Passed
Push — master ( bbeaaa...9ed6c0 )
by Doug
25:29
created

ProjectedPoint   F

Complexity

Total Complexity 138

Size/Duplication

Total Lines 2120
Duplicated Lines 0 %

Test Coverage

Coverage 90.82%

Importance

Changes 10
Bugs 0 Features 0
Metric Value
eloc 1174
c 10
b 0
f 0
dl 0
loc 2120
ccs 1058
cts 1165
cp 0.9082
rs 0.904
wmc 138

58 Methods

Rating   Name   Duplication   Size   Complexity  
B __toString() 0 20 7
A getCoordinateEpoch() 0 3 1
A popularVisualisationPseudoMercator() 0 19 1
A create() 0 7 1
A convert() 0 7 2
A americanPolyconic() 0 46 3
A equidistantCylindrical() 0 42 1
A affineParametricTransform() 0 34 2
B transverseMercator() 0 97 7
A createFromEastingNorthing() 0 3 1
A cassiniSoldner() 0 35 1
A obliqueStereographic() 0 49 2
A hyperbolicCassiniSoldner() 0 40 1
A lambertConicConformal2SP() 0 45 3
A lambertAzimuthalEqualArea() 0 31 2
A generalPolynomial() 0 37 1
A getHeight() 0 3 1
A getWesting() 0 3 1
A bonne() 0 38 3
A lambertConicConformal2SPBelgium() 0 48 4
A newZealandMapGrid() 0 70 2
A lambertConicConformal2SPMichigan() 0 47 3
A lambertConicNearConformal() 0 49 3
A modifiedAzimuthalEquidistant() 0 29 1
A polarStereographicVariantC() 0 47 5
A guamProjection() 0 33 2
A transverseMercatorZonedGrid() 0 16 1
A asGeographicPoint() 0 3 1
A mercatorVariantB() 0 28 1
A obliqueMercatorHotineVariantB() 0 58 2
A getSouthing() 0 3 1
A columbiaUrban() 0 30 1
A polarStereographicVariantB() 0 46 5
A createFromWestingNorthing() 0 3 1
C __construct() 0 43 14
A krovakModified() 0 44 1
A polarStereographicVariantA() 0 41 4
A krovak() 0 46 3
A bonneSouthOrientated() 0 38 3
A mercatorVariantA() 0 28 1
A getNorthing() 0 3 1
A obliqueMercatorHotineVariantA() 0 52 1
A complexPolynomial() 0 44 3
A lambertAzimuthalEqualAreaSpherical() 0 32 5
A lambertCylindricalEqualArea() 0 26 1
A lambertConicConformal1SPVariantB() 0 45 3
A obliqueMercatorLaborde() 0 60 4
A lambertConicConformalWestOrientated() 0 42 3
A offsets() 0 9 1
A similarityTransformation() 0 24 2
A getCRS() 0 3 1
A albersEqualArea() 0 44 2
A equalEarth() 0 32 2
A calculateDistance() 0 16 3
A lambertConicConformal1SP() 0 42 3
A getEasting() 0 3 1
A createFromWestingSouthing() 0 3 1
A OSTN15() 0 7 1

How to fix   Complexity   

Complex Class

Complex classes like ProjectedPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

While breaking up the class, it is a good idea to analyze how other classes use ProjectedPoint, and based on these observations, apply Extract Interface, too.

1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use DateTime;
12
use DateTimeImmutable;
13
use DateTimeInterface;
14
use PHPCoord\CoordinateOperation\AutoConversion;
15
use PHPCoord\CoordinateOperation\ComplexNumber;
16
use PHPCoord\CoordinateOperation\ConvertiblePoint;
17
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
18
use PHPCoord\CoordinateReferenceSystem\CoordinateReferenceSystem;
19
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
20
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
21
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
22
use PHPCoord\CoordinateSystem\Axis;
23
use PHPCoord\CoordinateSystem\Cartesian;
24
use PHPCoord\Exception\InvalidAxesException;
25
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
26
use PHPCoord\Exception\UnknownAxisException;
27
use PHPCoord\UnitOfMeasure\Angle\Angle;
28
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
29
use PHPCoord\UnitOfMeasure\Angle\Degree;
30
use PHPCoord\UnitOfMeasure\Angle\Radian;
31
use PHPCoord\UnitOfMeasure\Length\Length;
32
use PHPCoord\UnitOfMeasure\Length\Metre;
33
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
34
use PHPCoord\UnitOfMeasure\Scale\Scale;
35
use PHPCoord\UnitOfMeasure\Scale\Unity;
36
37
use function abs;
38
use function asinh;
39
use function atan;
40
use function atan2;
41
use function atanh;
42
use function cos;
43
use function cosh;
44
use function count;
45
use function hypot;
46
use function implode;
47
use function is_nan;
48
use function log;
49
use function max;
50
use function sin;
51
use function sinh;
52
use function sqrt;
53
use function substr;
54
use function tan;
55
use function tanh;
56
57
use const M_E;
58
use const M_PI;
59
use const M_PI_2;
60
61
/**
62
 * Coordinate representing a point on a map projection.
63
 */
64
class ProjectedPoint extends Point implements ConvertiblePoint
65
{
66
    use AutoConversion {
67
        convert as protected autoConvert;
68
    }
69
70
    /**
71
     * Easting.
72
     */
73
    protected Length $easting;
74
75
    /**
76
     * Northing.
77
     */
78
    protected Length $northing;
79
80
    /**
81
     * Westing.
82
     */
83
    protected Length $westing;
84
85
    /**
86
     * Southing.
87
     */
88
    protected Length $southing;
89
90
    /**
91
     * Height.
92
     */
93
    protected ?Length $height;
94
95
    /**
96
     * Coordinate reference system.
97
     */
98
    protected Projected $crs;
99
100
    /**
101
     * Coordinate epoch (date for which the specified coordinates represented this point).
102
     */
103
    protected ?DateTimeImmutable $epoch;
104
105 5119
    protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height)
106
    {
107 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) {
108
            throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height');
109
        }
110
111 5119
        if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) {
112
            throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given');
113
        }
114
115 5119
        $this->crs = $crs;
116
117 5119
        $eastingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::EASTING);
118 5119
        $westingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::WESTING);
119 5119
        $northingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::NORTHING);
120 5119
        $southingAxis = $this->crs->getCoordinateSystem()->getAxisByName(Axis::SOUTHING);
121
122 5119
        if ($easting && $eastingAxis) {
123 4948
            $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId());
124 4948
            $this->westing = $this->easting->multiply(-1);
125 171
        } elseif ($westing && $westingAxis) {
126 162
            $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId());
127 162
            $this->easting = $this->westing->multiply(-1);
128
        } else {
129 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
130
        }
131
132 5110
        if ($northing && $northingAxis) {
133 4975
            $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId());
134 4975
            $this->southing = $this->northing->multiply(-1);
135 135
        } elseif ($southing && $southingAxis) {
136 126
            $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId());
137 126
            $this->northing = $this->southing->multiply(-1);
138
        } else {
139 9
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
140
        }
141
142 5101
        if ($epoch instanceof DateTime) {
143 18
            $epoch = DateTimeImmutable::createFromMutable($epoch);
144
        }
145 5101
        $this->epoch = $epoch;
146
147 5101
        $this->height = $height;
148
    }
149
150 4894
    public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
151
    {
152 4894
        return match ($crs->getSRID()) {
153 4894
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

153
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\BritishNationalGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

153
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
154 4841
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

154
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

154
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
155 4832
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

155
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\IrishTransverse...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

