Passed
Push — master ( fd93b5...48e916 )
by Doug
40:26 queued 29:39
created

GeographicPoint::offsetsFromGrid()   A

Complexity

Conditions 2
Paths 2

Size

Total Lines 10
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 4
CRAP Score 2

Importance

Changes 0
Metric Value
cc 2
eloc 3
nc 2
nop 3
dl 0
loc 10
ccs 4
cts 4
cp 1
crap 2
rs 10
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function get_class;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
34
use PHPCoord\CoordinateOperation\GeographicGrid;
35
use PHPCoord\CoordinateOperation\GeographicValue;
36
use PHPCoord\CoordinateOperation\NADCON5Grid;
37
use PHPCoord\CoordinateOperation\NADCON5Grids;
38
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
39
use PHPCoord\CoordinateReferenceSystem\Compound;
40
use PHPCoord\CoordinateReferenceSystem\Geocentric;
41
use PHPCoord\CoordinateReferenceSystem\Geographic;
42
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
43
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
44
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
45
use PHPCoord\CoordinateReferenceSystem\Vertical;
46
use PHPCoord\CoordinateSystem\Axis;
47
use PHPCoord\CoordinateSystem\Cartesian;
48
use PHPCoord\Datum\Datum;
49
use PHPCoord\Datum\Ellipsoid;
50
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
51
use PHPCoord\Exception\UnknownAxisException;
52
use PHPCoord\Geometry\BoundingArea;
53
use PHPCoord\UnitOfMeasure\Angle\Angle;
54
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
55
use PHPCoord\UnitOfMeasure\Angle\Degree;
56
use PHPCoord\UnitOfMeasure\Angle\Radian;
57
use PHPCoord\UnitOfMeasure\Length\Length;
58
use PHPCoord\UnitOfMeasure\Length\Metre;
59
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
60
use PHPCoord\UnitOfMeasure\Scale\Scale;
61
use PHPCoord\UnitOfMeasure\Scale\Unity;
62
use function sin;
63
use function sinh;
64
use function sprintf;
65
use function sqrt;
66
use function tan;
67
use TypeError;
68
69
/**
70
 * Coordinate representing a point on an ellipsoid.
71
 */
72
class GeographicPoint extends Point implements ConvertiblePoint
73
{
74
    use AutoConversion;
75
76
    /**
77
     * Latitude.
78
     */
79
    protected Angle $latitude;
80
81
    /**
82
     * Longitude.
83
     */
84
    protected Angle $longitude;
85
86
    /**
87
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
88
     */
89
    protected ?Length $height;
90
91
    /**
92
     * Coordinate reference system.
93
     */
94
    protected Geographic $crs;
95
96
    /**
97
     * Coordinate epoch (date for which the specified coordinates represented this point).
98
     */
99
    protected ?DateTimeImmutable $epoch;
100
101 1499
    protected function __construct(Angle $latitude, Angle $longitude, ?Length $height, Geographic $crs, ?DateTimeInterface $epoch = null)
102
    {
103 1499
        if (!$crs instanceof Geographic2D && !$crs instanceof Geographic3D) {
104
            throw new TypeError(sprintf("A geographic point must be associated with a geographic CRS, but a '%s' CRS was given", get_class($crs)));
105
        }
106
107 1499
        if ($crs instanceof Geographic2D && $height !== null) {
108 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
109
        }
110
111 1490
        if ($crs instanceof Geographic3D && $height === null) {
112 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
113
        }
114
115 1481
        $this->crs = $crs;
116
117 1481
        $latitude = $this->normaliseLatitude($latitude);
118 1481
        $longitude = $this->normaliseLongitude($longitude);
119
120 1481
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
121 1481
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
122
123 1481
        if ($height) {
124 191
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
125
        } else {
126 1369
            $this->height = null;
127
        }
128
129 1481
        if ($epoch instanceof DateTime) {
130 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
131
        }
132 1481
        $this->epoch = $epoch;
133 1481
    }
134
135
    /**
136
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
137
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
138
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
139
     */
140 1499
    public static function create(Angle $latitude, Angle $longitude, ?Length $height = null, Geographic $crs, ?DateTimeInterface $epoch = null): self
141
    {
142 1499
        return new static($latitude, $longitude, $height, $crs, $epoch);
143
    }
144
145 804
    public function getLatitude(): Angle
146
    {
147 804
        return $this->latitude;
148
    }
149
150 768
    public function getLongitude(): Angle
151
    {
152 768
        return $this->longitude;
153
    }
154
155 348
    public function getHeight(): ?Length
156
    {
157 348
        return $this->height;
158
    }
159
160 398
    public function getCRS(): Geographic
161
    {
162 398
        return $this->crs;
163
    }
164
165 45
    public function getCoordinateEpoch(): ?DateTimeImmutable
166
    {
167 45
        return $this->epoch;
168
    }
169
170 1481
    protected function normaliseLatitude(Angle $latitude): Angle
171
    {
172 1481
        if ($latitude->asDegrees()->getValue() > 90) {
173
            return new Degree(90);
174
        }
175 1481
        if ($latitude->asDegrees()->getValue() < -90) {
176
            return new Degree(-90);
177
        }
178
179 1481
        return $latitude;
180
    }
181
182 1481
    protected function normaliseLongitude(Angle $longitude): Angle
183
    {
184 1481
        while ($longitude->asDegrees()->getValue() > 180) {
185 9
            $longitude = $longitude->subtract(new Degree(360));
186
        }
187 1481
        while ($longitude->asDegrees()->getValue() <= -180) {
188
            $longitude = $longitude->add(new Degree(360));
189
        }
190
191 1481
        return $longitude;
192
    }
193
194
    /**
195
     * Calculate surface distance between two points.
196
     */
197 153
    public function calculateDistance(Point $to): Length
198
    {
199
        try {
200 153
            if ($to instanceof ConvertiblePoint) {
201 144
                $to = $to->convert($this->crs);
202
            }
203
        } finally {
204 153
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
205 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
206
            }
207
208
            /* @var GeographicPoint $to */
209 144
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
210
        }
211
    }
212
213 36
    public function __toString(): string
214
    {
215 36
        $values = [];
216 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
217 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
218 36
                $values[] = $this->latitude;
219 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
220 36
                $values[] = $this->longitude;
221 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
222 9
                $values[] = $this->height;
223
            } else {
224
                throw new UnknownAxisException(); // @codeCoverageIgnore
225
            }
226
        }
227
228 36
        return '(' . implode(', ', $values) . ')';
229
    }
230
231
    /**
232
     * Geographic/geocentric conversions
233
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
234
     * 9636 to form a geographic to geographic transformation.
235
     */
236 9
    public function geographicGeocentric(
237
        Geocentric $to
238
    ): GeocentricPoint {
239 9
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
240 9
        $asGeocentric = $geographicValue->asGeocentricValue();
241
242 9
        return GeocentricPoint::create($asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $to, $this->epoch);
243
    }
244
245
    /**
246
     * Coordinate Frame rotation (geog2D/geog3D domain)
247
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
248
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
249
     * between other CRS types.
250
     */
251 72
    public function coordinateFrameRotation(
252
        Geographic $to,
253
        Length $xAxisTranslation,
254
        Length $yAxisTranslation,
255
        Length $zAxisTranslation,
256
        Angle $xAxisRotation,
257
        Angle $yAxisRotation,
258
        Angle $zAxisRotation,
259
        Scale $scaleDifference
260
    ): self {
261 72
        return $this->coordinateFrameMolodenskyBadekas(
262 72
            $to,
263
            $xAxisTranslation,
264
            $yAxisTranslation,
265
            $zAxisTranslation,
266
            $xAxisRotation,
267
            $yAxisRotation,
268
            $zAxisRotation,
269
            $scaleDifference,
270 72
            new Metre(0),
271 72
            new Metre(0),
272 72
            new Metre(0)
273
        );
274
    }
275
276
    /**
277
     * Molodensky-Badekas (CF geog2D/geog3D domain)
278
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
279
     * opposite rotation convention in geographic 2D domain.
