Passed
Push — extents ( 6d8774...01b6e3 )
by Doug
61:12
created

geographic3DToGravityHeightOSGM15()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 18
Code Lines 11

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 9
CRAP Score 1

Importance

Changes 0
Metric Value
cc 1
eloc 11
nc 1
nop 2
dl 0
loc 18
ccs 9
cts 9
cp 1
crap 1
rs 9.9
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use function count;
19
use DateTime;
20
use DateTimeImmutable;
21
use DateTimeInterface;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
34
use PHPCoord\CoordinateOperation\GeographicGrid;
35
use PHPCoord\CoordinateOperation\GeographicValue;
36
use PHPCoord\CoordinateOperation\NADCON5Grid;
37
use PHPCoord\CoordinateOperation\NADCON5Grids;
38
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
39
use PHPCoord\CoordinateReferenceSystem\Compound;
40
use PHPCoord\CoordinateReferenceSystem\Geocentric;
41
use PHPCoord\CoordinateReferenceSystem\Geographic;
42
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
43
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
44
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
45
use PHPCoord\CoordinateReferenceSystem\Vertical;
46
use PHPCoord\CoordinateSystem\Axis;
47
use PHPCoord\CoordinateSystem\Cartesian;
48
use PHPCoord\Datum\Datum;
49
use PHPCoord\Datum\Ellipsoid;
50
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
51
use PHPCoord\Exception\UnknownAxisException;
52
use PHPCoord\Geometry\BoundingArea;
53
use PHPCoord\UnitOfMeasure\Angle\Angle;
54
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
55
use PHPCoord\UnitOfMeasure\Angle\Degree;
56
use PHPCoord\UnitOfMeasure\Angle\Radian;
57
use PHPCoord\UnitOfMeasure\Length\Length;
58
use PHPCoord\UnitOfMeasure\Length\Metre;
59
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
60
use PHPCoord\UnitOfMeasure\Scale\Scale;
61
use PHPCoord\UnitOfMeasure\Scale\Unity;
62
use function sin;
63
use function sinh;
64
use function sqrt;
65
use function str_replace;
66
use function tan;
67
68
/**
69
 * Coordinate representing a point on an ellipsoid.
70
 */
71
class GeographicPoint extends Point implements ConvertiblePoint
72
{
73
    use AutoConversion;
74
75
    /**
76
     * Latitude.
77
     */
78
    protected Angle $latitude;
79
80
    /**
81
     * Longitude.
82
     */
83
    protected Angle $longitude;
84
85
    /**
86
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
87
     */
88
    protected ?Length $height;
89
90
    /**
91
     * Coordinate reference system.
92
     */
93
    protected Geographic2D|Geographic3D $crs;
94
95
    /**
96
     * Coordinate epoch (date for which the specified coordinates represented this point).
97
     */
98
    protected ?DateTimeImmutable $epoch;
99
100
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
101 62151
    {
102
        if ($crs instanceof Geographic2D && $height !== null) {
103 62151
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
104
        }
105
106
        if ($crs instanceof Geographic3D && $height === null) {
107 62151
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
108 9
        }
109
110
        $this->crs = $crs;
111 62142
112 9
        $latitude = $this->normaliseLatitude($latitude);
113
        $longitude = $this->normaliseLongitude($longitude);
114
115 62133
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
116
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
117 62133
118 62133
        if ($height) {
119
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
120 62133
        } else {
121 62133
            $this->height = null;
122
        }
123 62133
124 4582
        if ($epoch instanceof DateTime) {
125
            $epoch = DateTimeImmutable::createFromMutable($epoch);
126 60241
        }
127
        $this->epoch = $epoch;
128
    }
129 62133
130 57056
    /**
131
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
132 62133
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
133 62133
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
134
     */
135
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
136
    {
137
        return new static($crs, $latitude, $longitude, $height, $epoch);
138
    }
139
140 62151
    public function getLatitude(): Angle
141
    {
142 62151
        return $this->latitude;
143
    }
144
145 59109
    public function getLongitude(): Angle
146
    {
147 59109
        return $this->longitude;
148
    }
149
150 59064
    public function getHeight(): ?Length
151
    {
152 59064
        return $this->height;
153
    }
154
155 57328
    public function getCRS(): Geographic
156
    {
157 57328
        return $this->crs;
158
    }
159
160 60489
    public function getCoordinateEpoch(): ?DateTimeImmutable
161
    {
162 60489
        return $this->epoch;
163
    }
164
165 190
    protected function normaliseLatitude(Angle $latitude): Angle
166
    {
167 190
        if ($latitude->asDegrees()->getValue() > 90) {
168
            return new Degree(90);
169
        }
170 62133
        if ($latitude->asDegrees()->getValue() < -90) {
171
            return new Degree(-90);
172 62133
        }
173
174
        return $latitude;
175 62133
    }
176
177
    protected function normaliseLongitude(Angle $longitude): Angle
178
    {
179 62133
        while ($longitude->asDegrees()->getValue() > 180) {
180
            $longitude = $longitude->subtract(new Degree(360));
181
        }
182 62133
        while ($longitude->asDegrees()->getValue() <= -180) {
183
            $longitude = $longitude->add(new Degree(360));
184 62133
        }
185 99
186
        return $longitude;
187 62133
    }
188 111
189
    /**
190
     * Calculate surface distance between two points.
191 62133
     */
192
    public function calculateDistance(Point $to): Length
193
    {
194
        try {
195
            if ($to instanceof ConvertiblePoint) {
196
                $to = $to->convert($this->crs);
197 153
            }
198
        } finally {
199
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
200 153
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
201 144
            }
202
203
            /* @var GeographicPoint $to */
204 153
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
205 9
        }
206
    }
207
208
    public function __toString(): string
209 144
    {
210
        $values = [];
211
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
212
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
213 36
                $values[] = $this->latitude;
214
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
215 36
                $values[] = $this->longitude;
216 36
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
217 36
                $values[] = $this->height;
218 36
            } else {
219 36
                throw new UnknownAxisException(); // @codeCoverageIgnore
220 36
            }
221 9
        }
222 9
223
        return '(' . implode(', ', $values) . ')';
224
    }
225
226
    /**
227
     * Geographic/geocentric conversions
228 36
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
229
     * 9636 to form a geographic to geographic transformation.
230
     */
231
    public function geographicGeocentric(
232
        Geocentric $to
233
    ): GeocentricPoint {
234
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
235
        $asGeocentric = $geographicValue->asGeocentricValue();
236 1705
237
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
238
    }
239 1705
240 1705
    /**
241
     * Coordinate Frame rotation (geog2D/geog3D domain)
242 1705
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
243
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
244
     * between other CRS types.
245
     */
246
    public function coordinateFrameRotation(
247
        Geographic2D|Geographic3D $to,
248
        Length $xAxisTranslation,
249
        Length $yAxisTranslation,
250
        Length $zAxisTranslation,
251 1884
        Angle $xAxisRotation,
252
        Angle $yAxisRotation,
253
        Angle $zAxisRotation,
254
        Scale $scaleDifference
255
    ): self {
256
        return $this->coordinateFrameMolodenskyBadekas(
257
            $to,
258
            $xAxisTranslation,
259
            $yAxisTranslation,
260
            $zAxisTranslation,
261 1884
            $xAxisRotation,
262 1884
            $yAxisRotation,
263
            $zAxisRotation,
264
            $scaleDifference,
265
            new Metre(0),
266
            new Metre(0),
267
            new Metre(0)
268
        );
269
    }
270 1884
271 1884
    /**
272 1884
     * Molodensky-Badekas (CF geog2D/geog3D domain)
273
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
274
     * opposite rotation convention in geographic 2D domain.
275
     */
276
    public function coordinateFrameMolodenskyBadekas(
277
        Geographic2D|Geographic3D $to,
278
        Length $xAxisTranslation,
279
        Length $yAxisTranslation,
280
        Length $zAxisTranslation,
281 2163
        Angle $xAxisRotation,
282
        Angle $yAxisRotation,
283
        Angle $zAxisRotation,
284
        Scale $scaleDifference,
285
        Length $ordinate1OfEvaluationPoint,
286
        Length $ordinate2OfEvaluationPoint,
287
        Length $ordinate3OfEvaluationPoint
288
    ): self {
289
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
290
        $asGeocentric = $geographicValue->asGeocentricValue();
291
292
        $xs = $asGeocentric->getX()->asMetres()->getValue();
293
        $ys = $asGeocentric->getY()->asMetres()->getValue();
294 2163
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
295 2163
        $tx = $xAxisTranslation->asMetres()->getValue();
296
        $ty = $yAxisTranslation->asMetres()->getValue();
297 2163
        $tz = $zAxisTranslation->asMetres()->getValue();
298 2163
        $rx = $xAxisRotation->asRadians()->getValue();
299 2163
        $ry = $yAxisRotation->asRadians()->getValue();
300 2163
        $rz = $zAxisRotation->asRadians()->getValue();
301 2163
        $M = 1 + $scaleDifference->asUnity()->getValue();
302 2163
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
303 2163
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
304 2163
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
305 2163
306 2163
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
307 2163
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
308 2163
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
309 2163
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
310
        $newGeographic = $newGeocentric->asGeographicValue();
311 2163
312 2163
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
313 2163
    }
314 2163
315 2163
    /**
316
     * Position Vector transformation (geog2D/geog3D domain)
317 2163
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
318
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
319
     * operating between other CRS types.
