1709
        Length $falseNorthing
1710
    ): ProjectedPoint {
1711 9
        $latitude = $this->latitude->asRadians()->getValue();
1712 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1713 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1714 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1715 9
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1716 9
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1717 9
        $e2 = $this->crs->getDatum()->getEllipsoid()->getEccentricitySquared();
1718
1719 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1720 9
        $latS = self::asin(sin($latC) / $B);
1721 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1722 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1723
1724 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1725 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1726 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1727 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1728 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1729 9
        $W = cos($P) * sin($L);
1730 9
        $d = hypot($U, $V);
1731 9
        if ($d === 0.0) {
1732
            $LPrime = 0;
1733
            $PPrime = static::sign($W) * M_PI / 2;
1734
        } else {
1735 9
            $LPrime = 2 * atan($V / ($U + $d));
1736 9
            $PPrime = atan($W / $d);
1737
        }
1738 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1739 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1740
1741 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1742 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1743
1744 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1745
    }
1746
1747
    /**
1748
     * Transverse Mercator.
1749
     */
1750 108
    public function transverseMercator(
1751
        Projected $to,
1752
        Angle $latitudeOfNaturalOrigin,
1753
        Angle $longitudeOfNaturalOrigin,
1754
        Scale $scaleFactorAtNaturalOrigin,
1755
        Length $falseEasting,
1756
        Length $falseNorthing
1757
    ): ProjectedPoint {
1758 108
        $latitude = $this->latitude->asRadians()->getValue();
1759 108
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1760 108
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1761 108
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1762 108
        $e = $this->crs->getDatum()->getEllipsoid()->getEccentricity();
1763 108
        $f = $this->crs->getDatum()->getEllipsoid()->getInverseFlattening();
1764
1765 108
        $n = $f / (2 - $f);
1766 108
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1767
1768 108
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1769 108
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1770 108
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1771 108
        $h4 = (49561 / 161280) * $n ** 4;
1772
1773 108
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1774 81
            $mO = 0;
1775 27
        } elseif ($latitudeOrigin === M_PI / 2) {
1776
            $mO = $B * M_PI / 2;
1777 27
        } elseif ($latitudeOrigin === -M_PI / 2) {
1778
            $mO = $B * -M_PI / 2;
1779
        } else {
1780 27
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1781 27
            $betaO = atan(sinh($qO));
1782 27
            $xiO0 = self::asin(sin($betaO));
1783 27
            $xiO1 = $h1 * sin(2 * $xiO0);
1784 27
            $xiO2 = $h2 * sin(4 * $xiO0);
1785 27
            $xiO3 = $h3 * sin(6 * $xiO0);
1786 27
            $xiO4 = $h4 * sin(8 * $xiO0);
1787 27
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1788 27
            $mO = $B * $xiO;
1789
        }
1790
1791 108
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1792 108
        $beta = atan(sinh($Q));
1793 108
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1794 108
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1795 108
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1796 108
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1797 108
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1798 108
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1799 108
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1800 108
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1801 108
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1802 108
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1803 108
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1804 108
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1805
1806 108
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1807 108
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1808
1809 108
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1810
    }
1811
1812
    /**
1813
     * Transverse Mercator Zoned Grid System
1814
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1815
     * each zone.
1816
     */
1817 36
    public function transverseMercatorZonedGrid(
1818
        Projected $to,
1819
        Angle $latitudeOfNaturalOrigin,
1820
        Angle $initialLongitude,
1821
        Angle $zoneWidth,
1822
        Scale $scaleFactorAtNaturalOrigin,
1823
        Length $falseEasting,
1824
        Length $falseNorthing
1825
    ): ProjectedPoint {
1826 36
        $W = $zoneWidth->asDegrees()->getValue();
1827 36
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (360 / $W) + 1;
1828
1829 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1830 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1831
1832 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1833
    }
1834
1835
    /**
1836
     * New Zealand Map Grid.
1837
     */
1838 27
    public function newZealandMapGrid(
1839
        Projected $to,
1840
        Angle $latitudeOfNaturalOrigin,
1841
        Angle $longitudeOfNaturalOrigin,
1842
        Length $falseEasting,
1843
        Length $falseNorthing
1844
    ): ProjectedPoint {
1845 27
        $a = $this->crs->getDatum()->getEllipsoid()->getSemiMajorAxis()->asMetres()->getValue();
1846
1847 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1848 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1849
1850 27
        $deltaPsi = 0;
1851 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1852 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1853 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1854 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1855 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1856 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1857 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1858 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1859 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1860 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1861
1862 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1863
1864 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1865 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1866 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1867 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1868 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1869 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1870 27
        $z = new ComplexNumber(0, 0);
1871 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1872 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1873 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1874 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1875 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1876 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1877
1878 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1879 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1880
1881 27
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1882
    }
1883
1884
    /**
1885
     * Madrid to ED50 polynomial.