280
     */
281 90
    public function coordinateFrameMolodenskyBadekas(
282
        Geographic $to,
283
        Length $xAxisTranslation,
284
        Length $yAxisTranslation,
285
        Length $zAxisTranslation,
286
        Angle $xAxisRotation,
287
        Angle $yAxisRotation,
288
        Angle $zAxisRotation,
289
        Scale $scaleDifference,
290
        Length $ordinate1OfEvaluationPoint,
291
        Length $ordinate2OfEvaluationPoint,
292
        Length $ordinate3OfEvaluationPoint
293
    ): self {
294 90
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
295 90
        $asGeocentric = $geographicValue->asGeocentricValue();
296
297 90
        $xs = $asGeocentric->getX()->asMetres()->getValue();
298 90
        $ys = $asGeocentric->getY()->asMetres()->getValue();
299 90
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
300 90
        $tx = $xAxisTranslation->asMetres()->getValue();
301 90
        $ty = $yAxisTranslation->asMetres()->getValue();
302 90
        $tz = $zAxisTranslation->asMetres()->getValue();
303 90
        $rx = $xAxisRotation->asRadians()->getValue();
304 90
        $ry = $yAxisRotation->asRadians()->getValue();
305 90
        $rz = $zAxisRotation->asRadians()->getValue();
306 90
        $M = 1 + $scaleDifference->asUnity()->getValue();
307 90
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
308 90
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
309 90
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
310
311 90
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
312 90
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
313 90
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
314 90
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
315 90
        $newGeographic = $newGeocentric->asGeographicValue();
316
317 90
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
318
    }
319
320
    /**
321
     * Position Vector transformation (geog2D/geog3D domain)
322
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
323
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
324
     * operating between other CRS types.
325
     */
326 180
    public function positionVectorTransformation(
327
        Geographic $to,
328
        Length $xAxisTranslation,
329
        Length $yAxisTranslation,
330
        Length $zAxisTranslation,
331
        Angle $xAxisRotation,
332
        Angle $yAxisRotation,
333
        Angle $zAxisRotation,
334
        Scale $scaleDifference
335
    ): self {
336 180
        return $this->positionVectorMolodenskyBadekas(
337 180
            $to,
338
            $xAxisTranslation,
339
            $yAxisTranslation,
340
            $zAxisTranslation,
341
            $xAxisRotation,
342
            $yAxisRotation,
343
            $zAxisRotation,
344
            $scaleDifference,
345 180
            new Metre(0),
346 180
            new Metre(0),
347 180
            new Metre(0)
348
        );
349
    }
350
351
    /**
352
     * Molodensky-Badekas (PV geog2D/geog3D domain)
353
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
354
     * rotation in geographic 2D/3D domain.
355
     */
356 198
    public function positionVectorMolodenskyBadekas(
357
        Geographic $to,
358
        Length $xAxisTranslation,
359
        Length $yAxisTranslation,
360
        Length $zAxisTranslation,
361
        Angle $xAxisRotation,
362
        Angle $yAxisRotation,
363
        Angle $zAxisRotation,
364
        Scale $scaleDifference,
365
        Length $ordinate1OfEvaluationPoint,
366
        Length $ordinate2OfEvaluationPoint,
367
        Length $ordinate3OfEvaluationPoint
368
    ): self {
369 198
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
370 198
        $asGeocentric = $geographicValue->asGeocentricValue();
371
372 198
        $xs = $asGeocentric->getX()->asMetres()->getValue();
373 198
        $ys = $asGeocentric->getY()->asMetres()->getValue();
374 198
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
375 198
        $tx = $xAxisTranslation->asMetres()->getValue();
376 198
        $ty = $yAxisTranslation->asMetres()->getValue();
377 198
        $tz = $zAxisTranslation->asMetres()->getValue();
378 198
        $rx = $xAxisRotation->asRadians()->getValue();
379 198
        $ry = $yAxisRotation->asRadians()->getValue();
380 198
        $rz = $zAxisRotation->asRadians()->getValue();
381 198
        $M = 1 + $scaleDifference->asUnity()->getValue();
382 198
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
383 198
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
384 198
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
385
386 198
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
387 198
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
388 198
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
389 198
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
390 198
        $newGeographic = $newGeocentric->asGeographicValue();
391
392 198
        return static::create($newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $to, $this->epoch);
393
    }
394
395
    /**
396
     * Geocentric translations
397
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
398
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
399
     * operating between other CRSs types.
400
     */
401 91
    public function geocentricTranslation(
402
        Geographic $to,
403
        Length $xAxisTranslation,
404
        Length $yAxisTranslation,
405
        Length $zAxisTranslation
406
    ): self {
407 91
        return $this->positionVectorTransformation(
408 91
            $to,
409
            $xAxisTranslation,
410
            $yAxisTranslation,
411
            $zAxisTranslation,
412 91
            new Radian(0),
413 91
            new Radian(0),
414 91
            new Radian(0),
415 91
            new Unity(0)
416
        );
417
    }
418
419
    /**
420
     * Abridged Molodensky
421
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
422
     * systems, modelled as a set of geocentric translations.
423
     */
424 18
    public function abridgedMolodensky(
425
        Geographic $to,
426
        Length $xAxisTranslation,
427
        Length $yAxisTranslation,
428
        Length $zAxisTranslation,
429
        Length $differenceInSemiMajorAxis,
430
        Scale $differenceInFlattening
431
    ): self {
432 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
433 18
        $latitude = $this->latitude->asRadians()->getValue();
434 18
        $longitude = $this->longitude->asRadians()->getValue();
435 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
436 18
        $tx = $xAxisTranslation->asMetres()->getValue();
437 18
        $ty = $yAxisTranslation->asMetres()->getValue();
438 18
        $tz = $zAxisTranslation->asMetres()->getValue();
439 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
440 18
        $df = $differenceInFlattening->asUnity()->getValue();
441
442 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
443 18
        $e2 = $ellipsoid->getEccentricitySquared();
444
445 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
446 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
447
448 18
        $f = $ellipsoid->getInverseFlattening();
449
450 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
451 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
452 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
453
454 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
455 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
456 18
        $toHeight = $fromHeight + $dHeight;
457
458 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
459
    }
460
461
    /**
462
     * Molodensky
463
     * See Abridged Molodensky.
464
     */
465 18
    public function molodensky(
466
        Geographic $to,
467
        Length $xAxisTranslation,
468
        Length $yAxisTranslation,
469
        Length $zAxisTranslation,
470
        Length $differenceInSemiMajorAxis,
471
        Scale $differenceInFlattening
472
    ): self {
473 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
474 18
        $latitude = $this->latitude->asRadians()->getValue();
475 18
        $longitude = $this->longitude->asRadians()->getValue();
476 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
477 18
        $tx = $xAxisTranslation->asMetres()->getValue();
478 18
        $ty = $yAxisTranslation->asMetres()->getValue();
479 18
        $tz = $zAxisTranslation->asMetres()->getValue();
480 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
481 18
        $df = $differenceInFlattening->asUnity()->getValue();
482
483 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
484 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
485 18
        $e2 = $ellipsoid->getEccentricitySquared();
486
487 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
488 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
489
490 18
        $f = $ellipsoid->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
491
492 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
493 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
494 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
495
496 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
497 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
498 18
        $toHeight = $fromHeight + $dHeight;
499
500 18
        return static::create(new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $to, $this->epoch);
501
    }
502
503
    /**
504
     * Albers Equal Area.
505
     */
506 18
    public function albersEqualArea(
507
        Projected $to,
508
        Angle $latitudeOfFalseOrigin,
509
        Angle $longitudeOfFalseOrigin,
510
        Angle $latitudeOf1stStandardParallel,
511
        Angle $latitudeOf2ndStandardParallel,
512
        Length $eastingAtFalseOrigin,
513
        Length $northingAtFalseOrigin
514
    ): ProjectedPoint {
515 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
516 18
        $latitude = $this->latitude->asRadians()->getValue();
517 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
518 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
519 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
520 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
521 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
522 18
        $e = $ellipsoid->getEccentricity();
523 18
        $e2 = $ellipsoid->getEccentricitySquared();
524
525 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
526 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
527
528 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
529 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
530 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
531 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
532
533 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
534 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
535 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
536 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
537 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
538
539 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
540 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
541
542 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
543
    }
544
545
    /**
546
     * American Polyconic.