320
     */
321
    public function positionVectorTransformation(
322
        Geographic2D|Geographic3D $to,
323
        Length $xAxisTranslation,
324
        Length $yAxisTranslation,
325
        Length $zAxisTranslation,
326 8447
        Angle $xAxisRotation,
327
        Angle $yAxisRotation,
328
        Angle $zAxisRotation,
329
        Scale $scaleDifference
330
    ): self {
331
        return $this->positionVectorMolodenskyBadekas(
332
            $to,
333
            $xAxisTranslation,
334
            $yAxisTranslation,
335
            $zAxisTranslation,
336 8447
            $xAxisRotation,
337 8447
            $yAxisRotation,
338
            $zAxisRotation,
339
            $scaleDifference,
340
            new Metre(0),
341
            new Metre(0),
342
            new Metre(0)
343
        );
344
    }
345 8447
346 8447
    /**
347 8447
     * Molodensky-Badekas (PV geog2D/geog3D domain)
348
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
349
     * rotation in geographic 2D/3D domain.
350
     */
351
    public function positionVectorMolodenskyBadekas(
352
        Geographic2D|Geographic3D $to,
353
        Length $xAxisTranslation,
354
        Length $yAxisTranslation,
355
        Length $zAxisTranslation,
356 8483
        Angle $xAxisRotation,
357
        Angle $yAxisRotation,
358
        Angle $zAxisRotation,
359
        Scale $scaleDifference,
360
        Length $ordinate1OfEvaluationPoint,
361
        Length $ordinate2OfEvaluationPoint,
362
        Length $ordinate3OfEvaluationPoint
363
    ): self {
364
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
365
        $asGeocentric = $geographicValue->asGeocentricValue();
366
367
        $xs = $asGeocentric->getX()->asMetres()->getValue();
368
        $ys = $asGeocentric->getY()->asMetres()->getValue();
369 8483
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
370 8483
        $tx = $xAxisTranslation->asMetres()->getValue();
371
        $ty = $yAxisTranslation->asMetres()->getValue();
372 8483
        $tz = $zAxisTranslation->asMetres()->getValue();
373 8483
        $rx = $xAxisRotation->asRadians()->getValue();
374 8483
        $ry = $yAxisRotation->asRadians()->getValue();
375 8483
        $rz = $zAxisRotation->asRadians()->getValue();
376 8483
        $M = 1 + $scaleDifference->asUnity()->getValue();
377 8483
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
378 8483
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
379 8483
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
380 8483
381 8483
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
382 8483
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
383 8483
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
384 8483
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
385
        $newGeographic = $newGeocentric->asGeographicValue();
386 8483
387 8483
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
388 8483
    }
389 8483
390 8483
    /**
391
     * Geocentric translations
392 8483
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
393
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
394
     * operating between other CRSs types.
395
     */
396
    public function geocentricTranslation(
397
        Geographic2D|Geographic3D $to,
398
        Length $xAxisTranslation,
399
        Length $yAxisTranslation,
400
        Length $zAxisTranslation
401 6787
    ): self {
402
        return $this->positionVectorTransformation(
403
            $to,
404
            $xAxisTranslation,
405
            $yAxisTranslation,
406
            $zAxisTranslation,
407 6787
            new Radian(0),
408 6787
            new Radian(0),
409
            new Radian(0),
410
            new Unity(0)
411
        );
412 6787
    }
413 6787
414 6787
    /**
415 6787
     * Abridged Molodensky
416
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
417
     * systems, modelled as a set of geocentric translations.
418
     */
419
    public function abridgedMolodensky(
420
        Geographic2D|Geographic3D $to,
421
        Length $xAxisTranslation,
422
        Length $yAxisTranslation,
423
        Length $zAxisTranslation,
424 18
        Length $differenceInSemiMajorAxis,
425
        Scale $differenceInFlattening
426
    ): self {
427
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
428
        $latitude = $this->latitude->asRadians()->getValue();
429
        $longitude = $this->longitude->asRadians()->getValue();
430
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
431
        $tx = $xAxisTranslation->asMetres()->getValue();
432 18
        $ty = $yAxisTranslation->asMetres()->getValue();
433 18
        $tz = $zAxisTranslation->asMetres()->getValue();
434 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
435 18
        $df = $differenceInFlattening->asUnity()->getValue();
436 18
437 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
438 18
        $e2 = $ellipsoid->getEccentricitySquared();
439 18
440 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
441
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
442 18
443 18
        $f = $ellipsoid->getFlattening();
444
445 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
446 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
447
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
448 18
449
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
450 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
451 18
        $toHeight = $fromHeight + $dHeight;
452 18
453
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
454 18
    }
455 18
456 18
    /**
457
     * Molodensky
458 18
     * See Abridged Molodensky.
459
     */
460
    public function molodensky(
461
        Geographic2D|Geographic3D $to,
462
        Length $xAxisTranslation,
463
        Length $yAxisTranslation,
464
        Length $zAxisTranslation,
465 18
        Length $differenceInSemiMajorAxis,
466
        Scale $differenceInFlattening
467
    ): self {
468
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
469
        $latitude = $this->latitude->asRadians()->getValue();
470
        $longitude = $this->longitude->asRadians()->getValue();
471
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
472
        $tx = $xAxisTranslation->asMetres()->getValue();
473 18
        $ty = $yAxisTranslation->asMetres()->getValue();
474 18
        $tz = $zAxisTranslation->asMetres()->getValue();
475 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
476 18
        $df = $differenceInFlattening->asUnity()->getValue();
477 18
478 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
479 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
480 18
        $e2 = $ellipsoid->getEccentricitySquared();
481 18
482
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
483 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
484 18
485 18
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
486
487 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
488 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
489
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
490 18
491
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
492 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
493 18
        $toHeight = $fromHeight + $dHeight;
494 18
495
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
496 18
    }
497 18
498 18
    /**
499
     * Albers Equal Area.
500 18
     */
501
    public function albersEqualArea(
502
        Projected $to,
503
        Angle $latitudeOfFalseOrigin,
504
        Angle $longitudeOfFalseOrigin,
505
        Angle $latitudeOf1stStandardParallel,
506 342
        Angle $latitudeOf2ndStandardParallel,
507
        Length $eastingAtFalseOrigin,
508
        Length $northingAtFalseOrigin
509
    ): ProjectedPoint {
510
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
511
        $latitude = $this->latitude->asRadians()->getValue();
512
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
513
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
514
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
515 342
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
516 342
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
517 342
        $e = $ellipsoid->getEccentricity();
518 342
        $e2 = $ellipsoid->getEccentricitySquared();
519 342
520 342
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
521 342
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
522 342
523 342
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
524
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
525 342
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
526 342
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
527
528 342
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
529 342
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
530 342
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
531 342
        $rho = $a * sqrt($C - $n * $alpha) / $n;
532
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
533 342
534 342
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
535 342
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
536 342
537 342
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
538
    }
539 342
540 342
    /**
541
     * American Polyconic.
542 342
     */
543
    public function americanPolyconic(
544
        Projected $to,
545
        Angle $latitudeOfNaturalOrigin,
546
        Angle $longitudeOfNaturalOrigin,
547
        Length $falseEasting,
548 45
        Length $falseNorthing
549
    ): ProjectedPoint {
550
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
551
        $latitude = $this->latitude->asRadians()->getValue();
552
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
553
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
554
        $e = $ellipsoid->getEccentricity();
555 45
        $e2 = $ellipsoid->getEccentricitySquared();
556 45
        $e4 = $e ** 4;
557 45
        $e6 = $e ** 6;
558 45
559 45
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
560 45
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
561 45
562 45
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
563
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
564 45
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
565 45
        } else {
566
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
567 45
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
568
569
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
570
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
571 45
        }
572 45
573
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
574 45
    }
575 45
576
    /**
577
     * Bonne.