155
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
156 4894
            default => new static($crs, $easting, $northing, $westing, $southing, $epoch, $height),
157
        };
158
    }
159
160 509
    public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
161
    {
162 509
        return static::create($crs, $easting, $northing, null, null, $epoch, $height);
163
    }
164
165 27
    public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
166
    {
167 27
        return static::create($crs, null, $northing, $westing, null, $epoch, $height);
168
    }
169
170 54
    public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
171
    {
172 54
        return static::create($crs, null, null, $westing, $southing, $epoch, $height);
173
    }
174
175 2527
    public function getEasting(): Length
176
    {
177 2527
        return $this->easting;
178
    }
179
180 2545
    public function getNorthing(): Length
181
    {
182 2545
        return $this->northing;
183
    }
184
185 90
    public function getWesting(): Length
186
    {
187 90
        return $this->westing;
188
    }
189
190 72
    public function getSouthing(): Length
191
    {
192 72
        return $this->southing;
193
    }
194
195 9
    public function getHeight(): ?Length
196
    {
197 9
        return $this->height;
198
    }
199
200 280
    public function getCRS(): Projected
201
    {
202 280
        return $this->crs;
203
    }
204
205 51
    public function getCoordinateEpoch(): ?DateTimeImmutable
206
    {
207 51
        return $this->epoch;
208
    }
209
210
    /**
211
     * Calculate distance between two points.
212
     * Because this is a simple grid, we can use Pythagoras.
213
     */
214 63
    public function calculateDistance(Point $to): Length
215
    {
216
        try {
217 63
            if ($to instanceof ConvertiblePoint) {
218 63
                $to = $to->convert($this->crs);
219
            }
220
        } finally {
221 63
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
222 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
223
            }
224
225
            /* @var ProjectedPoint $to */
226 54
            return new Metre(
227 54
                sqrt(
228 54
                    ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 +
229 54
                    ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2
230
                )
231
            );
232
        }
233
    }
234
235 54
    public function asGeographicPoint(): GeographicPoint
236
    {
237 54
        return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
0 ignored issues
show
Bug Best Practice introduced by
The expression return $this->performOpe...rs->getBaseCRS(), true) returns the type PHPCoord\Point which includes types incompatible with the type-hinted return PHPCoord\GeographicPoint.
Loading history...
238
    }
239
240 2062
    public function convert(CoordinateReferenceSystem $to, bool $ignoreBoundaryRestrictions = false): Point
241
    {
242 2062
        if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) {
243 1989
            return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
244
        }
245
246 91
        return $this->autoConvert($to, $ignoreBoundaryRestrictions);
247
    }
248
249 162
    public function __toString(): string
250
    {
251 162
        $values = [];
252 162
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
253 162
            if ($axis->getName() === Axis::EASTING) {
254 144
                $values[] = $this->easting;
255 162
            } elseif ($axis->getName() === Axis::NORTHING) {
256 153
                $values[] = $this->northing;
257 18
            } elseif ($axis->getName() === Axis::WESTING) {
258 18
                $values[] = $this->westing;
259 9
            } elseif ($axis->getName() === Axis::SOUTHING) {
260 9
                $values[] = $this->southing;
261
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
262
                $values[] = $this->height;
263
            } else {
264
                throw new UnknownAxisException(); // @codeCoverageIgnore
265
            }
266
        }
267
268 162
        return '(' . implode(', ', $values) . ')';
269
    }
270
271
    /**
272
     * Affine parametric transformation.
273
     */
274 9
    public function affineParametricTransform(
275
        Projected $to,
276
        Length $A0,
277
        Coefficient $A1,
278
        Coefficient $A2,
279
        Length $B0,
280
        Coefficient $B1,
281
        Coefficient $B2,
282
        bool $inReverse
283
    ): self {
284 9
        $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor
285 9
        $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor
286
287 9
        if ($inReverse) {
288
            $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue());
289
            $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D;
290
            $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D;
291
            $a1 = $B2->getValue() / $D;
292
            $a2 = -$A2->getValue() / $D;
293
            $b1 = -$B1->getValue() / $D;
294
            $b2 = $A1->getValue() / $D;
295
        } else {
296 9
            $a0 = $A0->asMetres()->getValue();
297 9
            $a1 = $A1->getValue();
298 9
            $a2 = $A2->getValue();
299 9
            $b0 = $B0->asMetres()->getValue();
300 9
            $b1 = $B1->getValue();
301 9
            $b2 = $B2->getValue();
302
        }
303
304 9
        $xt = $a0 + ($a1 * $xs) + ($a2 * $ys);
305 9
        $yt = $b0 + ($b1 * $xs) + ($b2 * $ys);
306
307 9
        return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch);
308
    }
309
310
    /**
311
     * Albers Equal Area.
312
     */
313 90
    public function albersEqualArea(
314
        Geographic2D|Geographic3D $to,
315
        Angle $latitudeOfFalseOrigin,
316
        Angle $longitudeOfFalseOrigin,
317
        Angle $latitudeOf1stStandardParallel,
318
        Angle $latitudeOf2ndStandardParallel,
319
        Length $eastingAtFalseOrigin,
320
        Length $northingAtFalseOrigin
321
    ): GeographicPoint {
322 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
323 90
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
324 90
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
325 90
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
326 90
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
327 90
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
328 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
329 90
        $e = $ellipsoid->getEccentricity();
330 90
        $e2 = $ellipsoid->getEccentricitySquared();
331 90
        $e4 = $e ** 4;
332 90
        $e6 = $e ** 6;
333
334 90
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
335 90
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
336
337 90
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
338 90
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
339 90
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
340
341 90
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
342 90
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
343 90
        $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n;
344 90
        $rhoPrime = hypot($easting, $rhoOrigin - $northing);
345 90
        $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n;
346 90
        $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e))));
347 90
        if ($n > 0) {
348 9
            $theta = atan2($easting, $rhoOrigin - $northing);
349
        } else {
350 81
            $theta = atan2(-$easting, $northing - $rhoOrigin);
351
        }
352
353 90
        $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime));
354 90
        $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n);
355
356 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
357
    }
358
359
    /**
360
     * American Polyconic.
361
     */
362 72
    public function americanPolyconic(
363
        Geographic2D|Geographic3D $to,
364
        Angle $latitudeOfNaturalOrigin,
365
        Angle $longitudeOfNaturalOrigin,
366
        Length $falseEasting,
367
        Length $falseNorthing
368
    ): GeographicPoint {
369 72
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
370 72
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
371 72
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
372 72
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
373 72
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
374 72
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
375 72
        $e = $ellipsoid->getEccentricity();
376 72
        $e2 = $ellipsoid->getEccentricitySquared();
377 72
        $e4 = $e ** 4;
378 72
        $e6 = $e ** 6;
379
380 72
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
381 72
        $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024);
382 72
        $iii = (15 * $e4 / 256 + 45 * $e6 / 1024);
383 72
        $iv = (35 * $e6 / 3072);
384
385 72
        $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin));
386
387 72
        if ($MO === $northing) {
388 9
            $latitude = 0;
389 9
            $longitude = $longitudeOrigin + $easting / $a;
390
        } else {
391 63
            $A = ($MO + $northing) / $a;
392 63
            $B = $A ** 2 + $easting ** 2 / $a ** 2;
393
394 63
            $latitude = $A;
395 63
            $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
396
            do {
397 63
                $latitudeN = $latitude;
398 63
                $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude);
399 63
                $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude);
400 63
                $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime);
401 63
                $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
402 63
            } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
403
404 63
            $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude);
405
        }
406
407 72
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
408
    }
409
410
    /**
411
     * Bonne.
412
     */
413 9
    public function bonne(
414
        Geographic2D|Geographic3D $to,
415
        Angle $latitudeOfNaturalOrigin,
416
        Angle $longitudeOfNaturalOrigin,
417
        Length $falseEasting,
418
        Length $falseNorthing
419
    ): GeographicPoint {
420 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
421 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
422 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
423 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
424 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
425 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
426 9
        $e = $ellipsoid->getEccentricity();
427 9
        $e2 = $ellipsoid->getEccentricitySquared();
428 9
        $e4 = $e ** 4;
429 9
        $e6 = $e ** 6;
430
431 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
432 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
433 9
        $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin);
434
435 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
436 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
437 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
438
439 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
440 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
441
442 9
        if ($m === 0.0) {
443
            $longitude = $longitudeOrigin; // pole
444 9
        } elseif ($latitudeOrigin >= 0) {
445 9
            $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m;
446
        } else {
447
            $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m;
448
        }
449
450 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
451
    }
452
453
    /**
454
     * Bonne South Orientated.
455
     */
456 9
    public function bonneSouthOrientated(
457
        Geographic2D|Geographic3D $to,
458
        Angle $latitudeOfNaturalOrigin,
459
        Angle $longitudeOfNaturalOrigin,
460
        Length $falseEasting,
461
        Length $falseNorthing
462
    ): GeographicPoint {
463 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
464 9
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
465 9