547
     */
548 9
    public function americanPolyconic(
549
        Projected $to,
550
        Angle $latitudeOfNaturalOrigin,
551
        Angle $longitudeOfNaturalOrigin,
552
        Length $falseEasting,
553
        Length $falseNorthing
554
    ): ProjectedPoint {
555 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
556 9
        $latitude = $this->latitude->asRadians()->getValue();
557 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
558 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
559 9
        $e = $ellipsoid->getEccentricity();
560 9
        $e2 = $ellipsoid->getEccentricitySquared();
561 9
        $e4 = $e ** 4;
562 9
        $e6 = $e ** 6;
563
564 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
565 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
566
567 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
568
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
569
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
570
        } else {
571 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
572 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
573
574 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
575 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
576
        }
577
578 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
579
    }
580
581
    /**
582
     * Bonne.
583
     */
584 9
    public function bonne(
585
        Projected $to,
586
        Angle $latitudeOfNaturalOrigin,
587
        Angle $longitudeOfNaturalOrigin,
588
        Length $falseEasting,
589
        Length $falseNorthing
590
    ): ProjectedPoint {
591 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
592 9
        $latitude = $this->latitude->asRadians()->getValue();
593 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
594 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
595 9
        $e = $ellipsoid->getEccentricity();
596 9
        $e2 = $ellipsoid->getEccentricitySquared();
597 9
        $e4 = $e ** 4;
598 9
        $e6 = $e ** 6;
599
600 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
601 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
602
603 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
604 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
605
606 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
607 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
608
609 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
610 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
611
612 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
613
    }
614
615
    /**
616
     * Bonne South Orientated.
617
     */
618 9
    public function bonneSouthOrientated(
619
        Projected $to,
620
        Angle $latitudeOfNaturalOrigin,
621
        Angle $longitudeOfNaturalOrigin,
622
        Length $falseEasting,
623
        Length $falseNorthing
624
    ): ProjectedPoint {
625 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
626 9
        $latitude = $this->latitude->asRadians()->getValue();
627 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
628 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
629 9
        $e = $ellipsoid->getEccentricity();
630 9
        $e2 = $ellipsoid->getEccentricitySquared();
631 9
        $e4 = $e ** 4;
632 9
        $e6 = $e ** 6;
633
634 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
635 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
636
637 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
638 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
639
640 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
641 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
642
643 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
644 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
645
646 9
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
647
    }
648
649
    /**
650
     * Cassini-Soldner.
651
     */
652 9
    public function cassiniSoldner(
653
        Projected $to,
654
        Angle $latitudeOfNaturalOrigin,
655
        Angle $longitudeOfNaturalOrigin,
656
        Length $falseEasting,
657
        Length $falseNorthing
658
    ): ProjectedPoint {
659 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
660 9
        $latitude = $this->latitude->asRadians()->getValue();
661 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
662 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
663 9
        $e = $ellipsoid->getEccentricity();
664 9
        $e2 = $ellipsoid->getEccentricitySquared();
665 9
        $e4 = $e ** 4;
666 9
        $e6 = $e ** 6;
667
668 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
669 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
670
671 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
672 9
        $T = tan($latitude) ** 2;
673 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
674 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
675 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
676
677 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
678 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
679
680 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
681
    }
682
683
    /**
684
     * Hyperbolic Cassini-Soldner.
685
     */
686 18
    public function hyperbolicCassiniSoldner(
687
        Projected $to,
688
        Angle $latitudeOfNaturalOrigin,
689
        Angle $longitudeOfNaturalOrigin,
690
        Length $falseEasting,
691
        Length $falseNorthing
692
    ): ProjectedPoint {
693 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
694 18
        $latitude = $this->latitude->asRadians()->getValue();
695 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
696 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
697 18
        $e = $ellipsoid->getEccentricity();
698 18
        $e2 = $ellipsoid->getEccentricitySquared();
699 18
        $e4 = $e ** 4;
700 18
        $e6 = $e ** 6;
701
702 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
703 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
704
705 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
706 18
        $T = tan($latitude) ** 2;
707 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
708 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
709 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
710 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
711
712 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
713 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
714
715 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
716
    }
717
718
    /**
719
     * Colombia Urban.
720
     */
721 9
    public function columbiaUrban(
722
        Projected $to,
723
        Angle $latitudeOfNaturalOrigin,
724
        Angle $longitudeOfNaturalOrigin,
725
        Length $falseEasting,
726
        Length $falseNorthing,
727
        Length $projectionPlaneOriginHeight
728
    ): ProjectedPoint {
729 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
730 9
        $latitude = $this->latitude->asRadians()->getValue();
731 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
732 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
733 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
734 9
        $e2 = $ellipsoid->getEccentricitySquared();
735
736 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
737 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
738
739 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
740 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
741
742 9
        $A = 1 + $heightOrigin / $nuOrigin;
743 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
744 9
        $G = 1 + $heightOrigin / $rhoMid;
745
746 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
747 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
748
749 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
750
    }
751
752
    /**
753
     * Equal Earth.
754
     */
755 9
    public function equalEarth(
756
        Projected $to,
757
        Angle $longitudeOfNaturalOrigin,
758
        Length $falseEasting,
759
        Length $falseNorthing
760
    ): ProjectedPoint {
761 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
762 9
        $latitude = $this->latitude->asRadians()->getValue();
763 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
764 9
        $e = $ellipsoid->getEccentricity();
765 9
        $e2 = $ellipsoid->getEccentricitySquared();
766
767 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
768 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
769 9
        $beta = self::asin($q / $qP);
770 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
771 9
        $Rq = $a * sqrt($qP / 2);
772
773 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
774 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
775
776 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
777
    }
778
779
    /**
780
     * Equidistant Cylindrical
781
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
782
     */
783 9
    public function equidistantCylindrical(
784
        Projected $to,
785
        Angle $latitudeOf1stStandardParallel,
786
        Angle $longitudeOfNaturalOrigin,
787
        Length $falseEasting,
788
        Length $falseNorthing
789
    ): ProjectedPoint {
790 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
791 9
        $latitude = $this->latitude->asRadians()->getValue();
792 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
793 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
794 9
        $e = $ellipsoid->getEccentricity();
795 9
        $e2 = $ellipsoid->getEccentricitySquared();
796 9
        $e4 = $e ** 4;
797 9
        $e6 = $e ** 6;
798 9
        $e8 = $e ** 8;
799 9
        $e10 = $e ** 10;
800 9
        $e12 = $e ** 12;
801 9
        $e14 = $e ** 14;
802
803 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
804
805 9
        $M = $a * (
806 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
807 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
808 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
809 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
810 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
811 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
812 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
813 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
814
        );
815
816 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
817 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
818
819 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
820
    }
821
822
    /**
823
     * Guam Projection
824
     * Simplified form of Oblique Azimuthal Equidistant projection method.
825
     */
826 9
    public function guamProjection(
827
        Projected $to,
828
        Angle $latitudeOfNaturalOrigin,
829
        Angle $longitudeOfNaturalOrigin,
830
        Length $falseEasting,
831
        Length $falseNorthing
832
    ): ProjectedPoint {
833 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
834 9
        $latitude = $this->latitude->asRadians()->getValue();
835 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
836 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
837 9
        $e = $ellipsoid->getEccentricity();
838 9
        $e2 = $ellipsoid->getEccentricitySquared();
839 9
        $e4 = $e ** 4;
840 9
        $e6 = $e ** 6;
841
842 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
843 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
844 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
845
846 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
847 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
848
849 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
850
    }
851
852
    /**
853
     * Krovak.