1886
     */
1887 9
    public function madridToED50Polynomial(
1888
        Geographic2D $to,
1889
        Scale $A0,
1890
        Scale $A1,
1891
        Scale $A2,
1892
        Scale $A3,
1893
        Angle $B00,
1894
        Scale $B0,
1895
        Scale $B1,
1896
        Scale $B2,
1897
        Scale $B3
1898
    ): self {
1899 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1900 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1901
1902 9
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1903
    }
1904
1905
    /**
1906
     * Geographic3D to 2D conversion.
1907
     */
1908 45
    public function threeDToTwoD(
1909
        Geographic $to
1910
    ): self {
1911 45
        if ($to instanceof Geographic2D) {
1912 45
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1913
        }
1914
1915
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1916
    }
1917
1918
    /**
1919
     * Geographic2D offsets.
1920
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1921
     * coordinate values of the point in the source system.
1922
     */
1923 9
    public function geographic2DOffsets(
1924
        Geographic $to,
1925
        Angle $latitudeOffset,
1926
        Angle $longitudeOffset
1927
    ): self {
1928 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1929 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1930
1931 9
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1932
    }
1933
1934
    /*
1935
     * Geographic2D with Height Offsets.
1936
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1937
     * coordinate values of the point in the source system.
1938
     */
1939
    public function geographic2DWithHeightOffsets(
1940
        Compound $to,
1941
        Angle $latitudeOffset,
1942
        Angle $longitudeOffset,
1943
        Length $geoidUndulation
1944
    ): CompoundPoint {
1945
        $toLatitude = $this->latitude->add($latitudeOffset);
1946
        $toLongitude = $this->longitude->add($longitudeOffset);
1947
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1947
        /** @scrutinizer ignore-call */ 
1948
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1948
1949
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
1950
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1950
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
1951
1952
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
1953
    }
1954
1955
    /**
1956
     * General polynomial.
1957
     * @param Coefficient[] $powerCoefficients
1958
     */
1959 18
    public function generalPolynomial(
1960
        Geographic $to,
1961
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1962
        Angle $ordinate2OfEvaluationPointInSourceCRS,
1963
        Angle $ordinate1OfEvaluationPointInTargetCRS,
1964
        Angle $ordinate2OfEvaluationPointInTargetCRS,
1965
        Scale $scalingFactorForSourceCRSCoordDifferences,
1966
        Scale $scalingFactorForTargetCRSCoordDifferences,
1967
        Scale $A0,
1968
        Scale $B0,
1969
        array $powerCoefficients
1970
    ): self {
1971 18
        $xs = $this->latitude->getValue();
1972 18
        $ys = $this->longitude->getValue();
1973
1974 18
        $t = $this->generalPolynomialUnitless(
1975 18
            $xs,
1976
            $ys,
1977
            $ordinate1OfEvaluationPointInSourceCRS,
1978
            $ordinate2OfEvaluationPointInSourceCRS,
1979
            $ordinate1OfEvaluationPointInTargetCRS,
1980
            $ordinate2OfEvaluationPointInTargetCRS,
1981
            $scalingFactorForSourceCRSCoordDifferences,
1982
            $scalingFactorForTargetCRSCoordDifferences,
1983
            $A0,
1984
            $B0,
1985
            $powerCoefficients
1986
        );
1987
1988 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
1989 18
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1990 18
            $xtUnit = Angle::EPSG_DEGREE;
1991
        }
1992 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
1993 18
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
1994 18
            $ytUnit = Angle::EPSG_DEGREE;
1995
        }
1996
1997 18
        return static::create(
1998 18
            Angle::makeUnit($t['xt'], $xtUnit),
1999 18
            Angle::makeUnit($t['yt'], $ytUnit),
2000 18
            $this->height,
2001
            $to,
2002 18
            $this->epoch
2003
        );
2004
    }
2005
2006
    /**
2007
     * Reversible polynomial.
2008
     * @param Coefficient[] $powerCoefficients
2009
     */
2010 36
    public function reversiblePolynomial(
2011
        Geographic $to,
2012
        Angle $ordinate1OfEvaluationPoint,
2013
        Angle $ordinate2OfEvaluationPoint,
2014
        Scale $scalingFactorForCoordDifferences,
2015
        Scale $A0,
2016
        Scale $B0,
2017
        $powerCoefficients
2018
    ): self {
2019 36
        $xs = $this->latitude->getValue();
2020 36
        $ys = $this->longitude->getValue();
2021
2022 36
        $t = $this->reversiblePolynomialUnitless(
2023 36
            $xs,
2024
            $ys,
2025
            $ordinate1OfEvaluationPoint,
2026
            $ordinate2OfEvaluationPoint,
2027
            $scalingFactorForCoordDifferences,
2028
            $A0,
2029
            $B0,
2030
            $powerCoefficients
2031
        );
2032
2033 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2034 36
        if ($xtUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2035 36
            $xtUnit = Angle::EPSG_DEGREE;
2036
        }
2037 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2038 36
        if ($ytUnit === Angle::EPSG_DEGREE_SUPPLIER_TO_DEFINE_REPRESENTATION) {
2039 36
            $ytUnit = Angle::EPSG_DEGREE;
2040
        }
2041
2042 36
        return static::create(
2043 36
            Angle::makeUnit($t['xt'], $xtUnit),
2044 36
            Angle::makeUnit($t['yt'], $ytUnit),
2045 36
            $this->height,
2046
            $to,
2047 36
            $this->epoch
2048
        );
2049
    }
2050
2051
    /**
2052
     * Axis Order Reversal.