        $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue();
466 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
467 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
468 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
469 9
        $e = $ellipsoid->getEccentricity();
470 9
        $e2 = $ellipsoid->getEccentricitySquared();
471 9
        $e4 = $e ** 4;
472 9
        $e6 = $e ** 6;
473
474 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
475 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
476 9
        $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin);
477
478 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
479 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
480 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
481
482 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
483 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
484
485 9
        if ($m === 0.0) {
486
            $longitude = $longitudeOrigin; // pole
487 9
        } elseif ($latitudeOrigin >= 0) {
488 9
            $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m;
489
        } else {
490
            $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m;
491
        }
492
493 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
494
    }
495
496
    /**
497
     * Cartesian Grid Offsets
498
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
499
     * coordinate values of the point in the source system.
500
     */
501 9
    public function offsets(
502
        Projected $to,
503
        Length $eastingOffset,
504
        Length $northingOffset
505
    ): self {
506 9
        $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue();
507 9
        $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue();
508
509 9
        return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
510
    }
511
512
    /**
513
     * Cassini-Soldner.
514
     */
515 90
    public function cassiniSoldner(
516
        Geographic2D|Geographic3D $to,
517
        Angle $latitudeOfNaturalOrigin,
518
        Angle $longitudeOfNaturalOrigin,
519
        Length $falseEasting,
520
        Length $falseNorthing
521
    ): GeographicPoint {
522 90
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
523 90
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
524 90
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
525 90
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
526 90
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
527 90
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
528 90
        $e = $ellipsoid->getEccentricity();
529 90
        $e2 = $ellipsoid->getEccentricitySquared();
530 90
        $e4 = $e ** 4;
531 90
        $e6 = $e ** 6;
532
533 90
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
534
535 90
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
536 90
        $M = $MO + $northing;
537 90
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
538 90
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
539
540 90
        $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2);
541 90
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5;
542
543 90
        $T = tan($latitudeCentralMeridian) ** 2;
544 90
        $D = $easting / $nu;
545
546 90
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
547 90
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
548
549 90
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
550
    }
551
552
    /**
553
     * Hyperbolic Cassini-Soldner.
554
     */
555 9
    public function hyperbolicCassiniSoldner(
556
        Geographic2D|Geographic3D $to,
557
        Angle $latitudeOfNaturalOrigin,
558
        Angle $longitudeOfNaturalOrigin,
559
        Length $falseEasting,
560
        Length $falseNorthing
561
    ): GeographicPoint {
562 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
563 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
564 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
565 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
566 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
567 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
568 9
        $e = $ellipsoid->getEccentricity();
569 9
        $e2 = $ellipsoid->getEccentricitySquared();
570 9
        $e4 = $e ** 4;
571 9
        $e6 = $e ** 6;
572
573 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
574 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
575
576 9
        $latitude1 = $latitudeOrigin + $northing / 1567446;
577
578 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2);
579 9
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5;
580
581 9
        $qPrime = $northing ** 3 / (6 * $rho * $nu);
582 9
        $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu);
583 9
        $M = $MO + $northing + $q;
584
585 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
586 9
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
587
588 9
        $T = tan($latitudeCentralMeridian) ** 2;
589 9
        $D = $easting / $nu;
590
591 9
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
592 9
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
593
594 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
595
    }
596
597
    /**
598
     * Colombia Urban.
599
     */
600 9
    public function columbiaUrban(
601
        Geographic2D|Geographic3D $to,
602
        Angle $latitudeOfNaturalOrigin,
603
        Angle $longitudeOfNaturalOrigin,
604
        Length $falseEasting,
605
        Length $falseNorthing,
606
        Length $projectionPlaneOriginHeight
607
    ): GeographicPoint {
608 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
609 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
610 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
611 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
612 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
613 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
614 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
615 9
        $e2 = $ellipsoid->getEccentricitySquared();
616
617 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5;
618
619 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
620
621 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
622 9
        $C = 1 + $heightOrigin / $a;
623 9
        $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2)));
624
625 9
        $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2;
626 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
627 9
        $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude));
628
629 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
630
    }
631
632
    /**
633
     * Equal Earth.
634
     */
635 9
    public function equalEarth(
636
        Geographic2D|Geographic3D $to,
637
        Angle $longitudeOfNaturalOrigin,
638
        Length $falseEasting,
639
        Length $falseNorthing
640
    ): GeographicPoint {
641 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
642 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
643 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
644 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
645 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
646 9
        $e = $ellipsoid->getEccentricity();
647 9
        $e2 = $ellipsoid->getEccentricitySquared();
648 9
        $e4 = $e ** 4;
649 9
        $e6 = $e ** 6;
650
651 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
652 9
        $Rq = $a * sqrt($qP / 2);
653
654 9
        $theta = $northing / $Rq;
655
        do {
656 9
            $thetaN = $theta;
657 9
            $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2));
658 9
            $theta = $theta - $correctionFactor;
659 9
        } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA);
660
661 9
        $beta = self::asin(2 * sin($theta) / sqrt(3));
662
663 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
664 9
        $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta));
665
666 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
667
    }
668
669
    /**
670
     * Equidistant Cylindrical
671
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
672
     */
673 9
    public function equidistantCylindrical(
674
        Geographic2D|Geographic3D $to,
675
        Angle $latitudeOf1stStandardParallel,
676
        Angle $longitudeOfNaturalOrigin,
677
        Length $falseEasting,
678
        Length $falseNorthing
679
    ): GeographicPoint {
680 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
681 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
682 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
683 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
684 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
685 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
686 9
        $e = $ellipsoid->getEccentricity();
687 9
        $e2 = $ellipsoid->getEccentricitySquared();
688 9
        $e4 = $e ** 4;
689 9
        $e6 = $e ** 6;
690 9
        $e8 = $e ** 8;
691 9
        $e10 = $e ** 10;
692 9
        $e12 = $e ** 12;
693 9
        $e14 = $e ** 14;
694
695 9
        $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
696 9
        $n2 = $n ** 2;
697 9
        $n3 = $n ** 3;
698 9
        $n4 = $n ** 4;
699 9
        $n5 = $n ** 5;
700 9
        $n6 = $n ** 6;
701 9
        $n7 = $n ** 7;
702 9
        $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14));
703
704 9
        $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu)
705 9
            + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu)
706 9
            + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu)
707 9
            + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu)
708 9
            + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu)
709 9
            + (293393 / 61440 * $n6) * sin(12 * $mu)
710 9
            + (6845701 / 860160 * $n7) * sin(14 * $mu);
711
712 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel));
713
714 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
715
    }
716
717
    /**
718
     * Guam Projection
719
     * Simplified form of Oblique Azimuthal Equidistant projection method.
720
     */
721 9
    public function guamProjection(
722
        Geographic2D|Geographic3D $to,
723
        Angle $latitudeOfNaturalOrigin,
724
        Angle $longitudeOfNaturalOrigin,
725
        Length $falseEasting,
726
        Length $falseNorthing
727
    ): GeographicPoint {
728 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
729 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
730 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
731 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
732 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
733 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
734 9
        $e = $ellipsoid->getEccentricity();
735 9
        $e2 = $ellipsoid->getEccentricitySquared();
736 9
        $e4 = $e ** 4;
737 9
        $e6 = $e ** 6;
738
739 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
740 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
741 9
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
742
743 9
        $latitude = $latitudeOrigin;
744
        do {
745 9
            $latitudeN = $latitude;
746 9
            $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
747 9
            $mu = $M / ($a * $i);
748 9
            $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
749 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
750
751 9
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude));
752
753 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
754
    }
755
756
    /**
757
     * Krovak.
758
     */
759 36
    public function krovak(
760
        Geographic2D|Geographic3D $to,
761
        Angle $latitudeOfProjectionCentre,
762
        Angle $longitudeOfOrigin,
763
        Angle $coLatitudeOfConeAxis,
764
        Angle $latitudeOfPseudoStandardParallel,
765
        Scale $scaleFactorOnPseudoStandardParallel,
766
        Length $falseEasting,
767
        Length $falseNorthing
768
    ): GeographicPoint {
769 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
770 36
        $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
771 36