854
     */
855 36
    public function krovak(
856
        Projected $to,
857
        Angle $latitudeOfProjectionCentre,
858
        Angle $longitudeOfOrigin,
859
        Angle $coLatitudeOfConeAxis,
860
        Angle $latitudeOfPseudoStandardParallel,
861
        Scale $scaleFactorOnPseudoStandardParallel,
862
        Length $falseEasting,
863
        Length $falseNorthing
864
    ): ProjectedPoint {
865 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
866 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
867 36
        $latitude = $this->latitude->asRadians()->getValue();
868 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
869 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
870 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
871 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
872 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
873 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
874 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
875 36
        $e = $ellipsoid->getEccentricity();
876 36
        $e2 = $ellipsoid->getEccentricitySquared();
877
878 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
879 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
880 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
881 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
882 36
        $n = sin($latitudeP);
883 36
        $rO = $kP * $A / tan($latitudeP);
884
885 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
886 36
        $V = $B * ($longitudeO - $longitude);
887 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
888 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
889 36
        $theta = $n * $D;
890 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
891 36
        $X = $r * cos($theta);
892 36
        $Y = $r * sin($theta);
893
894 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
895 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
896
897 36
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
898
    }
899
900
    /**
901
     * Krovak Modified
902
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
903
     * to be a map projection.
904
     */
905 18
    public function krovakModified(
906
        Projected $to,
907
        Angle $latitudeOfProjectionCentre,
908
        Angle $longitudeOfOrigin,
909
        Angle $coLatitudeOfConeAxis,
910
        Angle $latitudeOfPseudoStandardParallel,
911
        Scale $scaleFactorOnPseudoStandardParallel,
912
        Length $falseEasting,
913
        Length $falseNorthing,
914
        Length $ordinate1OfEvaluationPoint,
915
        Length $ordinate2OfEvaluationPoint,
916
        Coefficient $C1,
917
        Coefficient $C2,
918
        Coefficient $C3,
919
        Coefficient $C4,
920
        Coefficient $C5,
921
        Coefficient $C6,
922
        Coefficient $C7,
923
        Coefficient $C8,
924
        Coefficient $C9,
925
        Coefficient $C10
926
    ): ProjectedPoint {
927 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
928
929 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
930 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
931 18
        $c1 = $C1->asUnity()->getValue();
932 18
        $c2 = $C2->asUnity()->getValue();
933 18
        $c3 = $C3->asUnity()->getValue();
934 18
        $c4 = $C4->asUnity()->getValue();
935 18
        $c5 = $C5->asUnity()->getValue();
936 18
        $c6 = $C6->asUnity()->getValue();
937 18
        $c7 = $C7->asUnity()->getValue();
938 18
        $c8 = $C8->asUnity()->getValue();
939 18
        $c9 = $C9->asUnity()->getValue();
940 18
        $c10 = $C10->asUnity()->getValue();
941
942 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
943 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
944
945 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
946 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
947
948 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
949 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
950
951 18
        return ProjectedPoint::create(new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $to, $this->epoch);
952
    }
953
954
    /**
955
     * Lambert Azimuthal Equal Area
956
     * This is the ellipsoidal form of the projection.
957
     */
958 9
    public function lambertAzimuthalEqualArea(
959
        Projected $to,
960
        Angle $latitudeOfNaturalOrigin,
961
        Angle $longitudeOfNaturalOrigin,
962
        Length $falseEasting,
963
        Length $falseNorthing
964
    ): ProjectedPoint {
965 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
966 9
        $latitude = $this->latitude->asRadians()->getValue();
967 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
968 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
969 9
        $e = $ellipsoid->getEccentricity();
970 9
        $e2 = $ellipsoid->getEccentricitySquared();
971
972 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
973 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
974 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
975 9
        $beta = self::asin($q / $qP);
976 9
        $betaO = self::asin($qO / $qP);
977 9
        $Rq = $a * sqrt($qP / 2);
978 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
979 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
980
981 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
982 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
983
984 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
985
    }
986
987
    /**
988
     * Lambert Azimuthal Equal Area (Spherical)
989
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
990
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
991
     * methods.
992
     */
993 9
    public function lambertAzimuthalEqualAreaSpherical(
994
        Projected $to,
995
        Angle $latitudeOfNaturalOrigin,
996
        Angle $longitudeOfNaturalOrigin,
997
        Length $falseEasting,
998
        Length $falseNorthing
999
    ): ProjectedPoint {
1000 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1001 9
        $latitude = $this->latitude->asRadians()->getValue();
1002 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1003 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1004
1005 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1006
1007 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1008 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1009
1010 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1011
    }
1012
1013
    /**
1014
     * Lambert Conic Conformal (1SP).
1015
     */
1016 9
    public function lambertConicConformal1SP(
1017
        Projected $to,
1018
        Angle $latitudeOfNaturalOrigin,
1019
        Angle $longitudeOfNaturalOrigin,
1020
        Scale $scaleFactorAtNaturalOrigin,
1021
        Length $falseEasting,
1022
        Length $falseNorthing
1023
    ): ProjectedPoint {
1024 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1025 9
        $latitude = $this->latitude->asRadians()->getValue();
1026 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1027 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1028 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1029 9
        $e = $ellipsoid->getEccentricity();
1030 9
        $e2 = $ellipsoid->getEccentricitySquared();
1031
1032 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1033 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1034 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1035 9
        $n = sin($latitudeOrigin);
1036 9
        $F = $mO / ($n * $tO ** $n);
1037 9
        $rO = $a * $F * $tO ** $n * $kO;
1038 9
        $r = $a * $F * $t ** $n * $kO;
1039 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1040
1041 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1042 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1043
1044 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1045
    }
1046
1047
    /**
1048
     * Lambert Conic Conformal (1SP) Variant B.
1049
     */
1050
    public function lambertConicConformal1SPVariantB(
1051
        Projected $to,
1052
        Angle $latitudeOfNaturalOrigin,
1053
        Scale $scaleFactorAtNaturalOrigin,
1054
        Angle $latitudeOfFalseOrigin,
1055
        Angle $longitudeOfFalseOrigin,
1056
        Length $eastingAtFalseOrigin,
1057
        Length $northingAtFalseOrigin
1058
    ): ProjectedPoint {
1059
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1060
        $latitude = $this->latitude->asRadians()->getValue();
1061
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1062
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1063
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1064
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1065
        $e = $ellipsoid->getEccentricity();
1066
        $e2 = $ellipsoid->getEccentricitySquared();
1067
1068
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1069
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1070
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1071
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1072
        $n = sin($latitudeNaturalOrigin);
1073
        $F = $mO / ($n * $tO ** $n);
1074
        $rF = $a * $F * $tF ** $n * $kO;
1075
        $r = $a * $F * $t ** $n * $kO;
1076
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1077
1078
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1079
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1080
1081
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1082
    }
1083
1084
    /**
1085
     * Lambert Conic Conformal (2SP Belgium)
1086
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1087
     * with appropriately modified parameter values.
1088
     */
1089 9
    public function lambertConicConformal2SPBelgium(
1090
        Projected $to,
1091
        Angle $latitudeOfFalseOrigin,
1092
        Angle $longitudeOfFalseOrigin,
1093
        Angle $latitudeOf1stStandardParallel,
1094
        Angle $latitudeOf2ndStandardParallel,
1095
        Length $eastingAtFalseOrigin,
1096
        Length $northingAtFalseOrigin
1097
    ): ProjectedPoint {
1098 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1099 9
        $latitude = $this->latitude->asRadians()->getValue();
1100 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1101 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1102 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1103 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1104 9
        $e = $ellipsoid->getEccentricity();
1105 9
        $e2 = $ellipsoid->getEccentricitySquared();
1106
1107 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1108 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1109 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1110 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1111 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1112 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1113 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1114 9
        $F = $m1 / ($n * $t1 ** $n);
1115 9
        $r = $a * $F * $t ** $n;
1116 9
        $rF = $a * $F * $tF ** $n;
1117 9
        if (is_nan($rF)) {
1118 9
            $rF = 0;
1119
        }
1120 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1121
1122 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1123 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1124
1125 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1126
    }
1127
1128
    /**
1129
     * Lambert Conic Conformal (2SP Michigan).