578 45
     */
579
    public function bonne(
580
        Projected $to,
581
        Angle $latitudeOfNaturalOrigin,
582
        Angle $longitudeOfNaturalOrigin,
583
        Length $falseEasting,
584 9
        Length $falseNorthing
585
    ): ProjectedPoint {
586
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
587
        $latitude = $this->latitude->asRadians()->getValue();
588
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
589
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
590
        $e = $ellipsoid->getEccentricity();
591 9
        $e2 = $ellipsoid->getEccentricitySquared();
592 9
        $e4 = $e ** 4;
593 9
        $e6 = $e ** 6;
594 9
595 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
596 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
597 9
598 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
599
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
600 9
601 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
602
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
603 9
604 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
605
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
606 9
607 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
608
    }
609 9
610 9
    /**
611
     * Bonne South Orientated.
612 9
     */
613
    public function bonneSouthOrientated(
614
        Projected $to,
615
        Angle $latitudeOfNaturalOrigin,
616
        Angle $longitudeOfNaturalOrigin,
617
        Length $falseEasting,
618 27
        Length $falseNorthing
619
    ): ProjectedPoint {
620
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
621
        $latitude = $this->latitude->asRadians()->getValue();
622
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
623
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
624
        $e = $ellipsoid->getEccentricity();
625 27
        $e2 = $ellipsoid->getEccentricitySquared();
626 27
        $e4 = $e ** 4;
627 27
        $e6 = $e ** 6;
628 27
629 27
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
630 27
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
631 27
632 27
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
633
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
634 27
635 27
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
636
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
637 27
638 27
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
639
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
640 27
641 27
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
642
    }
643 27
644 27
    /**
645
     * Cassini-Soldner.
646 27
     */
647
    public function cassiniSoldner(
648
        Projected $to,
649
        Angle $latitudeOfNaturalOrigin,
650
        Angle $longitudeOfNaturalOrigin,
651
        Length $falseEasting,
652 279
        Length $falseNorthing
653
    ): ProjectedPoint {
654
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
655
        $latitude = $this->latitude->asRadians()->getValue();
656
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
657
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
658
        $e = $ellipsoid->getEccentricity();
659 279
        $e2 = $ellipsoid->getEccentricitySquared();
660 279
        $e4 = $e ** 4;
661 279
        $e6 = $e ** 6;
662 279
663 279
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
664 279
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
665 279
666 279
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
667
        $T = tan($latitude) ** 2;
668 279
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
669 279
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
670
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
671 279
672 279
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
673 279
        $northing = $falseNorthing->asMetres()->getValue() + $X;
674 279
675 279
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
676
    }
677 279
678 279
    /**
679
     * Hyperbolic Cassini-Soldner.
680 279
     */
681
    public function hyperbolicCassiniSoldner(
682
        Projected $to,
683
        Angle $latitudeOfNaturalOrigin,
684
        Angle $longitudeOfNaturalOrigin,
685
        Length $falseEasting,
686 27
        Length $falseNorthing
687
    ): ProjectedPoint {
688
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
689
        $latitude = $this->latitude->asRadians()->getValue();
690
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
691
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
692
        $e = $ellipsoid->getEccentricity();
693 27
        $e2 = $ellipsoid->getEccentricitySquared();
694 27
        $e4 = $e ** 4;
695 27
        $e6 = $e ** 6;
696 27
697 27
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
698 27
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
699 27
700 27
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
701
        $T = tan($latitude) ** 2;
702 27
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
703 27
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
704
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
705 27
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
706 27
707 27
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
708 27
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
709 27
710 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
711
    }
712 27
713 27
    /**
714
     * Colombia Urban.
715 27
     */
716
    public function columbiaUrban(
717
        Projected $to,
718
        Angle $latitudeOfNaturalOrigin,
719
        Angle $longitudeOfNaturalOrigin,
720
        Length $falseEasting,
721 297
        Length $falseNorthing,
722
        Length $projectionPlaneOriginHeight
723
    ): ProjectedPoint {
724
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
725
        $latitude = $this->latitude->asRadians()->getValue();
726
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
727
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
728
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
729 297
        $e2 = $ellipsoid->getEccentricitySquared();
730 297
731 297
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
732 297
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
733 297
734 297
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
735
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
736 297
737 297
        $A = 1 + $heightOrigin / $nuOrigin;
738
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
739 297
        $G = 1 + $heightOrigin / $rhoMid;
740 297
741
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
742 297
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
743 297
744 297
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
745
    }
746 297
747 297
    /**
748
     * Equal Earth.
749 297
     */
750
    public function equalEarth(
751
        Projected $to,
752
        Angle $longitudeOfNaturalOrigin,
753
        Length $falseEasting,
754
        Length $falseNorthing
755 36
    ): ProjectedPoint {
756
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
757
        $latitude = $this->latitude->asRadians()->getValue();
758
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
759
        $e = $ellipsoid->getEccentricity();
760
        $e2 = $ellipsoid->getEccentricitySquared();
761 36
762 36
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
763 36
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
764 36
        $beta = self::asin($q / $qP);
765 36
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
766
        $Rq = $a * sqrt($qP / 2);
767 36
768 36
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
769 36
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
770 36
771 36
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
772
    }
773 36
774 36
    /**
775
     * Equidistant Cylindrical
776 36
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
777
     */
778
    public function equidistantCylindrical(
779
        Projected $to,
780
        Angle $latitudeOf1stStandardParallel,
781
        Angle $longitudeOfNaturalOrigin,
782
        Length $falseEasting,
783 18
        Length $falseNorthing
784
    ): ProjectedPoint {
785
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
786
        $latitude = $this->latitude->asRadians()->getValue();
787
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
788
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
789
        $e = $ellipsoid->getEccentricity();
790 18
        $e2 = $ellipsoid->getEccentricitySquared();
791 18
        $e4 = $e ** 4;
792 18
        $e6 = $e ** 6;
793 18
        $e8 = $e ** 8;
794 18
        $e10 = $e ** 10;
795 18
        $e12 = $e ** 12;
796 18
        $e14 = $e ** 14;
797 18
798 18
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
799 18
800 18
        $M = $a * (
801 18
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
802
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
803 18
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
804
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
805 18
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
806 18
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
807 18
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
808 18
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
809 18
        );
810 18
811 18
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
812 18
        $northing = $falseNorthing->asMetres()->getValue() + $M;
813 18
814
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
815
    }
816 18
817 18
    /**
818
     * Guam Projection
819 18
     * Simplified form of Oblique Azimuthal Equidistant projection method.
820
     */
821
    public function guamProjection(
822
        Projected $to,
823
        Angle $latitudeOfNaturalOrigin,
824
        Angle $longitudeOfNaturalOrigin,
825
        Length $falseEasting,
826 18
        Length $falseNorthing
827
    ): ProjectedPoint {
828
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
829
        $latitude = $this->latitude->asRadians()->getValue();
830
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
831
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
832
        $e = $ellipsoid->getEccentricity();
833 18
        $e2 = $ellipsoid->getEccentricitySquared();
834 18
        $e4 = $e ** 4;
835 18
        $e6 = $e ** 6;
836 18
837 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
838 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
839 18
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
840 18
841
        $easting = $falseEasting->asMetres()->getValue() + $x;
842 18
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
843 18
844 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
845
    }
846 18
847 18
    /**
848
     * Krovak.
849 18
     */
850
    public function krovak(
851
        Projected $to,
852
        Angle $latitudeOfProjectionCentre,
853
        Angle $longitudeOfOrigin,
854
        Angle $coLatitudeOfConeAxis,
855 126
        Angle $latitudeOfPseudoStandardParallel,
856
        Scale $scaleFactorOnPseudoStandardParallel,
857
        Length $falseEasting,
858
        Length $falseNorthing
859
    ): ProjectedPoint {
860
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
861
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
862
        $latitude = $this->latitude->asRadians()->getValue();
863
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
864
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
865 126
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
866 126
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
867 126
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
868 126
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
869 126
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
870 126
        $e = $ellipsoid->getEccentricity();
871 126
        $e2 = $ellipsoid->getEccentricitySquared();
872 126
873 126
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
874 126
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
875 126
        $upsilonO = self::asin(sin($latitudeC) / $B);
876 126
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
877
        $n = sin($latitudeP);
878 126
        $rO = $kP * $A / tan($latitudeP);
879 126
880 126
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
881 126
        $V = $B * ($longitudeO - $longitude);
882 126
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
883 126
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
884
        $theta = $n * $D;
885 126
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
886 126
        $X = $r * cos($theta);
887 126
        $Y = $r * sin($theta);
888 126
889 126
        $westing = $Y + $falseEasting->asMetres()->getValue();
890 126
        $southing = $X + $falseNorthing->asMetres()->getValue();
891 126
892 126
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
893
    }
894 126
895 126
    /**
896
     * Krovak Modified
897 126
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
898
     * to be a map projection.