        $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
772 36
        $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
773 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
774 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
775 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
776 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
777 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
778 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
779 36
        $e = $ellipsoid->getEccentricity();
780 36
        $e2 = $ellipsoid->getEccentricitySquared();
781
782 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
783 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
784 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
785 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
786 36
        $n = sin($latitudeP);
787 36
        $rO = $kP * $A / tan($latitudeP);
788
789 36
        $r = hypot($southing, $westing) ?: 1;
790 36
        $theta = atan2($westing, $southing);
791 36
        $D = $theta / sin($latitudeP);
792 36
        $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4);
793 36
        $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D));
794 36
        $V = self::asin(cos($T) * sin($D) / cos($U));
795
796 36
        $latitude = $U;
797
        do {
798 36
            $latitudeN = $latitude;
799 36
            $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4);
800 36
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
801
802 36
        $longitude = $longitudeO + $longitudeOffset - $V / $B;
803
804 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
805
    }
806
807
    /**
808
     * Krovak Modified
809
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
810
     * to be a map projection.
811
     */
812 18
    public function krovakModified(
813
        Geographic2D|Geographic3D $to,
814
        Angle $latitudeOfProjectionCentre,
815
        Angle $longitudeOfOrigin,
816
        Angle $coLatitudeOfConeAxis,
817
        Angle $latitudeOfPseudoStandardParallel,
818
        Scale $scaleFactorOnPseudoStandardParallel,
819
        Length $falseEasting,
820
        Length $falseNorthing,
821
        Length $ordinate1OfEvaluationPoint,
822
        Length $ordinate2OfEvaluationPoint,
823
        Coefficient $C1,
824
        Coefficient $C2,
825
        Coefficient $C3,
826
        Coefficient $C4,
827
        Coefficient $C5,
828
        Coefficient $C6,
829
        Coefficient $C7,
830
        Coefficient $C8,
831
        Coefficient $C9,
832
        Coefficient $C10
833
    ): GeographicPoint {
834 18
        $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue();
835 18
        $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue();
836 18
        $c1 = $C1->asUnity()->getValue();
837 18
        $c2 = $C2->asUnity()->getValue();
838 18
        $c3 = $C3->asUnity()->getValue();
839 18
        $c4 = $C4->asUnity()->getValue();
840 18
        $c5 = $C5->asUnity()->getValue();
841 18
        $c6 = $C6->asUnity()->getValue();
842 18
        $c7 = $C7->asUnity()->getValue();
843 18
        $c8 = $C8->asUnity()->getValue();
844 18
        $c9 = $C9->asUnity()->getValue();
845 18
        $c10 = $C10->asUnity()->getValue();
846
847 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
848 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
849
850 18
        $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX;
851 18
        $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY;
852
853 18
        $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch);
854
855 18
        return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
856
    }
857
858
    /**
859
     * Lambert Azimuthal Equal Area
860
     * This is the ellipsoidal form of the projection.
861
     */
862 54
    public function lambertAzimuthalEqualArea(
863
        Geographic2D|Geographic3D $to,
864
        Angle $latitudeOfNaturalOrigin,
865
        Angle $longitudeOfNaturalOrigin,
866
        Length $falseEasting,
867
        Length $falseNorthing
868
    ): GeographicPoint {
869 54
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
870 54
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
871 54
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
872 54
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
873 54
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
874 54
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
875 54
        $e = $ellipsoid->getEccentricity();
876 54
        $e2 = $ellipsoid->getEccentricitySquared();
877 54
        $e4 = $e ** 4;
878 54
        $e6 = $e ** 6;
879
880 54
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
881 54
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
882 54
        $betaO = self::asin($qO / $qP);
883 54
        $Rq = $a * sqrt($qP / 2);
884 54
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
885 54
        $rho = hypot($easting / $D, $D * $northing) ?: 1;
886 54
        $C = 2 * self::asin($rho / (2 * $Rq));
887 54
        $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho);
888
889 54
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
890 54
        $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C));
891
892 54
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
893
    }
894
895
    /**
896
     * Lambert Azimuthal Equal Area (Spherical)
897
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
898
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
899
     * methods.
900
     */
901 9
    public function lambertAzimuthalEqualAreaSpherical(
902
        Geographic2D|Geographic3D $to,
903
        Angle $latitudeOfNaturalOrigin,
904
        Angle $longitudeOfNaturalOrigin,
905
        Length $falseEasting,
906
        Length $falseNorthing
907
    ): GeographicPoint {
908 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
909 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
910 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
911 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
912 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
913 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
914
915 9
        $rho = hypot($easting, $northing) ?: 1;
916 9
        $c = 2 * self::asin($rho / (2 * $a));
917
918 9
        $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho));
919
920 9
        if ($latitudeOrigin === 90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 90 is always false.
Loading history...
921
            $longitude = $longitudeOrigin + atan($easting / -$northing);
922 9
        } elseif ($latitudeOrigin === -90) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === -90 is always false.
Loading history...
923
            $longitude = $longitudeOrigin + atan($easting / $northing);
924
        } else {
925 9
            $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c));
926 9
            $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator);
927 9
            if ($longitudeDenominator < 0) {
928 9
                $longitude += M_PI;
929
            }
930
        }
931
932 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
933
    }
934
935
    /**
936
     * Lambert Conic Conformal (1SP).
937
     */
938 180
    public function lambertConicConformal1SP(
939
        Geographic2D|Geographic3D $to,
940
        Angle $latitudeOfNaturalOrigin,
941
        Angle $longitudeOfNaturalOrigin,
942
        Scale $scaleFactorAtNaturalOrigin,
943
        Length $falseEasting,
944
        Length $falseNorthing
945
    ): GeographicPoint {
946 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
947 180
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
948 180
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
949 180
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
950 180
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
951 180
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
952 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
953 180
        $e = $ellipsoid->getEccentricity();
954 180
        $e2 = $ellipsoid->getEccentricitySquared();
955
956 180
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
957 180
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
958 180
        $n = sin($latitudeOrigin);
959 180
        $F = $mO / ($n * $tO ** $n);
960 180
        $rO = $a * $F * $tO ** $n * $scaleFactorOrigin;
961 180
        $r = hypot($easting, $rO - $northing);
962 180
        if ($n >= 0) {
963 180
            $theta = atan2($easting, $rO - $northing);
964
        } else {
965
            $r = -$r;
966
            $theta = atan2(-$easting, -($rO - $northing));
967
        }
968
969 180
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
970
971 180
        $latitude = M_PI / (2 - 2 * atan($t));
972
        do {
973 180
            $latitudeN = $latitude;
974 180
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
975 180
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
976
977 180
        $longitude = $theta / $n + $longitudeOrigin;
978
979 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
980
    }
981
982
    /**
983
     * Lambert Conic Conformal (west orientated).
984
     */
985
    public function lambertConicConformalWestOrientated(
986
        Geographic2D|Geographic3D $to,
987
        Angle $latitudeOfNaturalOrigin,
988
        Angle $longitudeOfNaturalOrigin,
989
        Scale $scaleFactorAtNaturalOrigin,
990
        Length $falseEasting,
991
        Length $falseNorthing
992
    ): GeographicPoint {
993
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
994
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
995
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
996
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
997
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
998
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
999
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1000
        $e = $ellipsoid->getEccentricity();
1001
        $e2 = $ellipsoid->getEccentricitySquared();
1002
1003
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1004
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1005
        $n = sin($latitudeOrigin);
1006
        $F = $mO / ($n * $tO ** $n);
1007
        $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin;
1008
        $r = hypot($westing, $rO - $northing);
1009
        if ($n >= 0) {
1010
            $theta = atan2($westing, $rO - $northing);
1011
        } else {
1012
            $r = -$r;
1013
            $theta = atan2(-$westing, -($rO - $northing));
1014
        }
1015
1016
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1017
1018
        $latitude = M_PI / (2 - 2 * atan($t));
1019
        do {
1020
            $latitudeN = $latitude;
1021
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1022
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1023
1024
        $longitude = $theta / $n + $longitudeOrigin;
1025
1026
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1027
    }
1028
1029
    /**
1030
     * Lambert Conic Conformal (1SP) Variant B.
1031
     */
1032
    public function lambertConicConformal1SPVariantB(
1033
        Geographic2D|Geographic3D $to,
1034
        Angle $latitudeOfNaturalOrigin,
1035
        Scale $scaleFactorAtNaturalOrigin,
1036
        Angle $latitudeOfFalseOrigin,
1037
        Angle $longitudeOfFalseOrigin,
1038
        Length $eastingAtFalseOrigin,
1039
        Length $northingAtFalseOrigin
1040
    ): GeographicPoint {
1041
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1042
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1043
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1044
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1045
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1046
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1047
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1048
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1049
        $e = $ellipsoid->getEccentricity();
1050
        $e2 = $ellipsoid->getEccentricitySquared();
1051
1052
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1053
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1054