1130
     */
1131 9
    public function lambertConicConformal2SPMichigan(
1132
        Projected $to,
1133
        Angle $latitudeOfFalseOrigin,
1134
        Angle $longitudeOfFalseOrigin,
1135
        Angle $latitudeOf1stStandardParallel,
1136
        Angle $latitudeOf2ndStandardParallel,
1137
        Length $eastingAtFalseOrigin,
1138
        Length $northingAtFalseOrigin,
1139
        Scale $ellipsoidScalingFactor
1140
    ): ProjectedPoint {
1141 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1142 9
        $latitude = $this->latitude->asRadians()->getValue();
1143 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1144 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1145 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1146 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1147 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1148 9
        $e = $ellipsoid->getEccentricity();
1149 9
        $e2 = $ellipsoid->getEccentricitySquared();
1150
1151 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1152 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1153 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1154 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1155 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1156 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1157 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1158 9
        $F = $m1 / ($n * $t1 ** $n);
1159 9
        $r = $a * $K * $F * $t ** $n;
1160 9
        $rF = $a * $K * $F * $tF ** $n;
1161 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1162
1163 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1164 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1165
1166 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1167
    }
1168
1169
    /**
1170
     * Lambert Conic Conformal (2SP).
1171
     */
1172 9
    public function lambertConicConformal2SP(
1173
        Projected $to,
1174
        Angle $latitudeOfFalseOrigin,
1175
        Angle $longitudeOfFalseOrigin,
1176
        Angle $latitudeOf1stStandardParallel,
1177
        Angle $latitudeOf2ndStandardParallel,
1178
        Length $eastingAtFalseOrigin,
1179
        Length $northingAtFalseOrigin
1180
    ): ProjectedPoint {
1181 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1182 9
        $latitude = $this->latitude->asRadians()->getValue();
1183 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1184 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1185 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1186 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1187 9
        $e = $ellipsoid->getEccentricity();
1188 9
        $e2 = $ellipsoid->getEccentricitySquared();
1189
1190 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1191 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1192 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1193 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1194 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1195 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1196 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1197 9
        $F = $m1 / ($n * $t1 ** $n);
1198 9
        $r = $a * $F * $t ** $n;
1199 9
        $rF = $a * $F * $tF ** $n;
1200 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1201
1202 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1203 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1204
1205 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1206
    }
1207
1208
    /**
1209
     * Lambert Conic Conformal (West Orientated).
1210
     */
1211
    public function lambertConicConformalWestOrientated(
1212
        Projected $to,
1213
        Angle $latitudeOfNaturalOrigin,
1214
        Angle $longitudeOfNaturalOrigin,
1215
        Scale $scaleFactorAtNaturalOrigin,
1216
        Length $falseEasting,
1217
        Length $falseNorthing
1218
    ): ProjectedPoint {
1219
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1220
        $latitude = $this->latitude->asRadians()->getValue();
1221
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1222
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1223
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1224
        $e = $ellipsoid->getEccentricity();
1225
        $e2 = $ellipsoid->getEccentricitySquared();
1226
1227
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1228
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1229
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1230
        $n = sin($latitudeOrigin);
1231
        $F = $mO / ($n * $tO ** $n);
1232
        $rO = $a * $F * $tO ** $n ** $kO;
1233
        $r = $a * $F * $t ** $n ** $kO;
1234
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1235
1236
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1237
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1238
1239
        return ProjectedPoint::create(new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $to, $this->epoch);
1240
    }
1241
1242
    /**
1243
     * Lambert Conic Near-Conformal
1244
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1245
     * series expansion of the projection formulae.
1246
     */
1247 9
    public function lambertConicNearConformal(
1248
        Projected $to,
1249
        Angle $latitudeOfNaturalOrigin,
1250
        Angle $longitudeOfNaturalOrigin,
1251
        Scale $scaleFactorAtNaturalOrigin,
1252
        Length $falseEasting,
1253
        Length $falseNorthing
1254
    ): ProjectedPoint {
1255 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1256 9
        $latitude = $this->latitude->asRadians()->getValue();
1257 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1258 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1259 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1260 9
        $e2 = $ellipsoid->getEccentricitySquared();
1261 9
        $f = $ellipsoid->getInverseFlattening();
1262
1263 9
        $n = $f / (2 - $f);
1264 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1265 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1266 9
        $A = 1 / (6 * $rhoO * $nuO);
1267 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1268 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1269 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1270 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1271 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1272 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1273 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1274 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1275 9
        $m = $s - $sO;
1276 9
        $M = $kO * ($m + $A * $m ** 3);
1277 9
        $r = $rO - $M;
1278 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1279
1280 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1281 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1282
1283 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1284
    }
1285
1286
    /**
1287
     * Lambert Cylindrical Equal Area
1288
     * This is the ellipsoidal form of the projection.
1289
     */
1290 9
    public function lambertCylindricalEqualArea(
1291
        Projected $to,
1292
        Angle $latitudeOf1stStandardParallel,
1293
        Angle $longitudeOfNaturalOrigin,
1294
        Length $falseEasting,
1295
        Length $falseNorthing
1296
    ): ProjectedPoint {
1297 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1298 9
        $latitude = $this->latitude->asRadians()->getValue();
1299 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1300 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1301 9
        $e = $ellipsoid->getEccentricity();
1302 9
        $e2 = $ellipsoid->getEccentricitySquared();
1303
1304 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1305 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1306
1307 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1308 9
        $y = $a * $q / (2 * $k);
1309
1310 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1311 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1312
1313 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1314
    }
1315
1316
    /**
1317
     * Modified Azimuthal Equidistant
1318
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1319
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1320
     */
1321 9
    public function modifiedAzimuthalEquidistant(
1322
        Projected $to,
1323
        Angle $latitudeOfNaturalOrigin,
1324
        Angle $longitudeOfNaturalOrigin,
1325
        Length $falseEasting,
1326
        Length $falseNorthing
1327
    ): ProjectedPoint {
1328 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1329 9
        $latitude = $this->latitude->asRadians()->getValue();
1330 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1331 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1332 9
        $e = $ellipsoid->getEccentricity();
1333 9
        $e2 = $ellipsoid->getEccentricitySquared();
1334
1335 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1336 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1337 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1338 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1339 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1340 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1341
1342 9
        if (sin($alpha) === 0.0) {
1343
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1344
        } else {
1345 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1346
        }
1347
1348 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1349
1350 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1351 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1352
1353 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1354
    }
1355
1356
    /**
1357
     * Oblique Stereographic
1358
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1359
     * Projections - A Working Manual" by John P. Snyder.
1360
     */
1361 9
    public function obliqueStereographic(
1362
        Projected $to,
1363
        Angle $latitudeOfNaturalOrigin,
1364
        Angle $longitudeOfNaturalOrigin,
1365
        Scale $scaleFactorAtNaturalOrigin,
1366
        Length $falseEasting,
1367
        Length $falseNorthing
1368
    ): ProjectedPoint {
1369 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1370 9
        $latitude = $this->latitude->asRadians()->getValue();
1371 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1372 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1373 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1374 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1375 9
        $e = $ellipsoid->getEccentricity();
1376 9
        $e2 = $ellipsoid->getEccentricitySquared();
1377
1378 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1379 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1380 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1381
1382 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1383 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1384 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1385 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1386 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1387 9
        $w2 = $c * $w1;
1388 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1389
1390 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1391
1392 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1393 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1394 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1395 9
        $chi = self::asin(($w - 1) / ($w + 1));
1396
1397 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1398
1399 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1400 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1401
1402 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1403
    }
1404
1405
    /**
1406
     * Polar Stereographic (variant A)
1407
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1408
     */
1409 9
    public function polarStereographicVariantA(
1410
        Projected $to,
1411
        Angle $latitudeOfNaturalOrigin,
1412
        Angle $longitudeOfNaturalOrigin,
1413
        Scale $scaleFactorAtNaturalOrigin,
1414
        Length $falseEasting,
1415
        Length $falseNorthing
1416
    ): ProjectedPoint {
1417 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1418 9
        $latitude = $this->latitude->asRadians()->getValue();
1419 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1420 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1421 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1422 9
        $e = $ellipsoid->getEccentricity();
1423
1424 9
        if ($latitudeOrigin < 0) {
1425
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1426
        } else {
1427 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1428
        }
1429 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1430
1431 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1432 9
        $dE = $rho * sin($theta);
1433 9
        $dN = $rho * cos($theta);
1434
1435 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1436 9
        if ($latitudeOrigin < 0) {
1437
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1438
        } else {
1439 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1440
        }
1441
1442 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1443
    }
1444
1445
    /**
1446
     * Polar Stereographic (variant B).