899
     */
900
    public function krovakModified(
901
        Projected $to,
902
        Angle $latitudeOfProjectionCentre,
903
        Angle $longitudeOfOrigin,
904
        Angle $coLatitudeOfConeAxis,
905 54
        Angle $latitudeOfPseudoStandardParallel,
906
        Scale $scaleFactorOnPseudoStandardParallel,
907
        Length $falseEasting,
908
        Length $falseNorthing,
909
        Length $ordinate1OfEvaluationPoint,
910
        Length $ordinate2OfEvaluationPoint,
911
        Coefficient $C1,
912
        Coefficient $C2,
913
        Coefficient $C3,
914
        Coefficient $C4,
915
        Coefficient $C5,
916
        Coefficient $C6,
917
        Coefficient $C7,
918
        Coefficient $C8,
919
        Coefficient $C9,
920
        Coefficient $C10
921
    ): ProjectedPoint {
922
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
923
924
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
925
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
926
        $c1 = $C1->asUnity()->getValue();
927 54
        $c2 = $C2->asUnity()->getValue();
928
        $c3 = $C3->asUnity()->getValue();
929 54
        $c4 = $C4->asUnity()->getValue();
930 54
        $c5 = $C5->asUnity()->getValue();
931 54
        $c6 = $C6->asUnity()->getValue();
932 54
        $c7 = $C7->asUnity()->getValue();
933 54
        $c8 = $C8->asUnity()->getValue();
934 54
        $c9 = $C9->asUnity()->getValue();
935 54
        $c10 = $C10->asUnity()->getValue();
936 54
937 54
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
938 54
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
939 54
940 54
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
941
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
942 54
943 54
        $westing += $falseEasting->asMetres()->getValue() - $dY;
944
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
945 54
946 54
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
947
    }
948 54
949 54
    /**
950
     * Lambert Azimuthal Equal Area
951 54
     * This is the ellipsoidal form of the projection.
952
     */
953
    public function lambertAzimuthalEqualArea(
954
        Projected $to,
955
        Angle $latitudeOfNaturalOrigin,
956
        Angle $longitudeOfNaturalOrigin,
957
        Length $falseEasting,
958 135
        Length $falseNorthing
959
    ): ProjectedPoint {
960
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
961
        $latitude = $this->latitude->asRadians()->getValue();
962
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
963
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
964
        $e = $ellipsoid->getEccentricity();
965 135
        $e2 = $ellipsoid->getEccentricitySquared();
966 135
967 135
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
968 135
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
969 135
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
970 135
        $beta = self::asin($q / $qP);
971
        $betaO = self::asin($qO / $qP);
972 135
        $Rq = $a * sqrt($qP / 2);
973 135
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
974 135
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
975 135
976 135
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
977 135
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
978 135
979 135
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
980
    }
981 135
982 135
    /**
983
     * Lambert Azimuthal Equal Area (Spherical)
984 135
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
985
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
986
     * methods.
987
     */
988
    public function lambertAzimuthalEqualAreaSpherical(
989
        Projected $to,
990
        Angle $latitudeOfNaturalOrigin,
991
        Angle $longitudeOfNaturalOrigin,
992
        Length $falseEasting,
993 18
        Length $falseNorthing
994
    ): ProjectedPoint {
995
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
996
        $latitude = $this->latitude->asRadians()->getValue();
997
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
998
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
999
1000 18
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1001 18
1002 18
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1003 18
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1004
1005 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1006
    }
1007 18
1008 18
    /**
1009
     * Lambert Conic Conformal (1SP).
1010 18
     */
1011
    public function lambertConicConformal1SP(
1012
        Projected $to,
1013
        Angle $latitudeOfNaturalOrigin,
1014
        Angle $longitudeOfNaturalOrigin,
1015
        Scale $scaleFactorAtNaturalOrigin,
1016 1953
        Length $falseEasting,
1017
        Length $falseNorthing
1018
    ): ProjectedPoint {
1019
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1020
        $latitude = $this->latitude->asRadians()->getValue();
1021
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1022
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1023
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1024 1953
        $e = $ellipsoid->getEccentricity();
1025 1953
        $e2 = $ellipsoid->getEccentricitySquared();
1026 1953
1027 1953
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1028 1953
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1029 1953
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1030 1953
        $n = sin($latitudeOrigin);
1031
        $F = $mO / ($n * $tO ** $n);
1032 1953
        $rO = $a * $F * $tO ** $n * $kO;
1033 1953
        $r = $a * $F * $t ** $n * $kO;
1034 1953
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1035 1953
1036 1953
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1037 1953
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1038 1953
1039 1953
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1040
    }
1041 1953
1042 1953
    /**
1043
     * Lambert Conic Conformal (1SP) Variant B.
1044 1953
     */
1045
    public function lambertConicConformal1SPVariantB(
1046
        Projected $to,
1047
        Angle $latitudeOfNaturalOrigin,
1048
        Scale $scaleFactorAtNaturalOrigin,
1049
        Angle $latitudeOfFalseOrigin,
1050 9
        Angle $longitudeOfFalseOrigin,
1051
        Length $eastingAtFalseOrigin,
1052
        Length $northingAtFalseOrigin
1053
    ): ProjectedPoint {
1054
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1055
        $latitude = $this->latitude->asRadians()->getValue();
1056
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1057
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1058
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1059 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1060 9
        $e = $ellipsoid->getEccentricity();
1061 9
        $e2 = $ellipsoid->getEccentricitySquared();
1062 9
1063 9
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1064 9
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1065 9
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1066 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1067
        $n = sin($latitudeNaturalOrigin);
1068 9
        $F = $mO / ($n * $tO ** $n);
1069 9
        $rF = $a * $F * $tF ** $n * $kO;
1070 9
        $r = $a * $F * $t ** $n * $kO;
1071 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1072 9
1073 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1074 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1075 9
1076 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1077
    }
1078 9
1079 9
    /**
1080
     * Lambert Conic Conformal (2SP Belgium)
1081 9
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1082
     * with appropriately modified parameter values.
1083
     */
1084
    public function lambertConicConformal2SPBelgium(
1085
        Projected $to,
1086
        Angle $latitudeOfFalseOrigin,
1087
        Angle $longitudeOfFalseOrigin,
1088
        Angle $latitudeOf1stStandardParallel,
1089 18
        Angle $latitudeOf2ndStandardParallel,
1090
        Length $eastingAtFalseOrigin,
1091
        Length $northingAtFalseOrigin
1092
    ): ProjectedPoint {
1093
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1094
        $latitude = $this->latitude->asRadians()->getValue();
1095
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1096
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1097
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1098 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1099 18
        $e = $ellipsoid->getEccentricity();
1100 18
        $e2 = $ellipsoid->getEccentricitySquared();
1101 18
1102 18
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1103 18
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1104 18
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1105 18
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1106
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1107 18
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1108 18
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1109 18
        $F = $m1 / ($n * $t1 ** $n);
1110 18
        $r = $a * $F * $t ** $n;
1111 18
        $rF = $a * $F * $tF ** $n;
1112 18
        if (is_nan($rF)) {
1113 18
            $rF = 0;
1114 18
        }
1115 18
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1116 18
1117 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1118 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1119
1120 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1121
    }
1122 18
1123 18
    /**
1124
     * Lambert Conic Conformal (2SP Michigan).
1125 18
     */
1126
    public function lambertConicConformal2SPMichigan(
1127
        Projected $to,
1128
        Angle $latitudeOfFalseOrigin,
1129
        Angle $longitudeOfFalseOrigin,
1130
        Angle $latitudeOf1stStandardParallel,
1131 36
        Angle $latitudeOf2ndStandardParallel,
1132
        Length $eastingAtFalseOrigin,
1133
        Length $northingAtFalseOrigin,
1134
        Scale $ellipsoidScalingFactor
1135
    ): ProjectedPoint {
1136
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1137
        $latitude = $this->latitude->asRadians()->getValue();
1138
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1139
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1140
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1141 36
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1142 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1143 36
        $e = $ellipsoid->getEccentricity();
1144 36
        $e2 = $ellipsoid->getEccentricitySquared();
1145 36
1146 36
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1147 36
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1148 36
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1149 36
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1150
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1151 36
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1152 36
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1153 36
        $F = $m1 / ($n * $t1 ** $n);
1154 36
        $r = $a * $K * $F * $t ** $n;
1155 36
        $rF = $a * $K * $F * $tF ** $n;
1156 36
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1157 36
1158 36
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1159 36
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1160 36
1161 36
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1162
    }
1163 36
1164 36
    /**
1165
     * Lambert Conic Conformal (2SP).