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1055
        $n = sin($latitudeNaturalOrigin);
1056
        $F = $mO / ($n * $tO ** $n);
1057
        $rF = $a * $F * $tF ** $n * $scaleFactorOrigin;
1058
        $r = hypot($easting, $rF - $northing);
1059
        if ($n >= 0) {
1060
            $theta = atan2($easting, $rF - $northing);
1061
        } else {
1062
            $r = -$r;
1063
            $theta = atan2(-$easting, -($rF - $northing));
1064
        }
1065
1066
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1067
1068
        $latitude = M_PI / (2 - 2 * atan($t));
1069
        do {
1070
            $latitudeN = $latitude;
1071
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1072
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1073
1074
        $longitude = $theta / $n + $longitudeFalseOrigin;
1075
1076
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1077
    }
1078
1079
    /**
1080
     * Lambert Conic Conformal (2SP).
1081
     */
1082 199
    public function lambertConicConformal2SP(
1083
        Geographic2D|Geographic3D $to,
1084
        Angle $latitudeOfFalseOrigin,
1085
        Angle $longitudeOfFalseOrigin,
1086
        Angle $latitudeOf1stStandardParallel,
1087
        Angle $latitudeOf2ndStandardParallel,
1088
        Length $eastingAtFalseOrigin,
1089
        Length $northingAtFalseOrigin
1090
    ): GeographicPoint {
1091 199
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1092 199
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1093 199
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1094 199
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1095 199
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1096 199
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1097 199
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1098 199
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1099 199
        $e = $ellipsoid->getEccentricity();
1100 199
        $e2 = $ellipsoid->getEccentricitySquared();
1101
1102 199
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1103 199
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1104 199
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1105 199
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1106 199
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1107 199
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1108 199
        $F = $m1 / ($n * $t1 ** $n);
1109 199
        $rF = $a * $F * $tF ** $n;
1110 199
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1111 199
        $t = ($r / ($a * $F)) ** (1 / $n);
1112 199
        if ($n >= 0) {
1113 199
            $theta = atan2($easting, $rF - $northing);
1114
        } else {
1115
            $theta = atan2(-$easting, -($rF - $northing));
1116
        }
1117
1118 199
        $latitude = M_PI / 2 - 2 * atan($t);
1119
        do {
1120 199
            $latitudeN = $latitude;
1121 199
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1122 199
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1123
1124 199
        $longitude = $theta / $n + $lambdaOrigin;
1125
1126 199
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1127
    }
1128
1129
    /**
1130
     * Lambert Conic Conformal (2SP Michigan).
1131
     */
1132 9
    public function lambertConicConformal2SPMichigan(
1133
        Geographic2D|Geographic3D $to,
1134
        Angle $latitudeOfFalseOrigin,
1135
        Angle $longitudeOfFalseOrigin,
1136
        Angle $latitudeOf1stStandardParallel,
1137
        Angle $latitudeOf2ndStandardParallel,
1138
        Length $eastingAtFalseOrigin,
1139
        Length $northingAtFalseOrigin,
1140
        Scale $ellipsoidScalingFactor
1141
    ): GeographicPoint {
1142 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1143 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1144 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1145 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1146 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1147 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1148 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1149 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1150 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1151 9
        $e = $ellipsoid->getEccentricity();
1152 9
        $e2 = $ellipsoid->getEccentricitySquared();
1153
1154 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1155 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1156 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1157 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1158 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1159 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1160 9
        $F = $m1 / ($n * $t1 ** $n);
1161 9
        $rF = $a * $K * $F * $tF ** $n;
1162 9
        $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n);
1163 9
        $t = ($r / ($a * $K * $F)) ** (1 / $n);
1164 9
        if ($n >= 0) {
1165 9
            $theta = atan2($easting, $rF - $northing);
1166
        } else {
1167
            $theta = atan2(-$easting, -($rF - $northing));
1168
        }
1169
1170 9
        $latitude = M_PI / 2 - 2 * atan($t);
1171
        do {
1172 9
            $latitudeN = $latitude;
1173 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1174 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1175
1176 9
        $longitude = $theta / $n + $lambdaOrigin;
1177
1178 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1179
    }
1180
1181
    /**
1182
     * Lambert Conic Conformal (2SP Belgium)
1183
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1184
     * with appropriately modified parameter values.
1185
     */
1186 9
    public function lambertConicConformal2SPBelgium(
1187
        Geographic2D|Geographic3D $to,
1188
        Angle $latitudeOfFalseOrigin,
1189
        Angle $longitudeOfFalseOrigin,
1190
        Angle $latitudeOf1stStandardParallel,
1191
        Angle $latitudeOf2ndStandardParallel,
1192
        Length $eastingAtFalseOrigin,
1193
        Length $northingAtFalseOrigin
1194
    ): GeographicPoint {
1195 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1196 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1197 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1198 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1199 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1200 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1201 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1202 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1203 9
        $e = $ellipsoid->getEccentricity();
1204 9
        $e2 = $ellipsoid->getEccentricitySquared();
1205
1206 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1207 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1208 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1209 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1210 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1211 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1212 9
        $F = $m1 / ($n * $t1 ** $n);
1213 9
        $rF = $a * $F * $tF ** $n;
1214 9
        if (is_nan($rF)) {
1215 9
            $rF = 0;
1216
        }
1217 9
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1218 9
        $t = ($r / ($a * $F)) ** (1 / $n);
1219 9
        if ($n >= 0) {
1220 9
            $theta = atan2($easting, $rF - $northing);
1221
        } else {
1222
            $theta = atan2(-$easting, -($rF - $northing));
1223
        }
1224
1225 9
        $latitude = M_PI / 2 - 2 * atan($t);
1226
        do {
1227 9
            $latitudeN = $latitude;
1228 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1229 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1230
1231 9
        $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin;
1232
1233 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1234
    }
1235
1236
    /**
1237
     * Lambert Conic Near-Conformal
1238
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1239
     * series expansion of the projection formulae.
1240
     */
1241 9
    public function lambertConicNearConformal(
1242
        Geographic2D|Geographic3D $to,
1243
        Angle $latitudeOfNaturalOrigin,
1244
        Angle $longitudeOfNaturalOrigin,
1245
        Scale $scaleFactorAtNaturalOrigin,
1246
        Length $falseEasting,
1247
        Length $falseNorthing
1248
    ): GeographicPoint {
1249 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1250 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1251 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1252 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1253 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1254 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1255 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1256 9
        $e2 = $ellipsoid->getEccentricitySquared();
1257 9
        $f = $ellipsoid->getFlattening();
1258
1259 9
        $n = $f / (2 - $f);
1260 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1261 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1262 9
        $A = 1 / (6 * $rhoO * $nuO);
1263 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1264 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1265 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1266 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1267 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1268 9
        $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin);
1269 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1270
1271 9
        $theta = atan2($easting, $rO - $northing);
1272 9
        $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin);
1273 9
        $M = $rO - $r;
1274
1275 9
        $m = $M;
1276
        do {
1277 9
            $mN = $m;
1278 9
            $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2);
1279 9
        } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA);
1280
1281 9
        $latitude = $latitudeOrigin + $m / $A;
1282
        do {
1283 9
            $latitudeN = $latitude;
1284 9
            $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime;
1285 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1286
1287 9
        $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin);
1288
1289 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1290
    }
1291
1292
    /**
1293
     * Lambert Cylindrical Equal Area
1294
     * This is the ellipsoidal form of the projection.
1295
     */
1296 9
    public function lambertCylindricalEqualArea(
1297
        Geographic2D|Geographic3D $to,
1298
        Angle $latitudeOf1stStandardParallel,
1299
        Angle $longitudeOfNaturalOrigin,
1300
        Length $falseEasting,
1301
        Length $falseNorthing
1302
    ): GeographicPoint {
1303 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1304 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1305 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1306 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1307 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1308 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1309 9
        $e = $ellipsoid->getEccentricity();
1310 9
        $e2 = $ellipsoid->getEccentricitySquared();
1311 9
        $e4 = $e ** 4;
1312 9
        $e6 = $e ** 6;
1313
1314 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1315 9
        $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2))));
1316 9
        $beta = self::asin(2 * $northing * $k / ($a * $qP));
1317
1318 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
1319 9
        $longitude = $longitudeOrigin + $easting / ($a * $k);
1320
1321 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1322
    }
1323
1324
    /**
1325
     * Modified Azimuthal Equidistant
1326
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1327
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1328
     */
1329 9
    public function modifiedAzimuthalEquidistant(
1330
        Geographic2D|Geographic3D $to,
1331
        Angle $latitudeOfNaturalOrigin,
1332
        Angle $longitudeOfNaturalOrigin,
1333
        Length $falseEasting,
1334
        Length $falseNorthing
1335
    ): GeographicPoint {