1447
     */
1448 9
    public function polarStereographicVariantB(
1449
        Projected $to,
1450
        Angle $latitudeOfStandardParallel,
1451
        Angle $longitudeOfOrigin,
1452
        Length $falseEasting,
1453
        Length $falseNorthing
1454
    ): ProjectedPoint {
1455 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1456 9
        $latitude = $this->latitude->asRadians()->getValue();
1457 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1458 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1459 9
        $e = $ellipsoid->getEccentricity();
1460 9
        $e2 = $ellipsoid->getEccentricitySquared();
1461
1462 9
        if ($firstStandardParallel < 0) {
1463 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1464 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1465
        } else {
1466
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1467
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1468
        }
1469 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1470 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1471
1472 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1473
1474 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1475 9
        $dE = $rho * sin($theta);
1476 9
        $dN = $rho * cos($theta);
1477
1478 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1479 9
        if ($firstStandardParallel < 0) {
1480 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1481
        } else {
1482
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1483
        }
1484
1485 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1486
    }
1487
1488
    /**
1489
     * Polar Stereographic (variant C).
1490
     */
1491 9
    public function polarStereographicVariantC(
1492
        Projected $to,
1493
        Angle $latitudeOfStandardParallel,
1494
        Angle $longitudeOfOrigin,
1495
        Length $eastingAtFalseOrigin,
1496
        Length $northingAtFalseOrigin
1497
    ): ProjectedPoint {
1498 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1499 9
        $latitude = $this->latitude->asRadians()->getValue();
1500 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1501 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1502 9
        $e = $ellipsoid->getEccentricity();
1503 9
        $e2 = $ellipsoid->getEccentricitySquared();
1504
1505 9
        if ($firstStandardParallel < 0) {
1506 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1507 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1508
        } else {
1509
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1510
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1511
        }
1512 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1513
1514 9
        $rhoF = $a * $mF;
1515 9
        $rho = $rhoF * $t / $tF;
1516
1517 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1518 9
        $dE = $rho * sin($theta);
1519 9
        $dN = $rho * cos($theta);
1520
1521 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1522 9
        if ($firstStandardParallel < 0) {
1523 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1524
        } else {
1525
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1526
        }
1527
1528 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1529
    }
1530
1531
    /**
1532
     * Popular Visualisation Pseudo Mercator
1533
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1534
     */
1535 9
    public function popularVisualisationPseudoMercator(
1536
        Projected $to,
1537
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1537
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1538
        Angle $longitudeOfNaturalOrigin,
1539
        Length $falseEasting,
1540
        Length $falseNorthing
1541
    ): ProjectedPoint {
1542 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1543 9
        $latitude = $this->latitude->asRadians()->getValue();
1544 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1545
1546 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1547 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1548
1549 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1550
    }
1551
1552
    /**
1553
     * Mercator (variant A)
1554
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1555
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1556
     * completeness in CRS labelling.
1557
     */
1558 18
    public function mercatorVariantA(
1559
        Projected $to,
1560
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1560
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1561
        Angle $longitudeOfNaturalOrigin,
1562
        Scale $scaleFactorAtNaturalOrigin,
1563
        Length $falseEasting,
1564
        Length $falseNorthing
1565
    ): ProjectedPoint {
1566 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1567 18
        $latitude = $this->latitude->asRadians()->getValue();
1568 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1569
1570 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1571 18
        $e = $ellipsoid->getEccentricity();
1572
1573 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1574 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1575
1576 18
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1577
    }
1578
1579
    /**
1580
     * Mercator (variant B)
1581
     * Used for most nautical charts.
1582
     */
1583 9
    public function mercatorVariantB(
1584
        Projected $to,
1585
        Angle $latitudeOf1stStandardParallel,
1586
        Angle $longitudeOfNaturalOrigin,
1587
        Length $falseEasting,
1588
        Length $falseNorthing
1589
    ): ProjectedPoint {
1590 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1591 9
        $latitude = $this->latitude->asRadians()->getValue();
1592 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1593 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1594 9
        $e = $ellipsoid->getEccentricity();
1595 9
        $e2 = $ellipsoid->getEccentricitySquared();
1596
1597 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1598
1599 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1600 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1601
1602 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1603
    }
1604
1605
    /**
1606
     * Longitude rotation
1607
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1608
     * value to the longitude value of the point in the source system.
1609
     */
1610 9
    public function longitudeRotation(
1611
        Geographic $to,
1612
        Angle $longitudeOffset
1613
    ): self {
1614 9
        $newLongitude = $this->longitude->add($longitudeOffset);
1615
1616 9
        return static::create($this->latitude, $newLongitude, $this->height, $to, $this->epoch);
1617
    }
1618
1619
    /**
1620
     * Hotine Oblique Mercator (variant A).
1621
     */
1622 9
    public function obliqueMercatorHotineVariantA(
1623
        Projected $to,
1624
        Angle $latitudeOfProjectionCentre,
1625
        Angle $longitudeOfProjectionCentre,
1626
        Angle $azimuthOfInitialLine,
1627
        Angle $angleFromRectifiedToSkewGrid,
1628
        Scale $scaleFactorOnInitialLine,
1629
        Length $falseEasting,
1630
        Length $falseNorthing
1631
    ): ProjectedPoint {
1632 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1633 9
        $latitude = $this->latitude->asRadians()->getValue();
1634 9
        $longitude = $this->longitude->asRadians()->getValue();
1635 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1636 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1637 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1638 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1639 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1640 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1641 9
        $e = $ellipsoid->getEccentricity();
1642 9
        $e2 = $ellipsoid->getEccentricitySquared();
1643
1644 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1645 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1646 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1647 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1648 9
        $DD = max(1, $D ** 2);
1649 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1650 9
        $H = $F * ($tO) ** $B;
1651 9
        $G = ($F - 1 / $F) / 2;
1652 9
        $gammaO = self::asin(sin($alphaC) / $D);
1653 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1654
1655 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1656 9
        $Q = $H / $t ** $B;
1657 9
        $S = ($Q - 1 / $Q) / 2;
1658 9
        $T = ($Q + 1 / $Q) / 2;
1659 9
        $V = sin($B * ($longitude - $lonO));
1660 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1661 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1662 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1663
1664 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1665 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1666
1667 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1668
    }
1669
1670
    /**
1671
     * Hotine Oblique Mercator (variant B).
1672
     */
1673 9
    public function obliqueMercatorHotineVariantB(
1674
        Projected $to,
1675
        Angle $latitudeOfProjectionCentre,
1676
        Angle $longitudeOfProjectionCentre,
1677
        Angle $azimuthOfInitialLine,
1678
        Angle $angleFromRectifiedToSkewGrid,
1679
        Scale $scaleFactorOnInitialLine,
1680
        Length $eastingAtProjectionCentre,
1681
        Length $northingAtProjectionCentre
1682
    ): ProjectedPoint {
1683 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1684 9
        $latitude = $this->latitude->asRadians()->getValue();
1685 9
        $longitude = $this->longitude->asRadians()->getValue();
1686 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1687 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1688 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1689 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1690 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1691 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1692 9
        $e = $ellipsoid->getEccentricity();
1693 9
        $e2 = $ellipsoid->getEccentricitySquared();
1694
1695 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1696 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1697 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1698 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1699 9
        $DD = max(1, $D ** 2);
1700 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1701 9
        $H = $F * ($tO) ** $B;
1702 9
        $G = ($F - 1 / $F) / 2;
1703 9
        $gammaO = self::asin(sin($alphaC) / $D);
1704 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1705 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1706 9
        if ($alphaC === M_PI / 2) {
1707
            $uC = $A * ($lonC - $lonO);
1708
        } else {
1709 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1710
        }
1711
1712 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1713 9
        $Q = $H / $t ** $B;
1714 9
        $S = ($Q - 1 / $Q) / 2;
1715 9
        $T = ($Q + 1 / $Q) / 2;
1716 9
        $V = sin($B * ($longitude - $lonO));
1717 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1718 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1719
1720 9
        if ($alphaC === M_PI / 2) {
1721
            if ($longitude === $lonC) {
1722
                $u = 0;
1723
            } else {
1724
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1725
            }
1726
        } else {
1727 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1728
        }
1729
1730 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1731 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1732
1733 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1734
    }
1735
1736
    /**
1737
     * Laborde Oblique Mercator.