1166 36
     */
1167
    public function lambertConicConformal2SP(
1168
        Projected $to,
1169
        Angle $latitudeOfFalseOrigin,
1170
        Angle $longitudeOfFalseOrigin,
1171
        Angle $latitudeOf1stStandardParallel,
1172 8244
        Angle $latitudeOf2ndStandardParallel,
1173
        Length $eastingAtFalseOrigin,
1174
        Length $northingAtFalseOrigin
1175
    ): ProjectedPoint {
1176
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1177
        $latitude = $this->latitude->asRadians()->getValue();
1178
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1179
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1180
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1181 8244
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1182 8244
        $e = $ellipsoid->getEccentricity();
1183 8244
        $e2 = $ellipsoid->getEccentricitySquared();
1184 8244
1185 8244
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1186 8244
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1187 8244
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1188 8244
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1189
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1190 8244
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1191 8244
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1192 8244
        $F = $m1 / ($n * $t1 ** $n);
1193 8244
        $r = $a * $F * $t ** $n;
1194 8244
        $rF = $a * $F * $tF ** $n;
1195 8244
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1196 8244
1197 8244
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1198 8244
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1199 8244
1200 8244
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1201
    }
1202 8244
1203 8244
    /**
1204
     * Lambert Conic Conformal (West Orientated).
1205 8244
     */
1206
    public function lambertConicConformalWestOrientated(
1207
        Projected $to,
1208
        Angle $latitudeOfNaturalOrigin,
1209
        Angle $longitudeOfNaturalOrigin,
1210
        Scale $scaleFactorAtNaturalOrigin,
1211 135
        Length $falseEasting,
1212
        Length $falseNorthing
1213
    ): ProjectedPoint {
1214
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1215
        $latitude = $this->latitude->asRadians()->getValue();
1216
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1217
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1218
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1219 135
        $e = $ellipsoid->getEccentricity();
1220 135
        $e2 = $ellipsoid->getEccentricitySquared();
1221 135
1222 135
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1223 135
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1224 135
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1225 135
        $n = sin($latitudeOrigin);
1226
        $F = $mO / ($n * $tO ** $n);
1227 135
        $rO = $a * $F * $tO ** $n ** $kO;
1228 135
        $r = $a * $F * $t ** $n ** $kO;
1229 135
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1230 135
1231 135
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1232 135
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1233 135
1234 135
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1235
    }
1236 135
1237 135
    /**
1238
     * Lambert Conic Near-Conformal
1239 135
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1240
     * series expansion of the projection formulae.
1241
     */
1242
    public function lambertConicNearConformal(
1243
        Projected $to,
1244
        Angle $latitudeOfNaturalOrigin,
1245
        Angle $longitudeOfNaturalOrigin,
1246
        Scale $scaleFactorAtNaturalOrigin,
1247 18
        Length $falseEasting,
1248
        Length $falseNorthing
1249
    ): ProjectedPoint {
1250
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1251
        $latitude = $this->latitude->asRadians()->getValue();
1252
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1253
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1254
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1255 18
        $e2 = $ellipsoid->getEccentricitySquared();
1256 18
        $f = $ellipsoid->getFlattening();
1257 18
1258 18
        $n = $f / (2 - $f);
1259 18
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1260 18
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1261 18
        $A = 1 / (6 * $rhoO * $nuO);
1262
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1263 18
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1264 18
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1265 18
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1266 18
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1267 18
        $rO = $kO * $nuO / tan($latitudeOrigin);
1268 18
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1269 18
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1270 18
        $m = $s - $sO;
1271 18
        $M = $kO * ($m + $A * $m ** 3);
1272 18
        $r = $rO - $M;
1273 18
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1274 18
1275 18
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1276 18
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1277 18
1278 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1279
    }
1280 18
1281 18
    /**
1282
     * Lambert Cylindrical Equal Area
1283 18
     * This is the ellipsoidal form of the projection.
1284
     */
1285
    public function lambertCylindricalEqualArea(
1286
        Projected $to,
1287
        Angle $latitudeOf1stStandardParallel,
1288
        Angle $longitudeOfNaturalOrigin,
1289
        Length $falseEasting,
1290 18
        Length $falseNorthing
1291
    ): ProjectedPoint {
1292
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1293
        $latitude = $this->latitude->asRadians()->getValue();
1294
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1295
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1296
        $e = $ellipsoid->getEccentricity();
1297 18
        $e2 = $ellipsoid->getEccentricitySquared();
1298 18
1299 18
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1300 18
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1301 18
1302 18
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1303
        $y = $a * $q / (2 * $k);
1304 18
1305 18
        $easting = $falseEasting->asMetres()->getValue() + $x;
1306
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1307 18
1308 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1309
    }
1310 18
1311 18
    /**
1312
     * Modified Azimuthal Equidistant
1313 18
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1314
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1315
     */
1316
    public function modifiedAzimuthalEquidistant(
1317
        Projected $to,
1318
        Angle $latitudeOfNaturalOrigin,
1319
        Angle $longitudeOfNaturalOrigin,
1320
        Length $falseEasting,
1321 18
        Length $falseNorthing
1322
    ): ProjectedPoint {
1323
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1324
        $latitude = $this->latitude->asRadians()->getValue();
1325
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1326
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1327
        $e = $ellipsoid->getEccentricity();
1328 18
        $e2 = $ellipsoid->getEccentricitySquared();
1329 18
1330 18
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1331 18
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1332 18
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1333 18
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1334
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1335 18
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1336 18
1337 18
        if (sin($alpha) === 0.0) {
1338 18
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1339 18
        } else {
1340 18
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1341
        }
1342 18
1343
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1344
1345 18
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1346
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1347
1348 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1349
    }
1350 18
1351 18
    /**
1352
     * Oblique Stereographic
1353 18
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1354
     * Projections - A Working Manual" by John P. Snyder.
1355
     */
1356
    public function obliqueStereographic(
1357
        Projected $to,
1358
        Angle $latitudeOfNaturalOrigin,
1359
        Angle $longitudeOfNaturalOrigin,
1360
        Scale $scaleFactorAtNaturalOrigin,
1361 144
        Length $falseEasting,
1362
        Length $falseNorthing
1363
    ): ProjectedPoint {
1364
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1365
        $latitude = $this->latitude->asRadians()->getValue();
1366
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1367
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1368
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1369 144
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1370 144
        $e = $ellipsoid->getEccentricity();
1371 144
        $e2 = $ellipsoid->getEccentricitySquared();
1372 144
1373 144
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1374 144
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1375 144
        $R = sqrt($rhoOrigin * $nuOrigin);
1376 144
1377
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1378 144
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1379 144
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1380 144
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1381
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1382 144
        $w2 = $c * $w1;
1383 144
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1384 144
1385 144
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1386 144
1387 144
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1388 144
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1389
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1390 144
        $chi = self::asin(($w - 1) / ($w + 1));
1391
1392 144
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1393 144
1394 144
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1395 144
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1396
1397 144
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1398
    }
1399 144
1400 144
    /**
1401
     * Polar Stereographic (variant A)
1402 144
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1403
     */
1404
    public function polarStereographicVariantA(
1405
        Projected $to,
1406
        Angle $latitudeOfNaturalOrigin,
1407
        Angle $longitudeOfNaturalOrigin,
1408
        Scale $scaleFactorAtNaturalOrigin,
1409 99
        Length $falseEasting,
1410
        Length $falseNorthing
1411
    ): ProjectedPoint {
1412
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1413
        $latitude = $this->latitude->asRadians()->getValue();
1414
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1415
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1416
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1417 99
        $e = $ellipsoid->getEccentricity();
1418 99
1419 99
        if ($latitudeOrigin < 0) {
1420 99
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1421 99
        } else {
1422 99
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1423
        }
1424 99
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1425 27
1426
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1427 72
        $dE = $rho * sin($theta);
1428
        $dN = $rho * cos($theta);
1429 99
1430
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1431 99
        if ($latitudeOrigin < 0) {
1432 99
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1433 99
        } else {
1434
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1435 99
        }
1436 99
1437 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1438
    }
1439 72
1440
    /**
1441
     * Polar Stereographic (variant B).