1336 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1337 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1338 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1339 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1340 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1341 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1342 9
        $e2 = $ellipsoid->getEccentricitySquared();
1343
1344 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1345 9
        $c = hypot($easting, $northing);
1346 9
        $alpha = atan2($easting, $northing);
1347 9
        $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2);
1348 9
        $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2);
1349 9
        $D = $c / $nuO;
1350 9
        $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24);
1351 9
        $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6);
1352 9
        $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha));
1353
1354 9
        $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2));
1355 9
        $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi));
1356
1357 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1358
    }
1359
1360
    /**
1361
     * Oblique Stereographic
1362
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1363
     * Projections - A Working Manual" by John P. Snyder.
1364
     */
1365 126
    public function obliqueStereographic(
1366
        Geographic2D|Geographic3D $to,
1367
        Angle $latitudeOfNaturalOrigin,
1368
        Angle $longitudeOfNaturalOrigin,
1369
        Scale $scaleFactorAtNaturalOrigin,
1370
        Length $falseEasting,
1371
        Length $falseNorthing
1372
    ): GeographicPoint {
1373 126
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1374 126
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1375 126
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1376 126
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1377 126
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1378 126
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1379 126
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1380 126
        $e = $ellipsoid->getEccentricity();
1381 126
        $e2 = $ellipsoid->getEccentricitySquared();
1382
1383 126
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1384 126
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1385 126
        $R = sqrt($rhoOrigin * $nuOrigin);
1386
1387 126
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1388 126
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1389 126
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1390 126
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1391 126
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1392 126
        $w2 = $c * $w1;
1393 126
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1394
1395 126
        $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2);
1396 126
        $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g;
1397 126
        $i = atan2($easting, $h + $northing);
1398 126
        $j = atan2($easting, $g - $northing) - $i;
1399 126
        $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin));
1400 126
        $lambda = $j + 2 * $i + $longitudeOrigin;
1401
1402 126
        $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin;
1403
1404 126
        $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n;
1405
1406 126
        $latitude = 2 * atan(M_E ** $psi) - M_PI / 2;
1407
        do {
1408 126
            $latitudeN = $latitude;
1409 126
            $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2));
1410 126
            $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2);
1411 126
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1412
1413 126
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1414
    }
1415
1416
    /**
1417
     * Polar Stereographic (variant A)
1418
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1419
     */
1420 9
    public function polarStereographicVariantA(
1421
        Geographic2D|Geographic3D $to,
1422
        Angle $latitudeOfNaturalOrigin,
1423
        Angle $longitudeOfNaturalOrigin,
1424
        Scale $scaleFactorAtNaturalOrigin,
1425
        Length $falseEasting,
1426
        Length $falseNorthing
1427
    ): GeographicPoint {
1428 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1429 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1430 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1431 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1432 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1433 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1434 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1435 9
        $e = $ellipsoid->getEccentricity();
1436 9
        $e2 = $ellipsoid->getEccentricitySquared();
1437 9
        $e4 = $e ** 4;
1438 9
        $e6 = $e ** 6;
1439 9
        $e8 = $e ** 8;
1440
1441 9
        $rho = hypot($easting, $northing);
1442 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin);
1443
1444 9
        if ($latitudeOrigin < 0) {
1445
            $chi = 2 * atan($t) - M_PI / 2;
1446
        } else {
1447 9
            $chi = M_PI / 2 - 2 * atan($t);
1448
        }
1449
1450 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1451
1452 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1453
            $longitude = $longitudeOrigin;
1454 9
        } elseif ($latitudeOrigin < 0) {
1455
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1456
        } else {
1457 9
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1458
        }
1459
1460 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1461
    }
1462
1463
    /**
1464
     * Polar Stereographic (variant B).
1465
     */
1466 9
    public function polarStereographicVariantB(
1467
        Geographic2D|Geographic3D $to,
1468
        Angle $latitudeOfStandardParallel,
1469
        Angle $longitudeOfOrigin,
1470
        Length $falseEasting,
1471
        Length $falseNorthing
1472
    ): GeographicPoint {
1473 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1474 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1475 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1476 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1477 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1478 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1479 9
        $e = $ellipsoid->getEccentricity();
1480 9
        $e2 = $ellipsoid->getEccentricitySquared();
1481 9
        $e4 = $e ** 4;
1482 9
        $e6 = $e ** 6;
1483 9
        $e8 = $e ** 8;
1484
1485 9
        $rho = hypot($easting, $northing);
1486 9
        if ($standardParallel < 0) {
1487 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1488
        } else {
1489
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1490
        }
1491 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1492 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1493 9
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO);
1494
1495 9
        if ($standardParallel < 0) {
1496 9
            $chi = 2 * atan($t) - M_PI / 2;
1497
        } else {
1498
            $chi = M_PI / 2 - 2 * atan($t);
1499
        }
1500
1501 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1502
1503 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1504
            $longitude = $longitudeOrigin;
1505 9
        } elseif ($standardParallel < 0) {
1506 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1507
        } else {
1508
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1509
        }
1510
1511 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1512
    }
1513
1514
    /**
1515
     * Polar Stereographic (variant C).
1516
     */
1517 9
    public function polarStereographicVariantC(
1518
        Geographic2D|Geographic3D $to,
1519
        Angle $latitudeOfStandardParallel,
1520
        Angle $longitudeOfOrigin,
1521
        Length $eastingAtFalseOrigin,
1522
        Length $northingAtFalseOrigin
1523
    ): GeographicPoint {
1524 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1525 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1526 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1527 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1528 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1529 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1530 9
        $e = $ellipsoid->getEccentricity();
1531 9
        $e2 = $ellipsoid->getEccentricitySquared();
1532 9
        $e4 = $e ** 4;
1533 9
        $e6 = $e ** 6;
1534 9
        $e8 = $e ** 8;
1535
1536 9
        if ($standardParallel < 0) {
1537 9
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1538
        } else {
1539
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1540
        }
1541 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1542 9
        $rhoF = $a * $mF;
1543 9
        if ($standardParallel < 0) {
1544 9
            $rho = hypot($easting, $northing + $rhoF);
1545 9
            $t = $rho * $tF / $rhoF;
1546 9
            $chi = 2 * atan($t) - M_PI / 2;
1547
        } else {
1548
            $rho = hypot($easting, $northing - $rhoF);
1549
            $t = $rho * $tF / $rhoF;
1550
            $chi = M_PI / 2 - 2 * atan($t);
1551
        }
1552
1553 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1554
1555 9
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1556
            $longitude = $longitudeOrigin;
1557 9
        } elseif ($standardParallel < 0) {
1558 9
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF);
1559
        } else {
1560
            $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF);
1561
        }
1562
1563 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1564
    }
1565
1566
    /**
1567
     * Popular Visualisation Pseudo Mercator
1568
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1569
     */
1570 18
    public function popularVisualisationPseudoMercator(
1571
        Geographic2D|Geographic3D $to,
1572
        Angle $latitudeOfNaturalOrigin,
1573
        Angle $longitudeOfNaturalOrigin,
1574
        Length $falseEasting,
1575
        Length $falseNorthing
1576
    ): GeographicPoint {
1577 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1578 18
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1579 18
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1580 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1581 18
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1582 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1583
1584 18
        $D = -$northing / $a;
1585 18
        $latitude = M_PI / 2 - 2 * atan(M_E ** $D);
1586 18
        $longitude = $easting / $a + $longitudeOrigin;
1587
1588 18
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1589
    }
1590
1591
    /**
1592
     * Similarity transformation
1593
     * Defined for two-dimensional coordinate systems.
1594
     */
1595 9
    public function similarityTransformation(
1596
        Projected $to,
1597
        Length $ordinate1OfEvaluationPointInTargetCRS,
1598
        Length $ordinate2OfEvaluationPointInTargetCRS,
1599
        Scale $scaleFactorForSourceCRSAxes,
1600
        Angle $rotationAngleOfSourceCRSAxes,
1601
        bool $inReverse
1602
    ): self {
1603 9
        $xs = $this->easting->asMetres()->getValue();
1604 9
        $ys = $this->northing->asMetres()->getValue();
1605 9
        $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue();
1606 9
        $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue();
1607 9
        $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue();
1608 9
        $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue();
1609
1610 9
        if ($inReverse) {
1611
            $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M;
1612
            $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M;
1613
        } else {
1614 9
            $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta);
1615 9
            $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta);
1616
        }
1617
1618 9
        return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1619
    }
1620
1621
    /**
1622
     * Mercator (variant A)
1623
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1624
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1625