1738
     */
1739 9
    public function obliqueMercatorLaborde(
1740
        Projected $to,
1741
        Angle $latitudeOfProjectionCentre,
1742
        Angle $longitudeOfProjectionCentre,
1743
        Angle $azimuthOfInitialLine,
1744
        Scale $scaleFactorOnInitialLine,
1745
        Length $falseEasting,
1746
        Length $falseNorthing
1747
    ): ProjectedPoint {
1748 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1749 9
        $latitude = $this->latitude->asRadians()->getValue();
1750 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1751 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1752 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1753 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1754 9
        $e = $ellipsoid->getEccentricity();
1755 9
        $e2 = $ellipsoid->getEccentricitySquared();
1756
1757 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1758 9
        $latS = self::asin(sin($latC) / $B);
1759 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1760 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1761
1762 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1763 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1764 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1765 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1766 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1767 9
        $W = cos($P) * sin($L);
1768 9
        $d = hypot($U, $V);
1769 9
        if ($d === 0.0) {
1770
            $LPrime = 0;
1771
            $PPrime = static::sign($W) * M_PI / 2;
1772
        } else {
1773 9
            $LPrime = 2 * atan($V / ($U + $d));
1774 9
            $PPrime = atan($W / $d);
1775
        }
1776 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1777 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1778
1779 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1780 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1781
1782 9
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1783
    }
1784
1785
    /**
1786
     * Transverse Mercator.
1787
     */
1788 112
    public function transverseMercator(
1789
        Projected $to,
1790
        Angle $latitudeOfNaturalOrigin,
1791
        Angle $longitudeOfNaturalOrigin,
1792
        Scale $scaleFactorAtNaturalOrigin,
1793
        Length $falseEasting,
1794
        Length $falseNorthing
1795
    ): ProjectedPoint {
1796 112
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1797 112
        $latitude = $this->latitude->asRadians()->getValue();
1798 112
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1799 112
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1800 112
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1801 112
        $e = $ellipsoid->getEccentricity();
1802 112
        $f = $ellipsoid->getInverseFlattening();
1803
1804 112
        $n = $f / (2 - $f);
1805 112
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1806
1807 112
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1808 112
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1809 112
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1810 112
        $h4 = (49561 / 161280) * $n ** 4;
1811
1812 112
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1813 81
            $mO = 0;
1814 31
        } elseif ($latitudeOrigin === M_PI / 2) {
1815
            $mO = $B * M_PI / 2;
1816 31
        } elseif ($latitudeOrigin === -M_PI / 2) {
1817
            $mO = $B * -M_PI / 2;
1818
        } else {
1819 31
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1820 31
            $betaO = atan(sinh($qO));
1821 31
            $xiO0 = self::asin(sin($betaO));
1822 31
            $xiO1 = $h1 * sin(2 * $xiO0);
1823 31
            $xiO2 = $h2 * sin(4 * $xiO0);
1824 31
            $xiO3 = $h3 * sin(6 * $xiO0);
1825 31
            $xiO4 = $h4 * sin(8 * $xiO0);
1826 31
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1827 31
            $mO = $B * $xiO;
1828
        }
1829
1830 112
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1831 112
        $beta = atan(sinh($Q));
1832 112
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1833 112
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1834 112
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1835 112
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1836 112
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1837 112
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1838 112
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1839 112
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1840 112
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1841 112
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1842 112
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1843 112
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1844
1845 112
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1846 112
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1847
1848 112
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1849
    }
1850
1851
    /**
1852
     * Transverse Mercator Zoned Grid System
1853
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1854
     * each zone.
1855
     */
1856 36
    public function transverseMercatorZonedGrid(
1857
        Projected $to,
1858
        Angle $latitudeOfNaturalOrigin,
1859
        Angle $initialLongitude,
1860
        Angle $zoneWidth,
1861
        Scale $scaleFactorAtNaturalOrigin,
1862
        Length $falseEasting,
1863
        Length $falseNorthing
1864
    ): ProjectedPoint {
1865 36
        $W = $zoneWidth->asDegrees()->getValue();
1866 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1867
1868 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1869 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1870
1871 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1872
    }
1873
1874
    /**
1875
     * New Zealand Map Grid.
1876
     */
1877 27
    public function newZealandMapGrid(
1878
        Projected $to,
1879
        Angle $latitudeOfNaturalOrigin,
1880
        Angle $longitudeOfNaturalOrigin,
1881
        Length $falseEasting,
1882
        Length $falseNorthing
1883
    ): ProjectedPoint {
1884 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1885 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1886
1887 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1888 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1889
1890 27
        $deltaPsi = 0;
1891 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1892 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1893 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1894 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1895 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1896 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1897 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1898 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1899 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1900 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1901
1902 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1903
1904 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1905 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1906 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1907 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1908 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1909 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1910 27
        $z = new ComplexNumber(0, 0);
1911 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1912 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1913 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1914 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1915 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1916 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1917
1918 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1919 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1920
1921 27
        return ProjectedPoint::create(new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $to, $this->epoch);
1922
    }
1923
1924
    /**
1925
     * Madrid to ED50 polynomial.
1926
     */
1927 9
    public function madridToED50Polynomial(
1928
        Geographic2D $to,
1929
        Scale $A0,
1930
        Scale $A1,
1931
        Scale $A2,
1932
        Scale $A3,
1933
        Angle $B00,
1934
        Scale $B0,
1935
        Scale $B1,
1936
        Scale $B2,
1937
        Scale $B3
1938
    ): self {
1939 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1940 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1941
1942 9
        return self::create($this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $to, $this->epoch);
1943
    }
1944
1945
    /**
1946
     * Geographic3D to 2D conversion.
1947
     */
1948 46
    public function threeDToTwoD(
1949
        Geographic $to
1950
    ): self {
1951 46
        if ($to instanceof Geographic2D) {
1952 46
            return static::create($this->latitude, $this->longitude, null, $to, $this->epoch);
1953
        }
1954
1955
        return static::create($this->latitude, $this->longitude, new Metre(0), $to, $this->epoch);
1956
    }
1957
1958
    /**
1959
     * Geographic2D offsets.
1960
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1961
     * coordinate values of the point in the source system.
1962
     */
1963 9
    public function geographic2DOffsets(
1964
        Geographic $to,
1965
        Angle $latitudeOffset,
1966
        Angle $longitudeOffset
1967
    ): self {
1968 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1969 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1970
1971 9
        return static::create($toLatitude, $toLongitude, null, $to, $this->epoch);
1972
    }
1973
1974
    /*
1975
     * Geographic2D with Height Offsets.
1976
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1977
     * coordinate values of the point in the source system.
1978
     */
1979
    public function geographic2DWithHeightOffsets(
1980
        Compound $to,
1981
        Angle $latitudeOffset,
1982
        Angle $longitudeOffset,
1983
        Length $geoidUndulation
1984
    ): CompoundPoint {
1985
        $toLatitude = $this->latitude->add($latitudeOffset);
1986
        $toLongitude = $this->longitude->add($longitudeOffset);
1987
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1987
        /** @scrutinizer ignore-call */ 
1988
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1988
1989
        $horizontal = static::create($toLatitude, $toLongitude, null, $to->getHorizontal(), $this->epoch);
1990
        $vertical = VerticalPoint::create($toHeight, $to->getVertical(), $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1990
        $vertical = VerticalPoint::create(/** @scrutinizer ignore-type */ $toHeight, $to->getVertical(), $this->epoch);
Loading history...
1991
1992
        return CompoundPoint::create($horizontal, $vertical, $to, $this->epoch);
1993
    }
1994
1995
    /**
1996
     * General polynomial.