1442 99
     */
1443
    public function polarStereographicVariantB(
1444
        Projected $to,
1445
        Angle $latitudeOfStandardParallel,
1446
        Angle $longitudeOfOrigin,
1447
        Length $falseEasting,
1448 243
        Length $falseNorthing
1449
    ): ProjectedPoint {
1450
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1451
        $latitude = $this->latitude->asRadians()->getValue();
1452
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1453
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1454
        $e = $ellipsoid->getEccentricity();
1455 243
        $e2 = $ellipsoid->getEccentricitySquared();
1456 243
1457 243
        if ($firstStandardParallel < 0) {
1458 243
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1459 243
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1460 243
        } else {
1461
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1462 243
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1463 216
        }
1464 216
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1465
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1466 27
1467 27
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1468
1469 243
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1470 243
        $dE = $rho * sin($theta);
1471
        $dN = $rho * cos($theta);
1472 243
1473
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1474 243
        if ($firstStandardParallel < 0) {
1475 243
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1476 243
        } else {
1477
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1478 243
        }
1479 243
1480 216
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1481
    }
1482 27
1483
    /**
1484
     * Polar Stereographic (variant C).
1485 243
     */
1486
    public function polarStereographicVariantC(
1487
        Projected $to,
1488
        Angle $latitudeOfStandardParallel,
1489
        Angle $longitudeOfOrigin,
1490
        Length $eastingAtFalseOrigin,
1491 27
        Length $northingAtFalseOrigin
1492
    ): ProjectedPoint {
1493
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1494
        $latitude = $this->latitude->asRadians()->getValue();
1495
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1496
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1497
        $e = $ellipsoid->getEccentricity();
1498 27
        $e2 = $ellipsoid->getEccentricitySquared();
1499 27
1500 27
        if ($firstStandardParallel < 0) {
1501 27
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1502 27
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1503 27
        } else {
1504
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1505 27
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1506 27
        }
1507 27
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1508
1509
        $rhoF = $a * $mF;
1510
        $rho = $rhoF * $t / $tF;
1511
1512 27
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1513
        $dE = $rho * sin($theta);
1514 27
        $dN = $rho * cos($theta);
1515 27
1516
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1517 27
        if ($firstStandardParallel < 0) {
1518 27
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1519 27
        } else {
1520
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1521 27
        }
1522 27
1523 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1524
    }
1525
1526
    /**
1527
     * Popular Visualisation Pseudo Mercator
1528 27
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1529
     */
1530
    public function popularVisualisationPseudoMercator(
1531
        Projected $to,
1532
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1532
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1533
        Angle $longitudeOfNaturalOrigin,
1534
        Length $falseEasting,
1535 18
        Length $falseNorthing
1536
    ): ProjectedPoint {
1537
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1538
        $latitude = $this->latitude->asRadians()->getValue();
1539
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1540
1541
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1542 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1543 18
1544 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1545
    }
1546 18
1547 18
    /**
1548
     * Mercator (variant A)
1549 18
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1550
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1551
     * completeness in CRS labelling.
1552
     */
1553
    public function mercatorVariantA(
1554
        Projected $to,
1555
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1555
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1556
        Angle $longitudeOfNaturalOrigin,
1557
        Scale $scaleFactorAtNaturalOrigin,
1558 90
        Length $falseEasting,
1559
        Length $falseNorthing
1560
    ): ProjectedPoint {
1561
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1562
        $latitude = $this->latitude->asRadians()->getValue();
1563
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1564
1565
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1566 90
        $e = $ellipsoid->getEccentricity();
1567 90
1568 90
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1569
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1570 90
1571 90
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1572
    }
1573 90
1574 90
    /**
1575
     * Mercator (variant B)
1576 90
     * Used for most nautical charts.
1577
     */
1578
    public function mercatorVariantB(
1579
        Projected $to,
1580
        Angle $latitudeOf1stStandardParallel,
1581
        Angle $longitudeOfNaturalOrigin,
1582
        Length $falseEasting,
1583 36
        Length $falseNorthing
1584
    ): ProjectedPoint {
1585
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1586
        $latitude = $this->latitude->asRadians()->getValue();
1587
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1588
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1589
        $e = $ellipsoid->getEccentricity();
1590 36
        $e2 = $ellipsoid->getEccentricitySquared();
1591 36
1592 36
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1593 36
1594 36
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1595 36
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1596
1597 36
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1598
    }
1599 36
1600 36
    /**
1601
     * Longitude rotation
1602 36
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1603
     * value to the longitude value of the point in the source system.
1604
     */
1605
    public function longitudeRotation(
1606
        Geographic2D|Geographic3D $to,
1607
        Angle $longitudeOffset
1608
    ): self {
1609
        $newLongitude = $this->longitude->add($longitudeOffset);
1610 442
1611
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1612
    }
1613
1614 442
    /**
1615
     * Hotine Oblique Mercator (variant A).
1616 442
     */
1617
    public function obliqueMercatorHotineVariantA(
1618
        Projected $to,
1619
        Angle $latitudeOfProjectionCentre,
1620
        Angle $longitudeOfProjectionCentre,
1621
        Angle $azimuthOfInitialLine,
1622 207
        Angle $angleFromRectifiedToSkewGrid,
1623
        Scale $scaleFactorOnInitialLine,
1624
        Length $falseEasting,
1625
        Length $falseNorthing
1626
    ): ProjectedPoint {
1627
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1628
        $latitude = $this->latitude->asRadians()->getValue();
1629
        $longitude = $this->longitude->asRadians()->getValue();
1630
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1631
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1632 207
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1633 207
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1634 207
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1635 207
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1636 207
        $e = $ellipsoid->getEccentricity();
1637 207
        $e2 = $ellipsoid->getEccentricitySquared();
1638 207
1639 207
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1640 207
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1641 207
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1642 207
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1643
        $DD = max(1, $D ** 2);
1644 207
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1645 207
        $H = $F * ($tO) ** $B;
1646 207
        $G = ($F - 1 / $F) / 2;
1647 207
        $gammaO = self::asin(sin($alphaC) / $D);
1648 207
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1649 207
1650 207
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1651 207
        $Q = $H / $t ** $B;
1652 207
        $S = ($Q - 1 / $Q) / 2;
1653 207
        $T = ($Q + 1 / $Q) / 2;
1654
        $V = sin($B * ($longitude - $lonO));
1655 207
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1656 207
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1657 207
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1658 207
1659 207
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1660 207
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1661 207
1662 207
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1663
    }
1664 207
1665 207
    /**
1666
     * Hotine Oblique Mercator (variant B).
1667 207
     */
1668
    public function obliqueMercatorHotineVariantB(
1669
        Projected $to,
1670
        Angle $latitudeOfProjectionCentre,
1671
        Angle $longitudeOfProjectionCentre,
1672
        Angle $azimuthOfInitialLine,
1673 108
        Angle $angleFromRectifiedToSkewGrid,
1674
        Scale $scaleFactorOnInitialLine,
1675
        Length $eastingAtProjectionCentre,
1676
        Length $northingAtProjectionCentre
1677
    ): ProjectedPoint {
1678
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1679
        $latitude = $this->latitude->asRadians()->getValue();
1680
        $longitude = $this->longitude->asRadians()->getValue();
1681
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1682
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1683 108
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1684 108
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1685 108
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1686 108
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1687 108
        $e = $ellipsoid->getEccentricity();
1688 108
        $e2 = $ellipsoid->getEccentricitySquared();
1689 108
1690 108
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1691 108
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1692 108
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1693 108
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1694
        $DD = max(1, $D ** 2);
1695 108
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1696 108
        $H = $F * ($tO) ** $B;
1697 108
        $G = ($F - 1 / $F) / 2;
1698 108
        $gammaO = self::asin(sin($alphaC) / $D);
1699 108
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1700 108
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1701 108
        if ($alphaC === M_PI / 2) {
1702 108
            $uC = $A * ($lonC - $lonO);
1703 108
        } else {
1704 108
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1705 108
        }
1706 108
1707 45
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1708
        $Q = $H / $t ** $B;
1709 63
        $S = ($Q - 1 / $Q) / 2;
1710
        $T = ($Q + 1 / $Q) / 2;
1711
        $V = sin($B * ($longitude - $lonO));
1712 108
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1713 108
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1714 108
1715 108
        if ($alphaC === M_PI / 2) {
1716 108
            if ($longitude === $lonC) {
1717 108
                $u = 0;
1718 108
            } else {
1719
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1720 108
            }
1721 45
        } else {
1722
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1723
        }
1724 45
1725
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1726
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1727 63
1728
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1729
    }
1730 108
1731 108
    /**
1732
     * Laborde Oblique Mercator.