2053
     */
2054
    public function axisReversal(
2055
        Geographic $to
2056
    ): self {
2057
        // axes are read in from the CRS, this is a book-keeping adjustment only
2058
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2059
    }
2060
2061
    /**
2062
     * Ordnance Survey National Transformation
2063
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2064
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2065
     */
2066
    public function OSTN15(
2067
        Projected $to,
2068
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2069
    ): ProjectedPoint {
2070
        $etrs89NationalGrid = new Projected(
2071
            'ETRS89 / National Grid',
2072
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2073
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2074
            $to->getBoundingArea()
2075
        );
2076
2077
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2078
2079
        return $eastingAndNorthingDifferenceFile->applyForwardAdjustment($projected);
2080
    }
2081
2082
    /**
2083
     * NADCON5.
2084
     * Geodetic transformation operating on geographic coordinate differences by bi-quadratic interpolation.  Input
2085
     * expects longitudes to be positive east in range 0-360° (0° = Greenwich).
2086
     */
2087
    public function NADCON5(
2088
        Geographic $to,
2089
        NADCON5Grid $latitudeDifferenceFile,
2090
        NADCON5Grid $longitudeDifferenceFile,
2091
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile = null,
2092
        bool $inReverse
2093
    ): self {
2094
        /*
2095
         * Ideally most of this logic (especially reverse case) would be in the NADCON5Grid class like the other grids,
2096
         * but NADCON5 uses different files for latitude/longitude/height that need to be combined at runtime so that
2097
         * isn't possible.
2098
         */
2099
        if (!$inReverse) {
2100
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($this));
2101
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($this));
2102
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($this)) : null;
2103
2104
            return self::create($this->latitude->add($latitudeAdjustment), $this->longitude->add($longitudeAdjustment), $heightAdjustment ? $this->height->add($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2105
        }
2106
2107
        $iteration = $this;
2108
2109
        do {
2110
            $prevIteration = $iteration;
2111
            $latitudeAdjustment = new ArcSecond($latitudeDifferenceFile->getForwardAdjustment($iteration));
2112
            $longitudeAdjustment = new ArcSecond($longitudeDifferenceFile->getForwardAdjustment($iteration));
2113
            $heightAdjustment = $this->getHeight() && $ellipsoidalHeightDifferenceFile ? new Metre($ellipsoidalHeightDifferenceFile->getForwardAdjustment($iteration)) : null;
2114
            $iteration = self::create($this->latitude->subtract($latitudeAdjustment), $this->longitude->subtract($longitudeAdjustment), $heightAdjustment ? $this->height->subtract($heightAdjustment) : null, $to, $this->getCoordinateEpoch());
2115
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
0 ignored issues
show
Bug introduced by
The method subtract() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2115
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->/** @scrutinizer ignore-call */ subtract($prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
Bug introduced by
It seems like $prevIteration->height can also be of type null; however, parameter $unit of PHPCoord\UnitOfMeasure\Length\Length::subtract() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2115
        } while (abs($iteration->latitude->subtract($prevIteration->latitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && abs($iteration->longitude->subtract($prevIteration->longitude)->getValue()) > self::ITERATION_CONVERGENCE_GRID && ($this->height === null || abs($iteration->height->subtract(/** @scrutinizer ignore-type */ $prevIteration->height)->getValue()) > self::ITERATION_CONVERGENCE_GRID));
Loading history...
2116
2117
        return $iteration;
2118
    }
2119
2120 351
    public function asGeographicValue(): GeographicValue
2121
    {
2122 351
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2123
    }
2124
2125 18
    public function asUTMPoint(): UTMPoint
2126
    {
2127 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2128 18
        $latitudeOfNaturalOrigin = new Degree(0);
2129 18
        $initialLongitude = new Degree(-180);
2130 18
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2131 18
        $falseEasting = new Metre(500000);
2132 18
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2133 18
        $Z = ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2134 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2135
2136 18
        $projectedCRS = new Projected(
2137 18
            'UTM/' . $this->crs->getSRID(),
2138 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2139 18
            $this->crs->getDatum(),
2140 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter
2141
        );
2142
2143 18
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2144
2145 18
        return new UTMPoint($asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->crs, $this->epoch);
2146
    }
2147
}
2148