     * completeness in CRS labelling.
1626
     */
1627 351
    public function mercatorVariantA(
1628
        Geographic2D|Geographic3D $to,
1629
        Angle $latitudeOfNaturalOrigin,
1630
        Angle $longitudeOfNaturalOrigin,
1631
        Scale $scaleFactorAtNaturalOrigin,
1632
        Length $falseEasting,
1633
        Length $falseNorthing
1634
    ): GeographicPoint {
1635 351
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1636 351
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1637 351
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1638 351
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1639 351
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1640 351
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1641 351
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1642 351
        $e = $ellipsoid->getEccentricity();
1643 351
        $e2 = $ellipsoid->getEccentricitySquared();
1644 351
        $e4 = $e ** 4;
1645 351
        $e6 = $e ** 6;
1646 351
        $e8 = $e ** 8;
1647
1648 351
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1649 351
        $chi = M_PI / 2 - 2 * atan($t);
1650
1651 351
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1652 351
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1653
1654 351
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1655
    }
1656
1657
    /**
1658
     * Mercator (variant B)
1659
     * Used for most nautical charts.
1660
     */
1661 36
    public function mercatorVariantB(
1662
        Geographic2D|Geographic3D $to,
1663
        Angle $latitudeOf1stStandardParallel,
1664
        Angle $longitudeOfNaturalOrigin,
1665
        Length $falseEasting,
1666
        Length $falseNorthing
1667
    ): GeographicPoint {
1668 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1669 36
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1670 36
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1671 36
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1672 36
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1673 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1674 36
        $e = $ellipsoid->getEccentricity();
1675 36
        $e2 = $ellipsoid->getEccentricitySquared();
1676 36
        $e4 = $e ** 4;
1677 36
        $e6 = $e ** 6;
1678 36
        $e8 = $e ** 8;
1679
1680 36
        $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1681
1682 36
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1683 36
        $chi = M_PI / 2 - 2 * atan($t);
1684
1685 36
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1686 36
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1687
1688 36
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1689
    }
1690
1691
    /**
1692
     * Hotine Oblique Mercator (variant A).
1693
     */
1694 117
    public function obliqueMercatorHotineVariantA(
1695
        Geographic2D|Geographic3D $to,
1696
        Angle $latitudeOfProjectionCentre,
1697
        Angle $longitudeOfProjectionCentre,
1698
        Angle $azimuthOfInitialLine,
1699
        Angle $angleFromRectifiedToSkewGrid,
1700
        Scale $scaleFactorOnInitialLine,
1701
        Length $falseEasting,
1702
        Length $falseNorthing
1703
    ): GeographicPoint {
1704 117
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1705 117
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1706 117
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1707 117
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1708 117
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1709 117
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1710 117
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1711 117
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1712 117
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1713 117
        $e = $ellipsoid->getEccentricity();
1714 117
        $e2 = $ellipsoid->getEccentricitySquared();
1715 117
        $e4 = $e ** 4;
1716 117
        $e6 = $e ** 6;
1717 117
        $e8 = $e ** 8;
1718
1719 117
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1720 117
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1721 117
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1722 117
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1723 117
        $DD = max(1, $D ** 2);
1724 117
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1725 117
        $H = $F * $tO ** $B;
1726 117
        $G = ($F - 1 / $F) / 2;
1727 117
        $gammaO = self::asin(sin($alphaC) / $D);
1728 117
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1729
1730 117
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1731 117
        $u = $northing * cos($gammaC) + $easting * sin($gammaC);
1732
1733 117
        $Q = M_E ** -($B * $v / $A);
1734 117
        $S = ($Q - 1 / $Q) / 2;
1735 117
        $T = ($Q + 1 / $Q) / 2;
1736 117
        $V = sin($B * $u / $A);
1737 117
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1738 117
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1739
1740 117
        $chi = M_PI / 2 - 2 * atan($t);
1741
1742 117
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1743 117
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1744
1745 117
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1746
    }
1747
1748
    /**
1749
     * Hotine Oblique Mercator (variant B).
1750
     */
1751 180
    public function obliqueMercatorHotineVariantB(
1752
        Geographic2D|Geographic3D $to,
1753
        Angle $latitudeOfProjectionCentre,
1754
        Angle $longitudeOfProjectionCentre,
1755
        Angle $azimuthOfInitialLine,
1756
        Angle $angleFromRectifiedToSkewGrid,
1757
        Scale $scaleFactorOnInitialLine,
1758
        Length $eastingAtProjectionCentre,
1759
        Length $northingAtProjectionCentre
1760
    ): GeographicPoint {
1761 180
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1762 180
        $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue();
1763 180
        $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue();
1764 180
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1765 180
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1766 180
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1767 180
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1768 180
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1769 180
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1770 180
        $e = $ellipsoid->getEccentricity();
1771 180
        $e2 = $ellipsoid->getEccentricitySquared();
1772 180
        $e4 = $e ** 4;
1773 180
        $e6 = $e ** 6;
1774 180
        $e8 = $e ** 8;
1775
1776 180
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1777 180
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1778 180
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1779 180
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1780 180
        $DD = max(1, $D ** 2);
1781 180
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1782 180
        $H = $F * $tO ** $B;
1783 180
        $G = ($F - 1 / $F) / 2;
1784 180
        $gammaO = self::asin(sin($alphaC) / $D);
1785 180
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1786 180
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1787 180
        if ($alphaC === M_PI / 2) {
1788 54
            $uC = $A * ($lonC - $lonO);
1789
        } else {
1790 126
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1791
        }
1792
1793 180
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1794 180
        $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC));
1795
1796 180
        $Q = M_E ** -($B * $v / $A);
1797 180
        $S = ($Q - 1 / $Q) / 2;
1798 180
        $T = ($Q + 1 / $Q) / 2;
1799 180
        $V = sin($B * $u / $A);
1800 180
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1801 180
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1802
1803 180
        $chi = M_PI / 2 - 2 * atan($t);
1804
1805 180
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1806 180
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1807
1808 180
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1809
    }
1810
1811
    /**
1812
     * Laborde Oblique Mercator.
1813
     */
1814 9
    public function obliqueMercatorLaborde(
1815
        Geographic2D|Geographic3D $to,
1816
        Angle $latitudeOfProjectionCentre,
1817
        Angle $longitudeOfProjectionCentre,
1818
        Angle $azimuthOfInitialLine,
1819
        Scale $scaleFactorOnInitialLine,
1820
        Length $falseEasting,
1821
        Length $falseNorthing
1822
    ): GeographicPoint {
1823 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1824 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1825 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1826 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1827 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1828 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1829 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1830 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1831 9
        $e = $ellipsoid->getEccentricity();
1832 9
        $e2 = $ellipsoid->getEccentricitySquared();
1833
1834 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1835 9
        $latS = self::asin(sin($latC) / $B);
1836 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1837 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1838
1839 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1840
1841 9
        $H0 = new ComplexNumber($northing / $R, $easting / $R);
1842 9
        $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0));
1843
        do {
1844 9
            $HN = $H;
1845 9
            $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0)));
1846 9
        } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA);
1847
1848 9
        $LPrime = -1 * $H->getReal();
1849 9
        $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2;
1850 9
        $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS);
1851 9
        $V = sin($PPrime);
1852 9
        $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS);
1853
1854 9
        $d = hypot($U, $V);
1855 9
        if ($d === 0) {
1856
            $L = 0;
1857
            $P = static::sign($W) * M_PI / 2;
1858
        } else {
1859 9
            $L = 2 * atan($V / ($U + $d));
1860 9
            $P = atan($W / $d);
1861
        }
1862
1863 9
        $longitude = $lonC + ($L / $B);
1864
1865 9
        $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B;
1866
1867 9
        $latitude = 2 * atan(M_E ** $q) - M_PI / 2;
1868
        do {
1869 9
            $latitudeN = $latitude;
1870 9
            $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2;
1871 9
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1872
1873 9
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1874
    }
1875
1876
    /**
1877
     * Transverse Mercator.
1878
     */
1879 740
    public function transverseMercator(
1880
        Geographic2D|Geographic3D $to,
1881
        Angle $latitudeOfNaturalOrigin,
1882
        Angle $longitudeOfNaturalOrigin,
1883
        Scale $scaleFactorAtNaturalOrigin,
1884
        Length $falseEasting,
1885
        Length $falseNorthing
1886
    ): GeographicPoint {
1887 740
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1888 740
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1889 740
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1890 740
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1891 740
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1892 740
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1893 740
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1894 740
        $e = $ellipsoid->getEccentricity();
1895 740
        $f = $ellipsoid->getFlattening();
1896
1897 740
        $n = $f / (2 - $f);
1898 740
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1899
1900 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1901 740
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1902 740
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1903 740
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1904 740
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1905 740
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1906 740