1733 108
     */
1734
    public function obliqueMercatorLaborde(
1735
        Projected $to,
1736
        Angle $latitudeOfProjectionCentre,
1737
        Angle $longitudeOfProjectionCentre,
1738
        Angle $azimuthOfInitialLine,
1739 27
        Scale $scaleFactorOnInitialLine,
1740
        Length $falseEasting,
1741
        Length $falseNorthing
1742
    ): ProjectedPoint {
1743
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1744
        $latitude = $this->latitude->asRadians()->getValue();
1745
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1746
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1747
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1748 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1749 27
        $e = $ellipsoid->getEccentricity();
1750 27
        $e2 = $ellipsoid->getEccentricitySquared();
1751 27
1752 27
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1753 27
        $latS = self::asin(sin($latC) / $B);
1754 27
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1755 27
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1756
1757 27
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1758 27
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1759 27
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1760 27
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1761
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1762 27
        $W = cos($P) * sin($L);
1763 27
        $d = hypot($U, $V);
1764 27
        if ($d === 0.0) {
1765 27
            $LPrime = 0;
1766 27
            $PPrime = static::sign($W) * M_PI / 2;
1767 27
        } else {
1768 27
            $LPrime = 2 * atan($V / ($U + $d));
1769 27
            $PPrime = atan($W / $d);
1770
        }
1771
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1772
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1773 27
1774 27
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1775
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1776 27
1777 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1778
    }
1779 27
1780 27
    /**
1781
     * Transverse Mercator.
1782 27
     */
1783
    public function transverseMercator(
1784
        Projected $to,
1785
        Angle $latitudeOfNaturalOrigin,
1786
        Angle $longitudeOfNaturalOrigin,
1787
        Scale $scaleFactorAtNaturalOrigin,
1788 32041
        Length $falseEasting,
1789
        Length $falseNorthing
1790
    ): ProjectedPoint {
1791
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1792
        $latitude = $this->latitude->asRadians()->getValue();
1793
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1794
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1795
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1796 32041
        $e = $ellipsoid->getEccentricity();
1797 32041
        $f = $ellipsoid->getFlattening();
1798 32041
1799 32041
        $n = $f / (2 - $f);
1800 32041
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1801 32041
1802 32041
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1803
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1804 32041
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1805 32041
        $h4 = (49561 / 161280) * $n ** 4;
1806
1807 32041
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1808 32041
            $mO = 0;
1809 32041
        } elseif ($latitudeOrigin === M_PI / 2) {
1810 32041
            $mO = $B * M_PI / 2;
1811
        } elseif ($latitudeOrigin === -M_PI / 2) {
1812 32041
            $mO = $B * -M_PI / 2;
1813 21906
        } else {
1814 10135
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1815
            $betaO = atan(sinh($qO));
1816 10135
            $xiO0 = self::asin(sin($betaO));
1817 333
            $xiO1 = $h1 * sin(2 * $xiO0);
1818
            $xiO2 = $h2 * sin(4 * $xiO0);
1819 9802
            $xiO3 = $h3 * sin(6 * $xiO0);
1820 9802
            $xiO4 = $h4 * sin(8 * $xiO0);
1821 9802
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1822 9802
            $mO = $B * $xiO;
1823 9802
        }
1824 9802
1825 9802
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1826 9802
        $beta = atan(sinh($Q));
1827 9802
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1828
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1829
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1830 32041
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1831 32041
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1832 32041
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1833 32041
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1834 32041
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1835 32041
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1836 32041
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1837 32041
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1838 32041
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1839 32041
1840 32041
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1841 32041
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1842 32041
1843 32041
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1844
1845 32041
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1846 32041
    }
1847
1848 32041
    /**
1849
     * Transverse Mercator Zoned Grid System
1850
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1851
     * each zone.
1852
     */
1853
    public function transverseMercatorZonedGrid(
1854
        Projected $to,
1855
        Angle $latitudeOfNaturalOrigin,
1856 54
        Angle $initialLongitude,
1857
        Angle $zoneWidth,
1858
        Scale $scaleFactorAtNaturalOrigin,
1859
        Length $falseEasting,
1860
        Length $falseNorthing
1861
    ): ProjectedPoint {
1862
        $W = $zoneWidth->asDegrees()->getValue();
1863
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1864
1865 54
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1866 54
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1867
1868 54
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1869 54
    }
1870
1871 54
    /**
1872
     * New Zealand Map Grid.
1873
     */
1874
    public function newZealandMapGrid(
1875
        Projected $to,
1876
        Angle $latitudeOfNaturalOrigin,
1877 36
        Angle $longitudeOfNaturalOrigin,
1878
        Length $falseEasting,
1879
        Length $falseNorthing
1880
    ): ProjectedPoint {
1881
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1882
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1883
1884 36
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1885 36
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1886
1887 36
        $deltaPsi = 0;
1888 36
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1889
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1890 36
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1891 36
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1892 36
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1893 36
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1894 36
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1895 36
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1896 36
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1897 36
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1898 36
1899 36
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1900 36
1901
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1902 36
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1903
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1904 36
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1905 36
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1906 36
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1907 36
        $z = new ComplexNumber(0, 0);
1908 36
        $z = $z->add($B1->multiply($zeta->pow(1)));
1909 36
        $z = $z->add($B2->multiply($zeta->pow(2)));
1910 36
        $z = $z->add($B3->multiply($zeta->pow(3)));
1911 36
        $z = $z->add($B4->multiply($zeta->pow(4)));
1912 36
        $z = $z->add($B5->multiply($zeta->pow(5)));
1913 36
        $z = $z->add($B6->multiply($zeta->pow(6)));
1914 36
1915 36
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1916 36
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1917
1918 36
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1919 36
    }
1920
1921 36
    /**
1922
     * Madrid to ED50 polynomial.
1923
     */
1924
    public function madridToED50Polynomial(
1925
        Geographic2D $to,
1926
        Scale $A0,
1927 45
        Scale $A1,
1928
        Scale $A2,
1929
        Scale $A3,
1930
        Angle $B00,
1931
        Scale $B0,
1932
        Scale $B1,
1933
        Scale $B2,
1934
        Scale $B3
1935
    ): self {
1936
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1937
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1938
1939 45
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1940 45
    }
1941
1942 45
    /**
1943
     * Geographic3D to 2D conversion.
1944
     */
1945
    public function threeDToTwoD(
1946
        Geographic2D|Geographic3D $to
1947
    ): self {
1948 1724
        if ($to instanceof Geographic2D) {
1949
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1950
        }
1951 1724
1952 1724
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1953
    }
1954
1955 1696
    /**
1956
     * Geographic2D offsets.
1957
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1958
     * coordinate values of the point in the source system.
1959
     */
1960
    public function geographic2DOffsets(
1961
        Geographic2D|Geographic3D $to,
1962
        Angle $latitudeOffset,
1963 54
        Angle $longitudeOffset
1964
    ): self {
1965
        $toLatitude = $this->latitude->add($latitudeOffset);
1966
        $toLongitude = $this->longitude->add($longitudeOffset);
1967
1968 54
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
1969 54
    }
1970
1971 54
    /*
1972
     * Geographic2D with Height Offsets.
1973
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1974
     * coordinate values of the point in the source system.
1975
     */
1976
    public function geographic2DWithHeightOffsets(
1977
        Compound $to,
1978
        Angle $latitudeOffset,
1979 918
        Angle $longitudeOffset,
1980
        Length $geoidUndulation
1981
    ): CompoundPoint {
1982
        $toLatitude = $this->latitude->add($latitudeOffset);
1983
        $toLongitude = $this->longitude->add($longitudeOffset);
1984
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1984
        /** @scrutinizer ignore-call */ 
1985
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1985 918
1986 918
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1986
        $horizontal = static::create(/** @scrutinizer ignore-type */ $to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
Loading history...
1987 918
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1987
        $vertical = VerticalPoint::create($to->getVertical(), /** @scrutinizer ignore-type */ $toHeight, $this->epoch);
Loading history...
1988
1989 918
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
1990 918
    }
1991
1992 918
    /**
1993
     * General polynomial.