1997
     * @param Coefficient[] $powerCoefficients
1998
     */
1999 18
    public function generalPolynomial(
2000
        Geographic $to,
2001
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2002
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2003
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2004
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2005
        Scale $scalingFactorForSourceCRSCoordDifferences,
2006
        Scale $scalingFactorForTargetCRSCoordDifferences,
2007
        Scale $A0,
2008
        Scale $B0,
2009
        array $powerCoefficients
2010
    ): self {
2011 18
        $xs = $this->latitude->getValue();
2012 18
        $ys = $this->longitude->getValue();
2013
2014 18
        $t = $this->generalPolynomialUnitless(
2015 18
            $xs,
2016
            $ys,
2017
            $ordinate1OfEvaluationPointInSourceCRS,
2018
            $ordinate2OfEvaluationPointInSourceCRS,
2019
            $ordinate1OfEvaluationPointInTargetCRS,
2020
            $ordinate2OfEvaluationPointInTargetCRS,
2021
            $scalingFactorForSourceCRSCoordDifferences,
2022
            $scalingFactorForTargetCRSCoordDifferences,
2023
            $A0,
2024
            $B0,
2025
            $powerCoefficients
2026
        );
2027
2028 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2029 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2030
2031 18
        return static::create(
2032 18
            Angle::makeUnit($t['xt'], $xtUnit),
2033 18
            Angle::makeUnit($t['yt'], $ytUnit),
2034 18
            $this->height,
2035
            $to,
2036 18
            $this->epoch
2037
        );
2038
    }
2039
2040
    /**
2041
     * Reversible polynomial.
2042
     * @param Coefficient[] $powerCoefficients
2043
     */
2044 36
    public function reversiblePolynomial(
2045
        Geographic $to,
2046
        Angle $ordinate1OfEvaluationPoint,
2047
        Angle $ordinate2OfEvaluationPoint,
2048
        Scale $scalingFactorForCoordDifferences,
2049
        Scale $A0,
2050
        Scale $B0,
2051
        $powerCoefficients
2052
    ): self {
2053 36
        $xs = $this->latitude->getValue();
2054 36
        $ys = $this->longitude->getValue();
2055
2056 36
        $t = $this->reversiblePolynomialUnitless(
2057 36
            $xs,
2058
            $ys,
2059
            $ordinate1OfEvaluationPoint,
2060
            $ordinate2OfEvaluationPoint,
2061
            $scalingFactorForCoordDifferences,
2062
            $A0,
2063
            $B0,
2064
            $powerCoefficients
2065
        );
2066
2067 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2068 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2069
2070 36
        return static::create(
2071 36
            Angle::makeUnit($t['xt'], $xtUnit),
2072 36
            Angle::makeUnit($t['yt'], $ytUnit),
2073 36
            $this->height,
2074
            $to,
2075 36
            $this->epoch
2076
        );
2077
    }
2078
2079
    /**
2080
     * Axis Order Reversal.
2081
     */
2082
    public function axisReversal(
2083
        Geographic $to
2084
    ): self {
2085
        // axes are read in from the CRS, this is a book-keeping adjustment only
2086
        return static::create($this->latitude, $this->longitude, $this->height, $to, $this->epoch);
2087
    }
2088
2089
    /**
2090
     * Ordnance Survey National Transformation
2091
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2092
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2093
     */
2094 2
    public function OSTN15(
2095
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2095
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2096
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2097
    ): ProjectedPoint {
2098 2
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2099 2
        $etrs89NationalGrid = new Projected(
2100 2
            'ETRS89 / National Grid',
2101 2
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2102 2
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2103 2
            $osgb36NationalGrid->getBoundingArea()
2104
        );
2105
2106 2
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2107
2108 2
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2109
    }
2110
2111
    /**
2112
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2113
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2114
     * coordinate differences.
2115
     */
2116 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2117
        Compound $to,
2118
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2119
    ): CompoundPoint {
2120 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2121 1
        $etrs89NationalGrid = new Projected(
2122 1
            'ETRS89 / National Grid',
2123 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2124 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2125 1
            $osgb36NationalGrid->getBoundingArea()
2126
        );
2127
2128 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2129
2130 1
        $horizontalPoint = self::create(
2131 1
            $this->latitude,
2132 1
            $this->longitude,
2133 1
            null,
2134 1
            $to->getHorizontal(),
2135 1
            $this->getCoordinateEpoch()
2136
        );
2137
2138 1
        $verticalPoint = VerticalPoint::create(
2139 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2139
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2140 1
            $to->getVertical(),
2141 1
            $this->getCoordinateEpoch()
2142
        );
2143
2144 1
        return CompoundPoint::create(
2145 1
            $horizontalPoint,
2146 1
            $verticalPoint,
2147 1
            $to,
2148 1
            $this->getCoordinateEpoch()
2149
        );
2150
    }
2151
2152
    /**
2153
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2154
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2155
     * coordinate differences.
2156
     */
2157 1
    public function geographic3DToGravityHeightOSGM15(
2158
        Vertical $to,
2159
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2160
    ): VerticalPoint {
2161 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2162 1
        $etrs89NationalGrid = new Projected(
2163 1
            'ETRS89 / National Grid',
2164 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2165 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2166 1
            $osgb36NationalGrid->getBoundingArea()
2167
        );
2168
2169 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2170
2171 1
        return VerticalPoint::create(
2172 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2172
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2173 1
            $to,
2174 1
            $this->getCoordinateEpoch()
2175
        );
2176
    }
2177
2178
    /**
2179
     * Geog3D to Geog2D+GravityRelatedHeight.
2180
     */
2181 2
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2182
        Compound $to,
2183
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2184
    ): CompoundPoint {
2185 2
        $horizontalPoint = self::create(
2186 2
            $this->latitude,
2187 2
            $this->longitude,
2188 2
            null,
2189 2
            $to->getHorizontal(),
2190 2
            $this->getCoordinateEpoch()
2191
        );
2192
2193 2
        $verticalPoint = VerticalPoint::create(
2194 2
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2194
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2195 2
            $to->getVertical(),
2196 2
            $this->getCoordinateEpoch()
2197
        );
2198
2199 2
        return CompoundPoint::create(
2200 2
            $horizontalPoint,
2201 2
            $verticalPoint,
2202 2
            $to,
2203 2
            $this->getCoordinateEpoch()
2204
        );
2205
    }
2206
2207
    /**
2208
     * Geographic3D to GravityRelatedHeight.
2209
     */
2210 2
    public function geographic3DToGravityHeightFromGrid(
2211
        Vertical $to,
2212
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2213
    ): VerticalPoint {
2214 2
        return VerticalPoint::create(
2215 2
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2215
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2216 2
            $to,
2217 2
            $this->getCoordinateEpoch()
2218
        );
2219
    }
2220
2221
    /**
2222
     * NADCON5.
2223
     * @internal just a wrapper
2224
     */
2225 7
    public function offsetsFromGridNADCON5(
2226
        Geographic $to,
2227
        NADCON5Grid $latitudeDifferenceFile,
2228
        NADCON5Grid $longitudeDifferenceFile,
2229
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2230
        bool $inReverse
2231
    ): self {
2232 7
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2233
2234 7
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2235
    }
2236
2237
    /**
2238
     * Geographic offsets from grid.
2239
     */
2240 12
    public function offsetsFromGrid(
2241
        Geographic $to,
2242
        GeographicGrid $offsetsFile,
2243
        bool $inReverse
2244
    ): self {
2245 12
        if (!$inReverse) {
2246 7
            return $offsetsFile->applyForwardAdjustment($this, $to);
2247
        }
2248
2249 5
        return $offsetsFile->applyReverseAdjustment($this, $to);
2250
    }
2251
2252 353
    public function asGeographicValue(): GeographicValue
2253
    {
2254 353
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2255
    }
2256
2257 18
    public function asUTMPoint(): UTMPoint
2258
    {
2259 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2260 18
        $latitudeOfNaturalOrigin = new Degree(0);
2261 18
        $initialLongitude = new Degree(-180);
2262 18
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2263 18
        $falseEasting = new Metre(500000);
2264 18
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2265 18
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2266 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2267
2268 18
        $projectedCRS = new Projected(
2269 18
            'UTM/' . $this->crs->getSRID(),
2270 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2271 18
            $this->crs->getDatum(),
2272 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter
2273
        );
2274
2275 18
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2276
2277 18
        return new UTMPoint($asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->crs, $this->epoch);
2278
    }
2279
}
2280