1994
     * @param Coefficient[] $powerCoefficients
1995
     */
1996
    public function generalPolynomial(
1997
        Geographic2D|Geographic3D $to,
1998
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1999 36
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2000
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2001
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2002
        Scale $scalingFactorForSourceCRSCoordDifferences,
2003
        Scale $scalingFactorForTargetCRSCoordDifferences,
2004
        Scale $A0,
2005
        Scale $B0,
2006
        array $powerCoefficients
2007
    ): self {
2008
        $xs = $this->latitude->getValue();
2009
        $ys = $this->longitude->getValue();
2010
2011 36
        $t = $this->generalPolynomialUnitless(
2012 36
            $xs,
2013
            $ys,
2014 36
            $ordinate1OfEvaluationPointInSourceCRS,
2015 36
            $ordinate2OfEvaluationPointInSourceCRS,
2016
            $ordinate1OfEvaluationPointInTargetCRS,
2017
            $ordinate2OfEvaluationPointInTargetCRS,
2018
            $scalingFactorForSourceCRSCoordDifferences,
2019
            $scalingFactorForTargetCRSCoordDifferences,
2020
            $A0,
2021
            $B0,
2022
            $powerCoefficients
2023
        );
2024
2025
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2026
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2027
2028 36
        return static::create(
2029 36
            $to,
2030
            Angle::makeUnit($t['xt'], $xtUnit),
2031 36
            Angle::makeUnit($t['yt'], $ytUnit),
2032 36
            $this->height,
2033 36
            $this->epoch
2034 36
        );
2035
    }
2036 36
2037
    /**
2038
     * Reversible polynomial.
2039
     * @param Coefficient[] $powerCoefficients
2040
     */
2041
    public function reversiblePolynomial(
2042
        Geographic2D|Geographic3D $to,
2043
        Angle $ordinate1OfEvaluationPoint,
2044 72
        Angle $ordinate2OfEvaluationPoint,
2045
        Scale $scalingFactorForCoordDifferences,
2046
        Scale $A0,
2047
        Scale $B0,
2048
        $powerCoefficients
2049
    ): self {
2050
        $xs = $this->latitude->getValue();
2051
        $ys = $this->longitude->getValue();
2052
2053 72
        $t = $this->reversiblePolynomialUnitless(
2054 72
            $xs,
2055
            $ys,
2056 72
            $ordinate1OfEvaluationPoint,
2057 72
            $ordinate2OfEvaluationPoint,
2058
            $scalingFactorForCoordDifferences,
2059
            $A0,
2060
            $B0,
2061
            $powerCoefficients
2062
        );
2063
2064
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2065
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2066
2067 72
        return static::create(
2068 72
            $to,
2069
            Angle::makeUnit($t['xt'], $xtUnit),
2070 72
            Angle::makeUnit($t['yt'], $ytUnit),
2071 72
            $this->height,
2072 72
            $this->epoch
2073 72
        );
2074
    }
2075 72
2076
    /**
2077
     * Axis Order Reversal.
2078
     */
2079
    public function axisReversal(
2080
        Geographic2D|Geographic3D $to
2081
    ): self {
2082 144
        // axes are read in from the CRS, this is a book-keeping adjustment only
2083
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2084
    }
2085
2086 144
    /**
2087
     * Ordnance Survey National Transformation
2088
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2089
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2090
     */
2091
    public function OSTN15(
2092
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2092
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2093
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2094 3
    ): ProjectedPoint {
2095
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2096
        $etrs89NationalGrid = new Projected(
2097
            'ETRS89 / National Grid',
2098 3
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2099 3
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2100 3
            $osgb36NationalGrid->getBoundingArea()
2101 3
        );
2102 3
2103 3
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2104
2105
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2106 3
    }
2107
2108 3
    /**
2109
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2110
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2111
     * coordinate differences.
2112
     */
2113
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2114
        Compound $to,
2115
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2116 8
    ): CompoundPoint {
2117
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2118
        $etrs89NationalGrid = new Projected(
2119
            'ETRS89 / National Grid',
2120 8
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2121 8
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2122 8
            $osgb36NationalGrid->getBoundingArea()
2123 8
        );
2124 8
2125 8
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2126
2127
        $horizontalPoint = self::create(
2128 8
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2128
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2129
            $this->latitude,
2130 8
            $this->longitude,
2131 8
            null,
2132 8
            $this->getCoordinateEpoch()
2133 8
        );
2134 8
2135 8
        $verticalPoint = VerticalPoint::create(
2136
            $to->getVertical(),
2137
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2137
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2138 8
            $this->getCoordinateEpoch()
2139 8
        );
2140 8
2141 8
        return CompoundPoint::create(
2142
            $to,
2143
            $horizontalPoint,
2144 8
            $verticalPoint,
2145 8
            $this->getCoordinateEpoch()
2146 8
        );
2147 8
    }
2148 8
2149
    /**
2150
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2151
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2152
     * coordinate differences.
2153
     */
2154
    public function geographic3DToGravityHeightOSGM15(
2155
        Vertical $to,
2156
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2157 8
    ): VerticalPoint {
2158
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2159
        $etrs89NationalGrid = new Projected(
2160
            'ETRS89 / National Grid',
2161 8
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2162 8
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2163 8
            $osgb36NationalGrid->getBoundingArea()
2164 8
        );
2165 8
2166 8
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2167
2168
        return VerticalPoint::create(
2169 8
            $to,
2170
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2170
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2171 8
            $this->getCoordinateEpoch()
2172 8
        );
2173 8
    }
2174 8
2175
    /**
2176
     * Geog3D to Geog2D+GravityRelatedHeight.
2177
     */
2178
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2179
        Compound $to,
2180
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2181 10
    ): CompoundPoint {
2182
        $horizontalPoint = self::create(
2183
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2183
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2184
            $this->latitude,
2185 10
            $this->longitude,
2186 10
            null,
2187 10
            $this->getCoordinateEpoch()
2188 10
        );
2189 10
2190 10
        $verticalPoint = VerticalPoint::create(
2191
            $to->getVertical(),
2192
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2192
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2193 10
            $this->getCoordinateEpoch()
2194 10
        );
2195 10
2196 10
        return CompoundPoint::create(
2197
            $to,
2198
            $horizontalPoint,
2199 10
            $verticalPoint,
2200 10
            $this->getCoordinateEpoch()
2201 10
        );
2202 10
    }
2203 10
2204
    /**
2205
     * Geographic3D to GravityRelatedHeight.
2206
     */
2207
    public function geographic3DToGravityHeightFromGrid(
2208
        Vertical $to,
2209
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2210 11
    ): VerticalPoint {
2211
        return VerticalPoint::create(
2212
            $to,
2213
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2213
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2214 11
            $this->getCoordinateEpoch()
2215 11
        );
2216 11
    }
2217 11
2218
    /**
2219
     * NADCON5.
2220
     * @internal just a wrapper
2221
     */
2222
    public function offsetsFromGridNADCON5(
2223
        Geographic2D|Geographic3D $to,
2224
        NADCON5Grid $latitudeDifferenceFile,
2225
        NADCON5Grid $longitudeDifferenceFile,
2226 36
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2227
        bool $inReverse
2228
    ): self {
2229
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2230
2231
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2232
    }
2233
2234
    /**
2235
     * Geographic offsets from grid.
2236
     */
2237
    public function offsetsFromGrid(
2238 36
        Geographic2D|Geographic3D $to,
2239 32
        GeographicGrid $offsetsFile,
2240 32
        bool $inReverse
2241 32
    ): self {
2242
        if (!$inReverse) {
2243 32
            return $offsetsFile->applyForwardAdjustment($this, $to);
2244
        }
2245
2246 32
        return $offsetsFile->applyReverseAdjustment($this, $to);
2247
    }
2248
2249 32
    public function asGeographicValue(): GeographicValue
2250 32
    {
2251 32
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2252 32
    }
2253 32
2254 32
    public function asUTMPoint(): UTMPoint
2255
    {
2256 32
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2257
2258
        $initialLongitude = new Degree(-180);
2259
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2260
2261
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2262
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2263
        } else {
2264 91
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2265
        }
2266
2267
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2268
2269 91
        $projectedCRS = new Projected(
2270 89
            $srid,
2271
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2272
            $this->crs->getDatum(),
2273 88
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2274
        );
2275
2276
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2277
2278
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $this->crs can also be of type PHPCoord\CoordinateReferenceSystem\Geographic3D; however, parameter $crs of PHPCoord\UTMPoint::__construct() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic2D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2278
        return new UTMPoint(/** @scrutinizer ignore-type */ $this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getEasting() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2278
        return new UTMPoint($this->crs, $asProjected->/** @scrutinizer ignore-call */ getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getNorthing() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2278
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->/** @scrutinizer ignore-call */ getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
2279 5
    }
2280
}
2281