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1907 740
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1908
1909 740
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1910 306
            $mO = 0;
1911 434
        } elseif ($latitudeOrigin === M_PI / 2) {
1912
            $mO = $B * M_PI / 2;
1913 434
        } elseif ($latitudeOrigin === -M_PI / 2) {
1914 99
            $mO = $B * -M_PI / 2;
1915
        } else {
1916 335
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1917 335
            $betaO = atan(sinh($qO));
1918 335
            $xiO0 = self::asin(sin($betaO));
1919 335
            $xiO1 = $h1 * sin(2 * $xiO0);
1920 335
            $xiO2 = $h2 * sin(4 * $xiO0);
1921 335
            $xiO3 = $h3 * sin(6 * $xiO0);
1922 335
            $xiO4 = $h4 * sin(8 * $xiO0);
1923 335
            $xiO5 = $h5 * sin(10 * $xiO0);
1924 335
            $xiO6 = $h6 * sin(12 * $xiO0);
1925 335
            $xiO7 = $h7 * sin(14 * $xiO0);
1926 335
            $xiO8 = $h8 * sin(16 * $xiO0);
1927 335
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1928 335
            $mO = $B * $xiO;
1929
        }
1930
1931 740
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8;
1932 740
        $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8;
1933 740
        $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8;
1934 740
        $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8;
1935 740
        $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8;
1936 740
        $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8;
1937 740
        $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8;
1938 740
        $h8 = (191773887257 / 3719607091200) * $n ** 8;
1939
1940 740
        $eta = $easting / ($B * $kO);
1941 740
        $xi = ($northing + $kO * $mO) / ($B * $kO);
1942 740
        $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta);
1943 740
        $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta);
1944 740
        $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta);
1945 740
        $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta);
1946 740
        $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta);
1947 740
        $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta);
1948 740
        $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta);
1949 740
        $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta);
1950 740
        $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta);
1951 740
        $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta);
1952 740
        $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta);
1953 740
        $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta);
1954 740
        $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta);
1955 740
        $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta);
1956 740
        $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta);
1957 740
        $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta);
1958 740
        $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8;
1959 740
        $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8;
1960
1961 740
        $beta = self::asin(sin($xi0) / cosh($eta0));
1962
1963 740
        $QPrime = asinh(tan($beta));
1964 740
        $Q = asinh(tan($beta));
1965
        do {
1966 740
            $QN = $Q;
1967 740
            $Q = $QPrime + ($e * atanh($e * tanh($Q)));
1968 740
        } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA);
1969
1970 740
        $latitude = atan(sinh($Q));
1971 740
        $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta));
1972
1973 740
        $height = $this->height && $to instanceof Geographic3D ? $this->height : null;
1974
1975 740
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch);
1976
    }
1977
1978
    /**
1979
     * Transverse Mercator Zoned Grid System
1980
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1981
     * each zone.
1982
     */
1983 18
    public function transverseMercatorZonedGrid(
1984
        Geographic2D|Geographic3D $to,
1985
        Angle $latitudeOfNaturalOrigin,
1986
        Angle $initialLongitude,
1987
        Angle $zoneWidth,
1988
        Scale $scaleFactorAtNaturalOrigin,
1989
        Length $falseEasting,
1990
        Length $falseNorthing
1991
    ): GeographicPoint {
1992 18
        $Z = substr((string) $this->easting->asMetres()->getValue(), 0, 2);
1993 18
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1994
1995 18
        $W = $zoneWidth->asDegrees()->getValue();
1996 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1997
1998 18
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1999
    }
2000
2001
    /**
2002
     * General polynomial.
2003
     * @param Coefficient[] $powerCoefficients
2004
     */
2005
    public function generalPolynomial(
2006
        Projected $to,
2007
        Length $ordinate1OfEvaluationPointInSourceCRS,
2008
        Length $ordinate2OfEvaluationPointInSourceCRS,
2009
        Length $ordinate1OfEvaluationPointInTargetCRS,
2010
        Length $ordinate2OfEvaluationPointInTargetCRS,
2011
        Scale $scalingFactorForSourceCRSCoordDifferences,
2012
        Scale $scalingFactorForTargetCRSCoordDifferences,
2013
        Scale $A0,
2014
        Scale $B0,
2015
        array $powerCoefficients
2016
    ): self {
2017
        $xs = $this->easting->getValue();
2018
        $ys = $this->northing->getValue();
2019
2020
        $t = $this->generalPolynomialUnitless(
2021
            $xs,
2022
            $ys,
2023
            $ordinate1OfEvaluationPointInSourceCRS,
2024
            $ordinate2OfEvaluationPointInSourceCRS,
2025
            $ordinate1OfEvaluationPointInTargetCRS,
2026
            $ordinate2OfEvaluationPointInTargetCRS,
2027
            $scalingFactorForSourceCRSCoordDifferences,
2028
            $scalingFactorForTargetCRSCoordDifferences,
2029
            $A0,
2030
            $B0,
2031
            $powerCoefficients
2032
        );
2033
2034
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2035
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2036
2037
        return static::createFromEastingNorthing(
2038
            $to,
2039
            Length::makeUnit($t['xt'], $xtUnit),
2040
            Length::makeUnit($t['yt'], $ytUnit),
2041
            $this->epoch
2042
        );
2043
    }
2044
2045
    /**
2046
     * New Zealand Map Grid.
2047
     */
2048 27
    public function newZealandMapGrid(
2049
        Geographic2D|Geographic3D $to,
2050
        Angle $latitudeOfNaturalOrigin,
2051
        Angle $longitudeOfNaturalOrigin,
2052
        Length $falseEasting,
2053
        Length $falseNorthing
2054
    ): GeographicPoint {
2055 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2056 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2057
2058 27
        $z = new ComplexNumber(
2059 27
            $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(),
2060 27
            $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(),
2061
        );
2062
2063 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
2064 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
2065 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
2066 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
2067 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
2068 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
2069 27
        $b1 = new ComplexNumber(1.3231270439, 0.0);
2070 27
        $b2 = new ComplexNumber(-0.577245789, -0.007809598);
2071 27
        $b3 = new ComplexNumber(0.508307513, -0.112208952);
2072 27
        $b4 = new ComplexNumber(-0.15094762, 0.18200602);
2073 27
        $b5 = new ComplexNumber(1.01418179, 1.64497696);
2074 27
        $b6 = new ComplexNumber(1.9660549, 2.5127645);
2075
2076 27
        $zeta = new ComplexNumber(0, 0);
2077 27
        $zeta = $zeta->add($b1->multiply($z->pow(1)));
2078 27
        $zeta = $zeta->add($b2->multiply($z->pow(2)));
2079 27
        $zeta = $zeta->add($b3->multiply($z->pow(3)));
2080 27
        $zeta = $zeta->add($b4->multiply($z->pow(4)));
2081 27
        $zeta = $zeta->add($b5->multiply($z->pow(5)));
2082 27
        $zeta = $zeta->add($b6->multiply($z->pow(6)));
2083
2084 27
        for ($iterations = 0; $iterations < 2; ++$iterations) {
2085 27
            $numerator = $z;
2086 27
            $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0)));
2087 27
            $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0)));
2088 27
            $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0)));
2089 27
            $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0)));
2090 27
            $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0)));
2091
2092 27
            $denominator = $B1;
2093 27
            $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0)));
2094 27
            $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0)));
2095 27
            $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0)));
2096 27
            $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0)));
2097 27
            $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0)));
2098
2099 27
            $zeta = $numerator->divide($denominator);
2100
        }
2101
2102 27
        $deltaPsi = $zeta->getReal();
2103 27
        $deltaLatitudeToOrigin = 0;
2104 27
        $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1;
2105 27
        $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2;
2106 27
        $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3;
2107 27
        $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4;
2108 27
        $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5;
2109 27
        $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6;
2110 27
        $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7;
2111 27
        $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8;
2112 27
        $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9;
2113
2114 27
        $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001));
2115 27
        $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary()));
2116
2117 27
        return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch);
2118
    }
2119
2120
    /**
2121
     * Complex polynomial.
2122
     * Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients
2123
     * and leads to a smaller number of coefficients than the general polynomials.
2124
     */
2125 9
    public function complexPolynomial(
2126
        Projected $to,
2127
        Length $ordinate1OfEvaluationPointInSourceCRS,
2128
        Length $ordinate2OfEvaluationPointInSourceCRS,
2129
        Length $ordinate1OfEvaluationPointInTargetCRS,
2130
        Length $ordinate2OfEvaluationPointInTargetCRS,
2131
        Scale $scalingFactorForSourceCRSCoordDifferences,
2132
        Scale $scalingFactorForTargetCRSCoordDifferences,
2133
        Scale $A1,
2134
        Scale $A2,
2135
        Scale $A3,
2136
        Scale $A4,
2137
        Scale $A5,
2138
        Scale $A6,
2139
        ?Scale $A7 = null,
2140
        ?Scale $A8 = null
2141
    ): self {
2142 9
        $xs = $this->easting->getValue();
2143 9
        $ys = $this->northing->getValue();
2144 9
        $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue();
2145 9
        $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue();
2146 9
        $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue();
2147 9
        $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue();
2148
2149 9
        $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso);
2150 9
        $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso);
2151
2152 9
        $mTdXdY = new ComplexNumber(0, 0);
2153 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1));
2154 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2)));
2155 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3)));
2156 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4)));
2157
2158 9
        $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2159 9
        $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2160
2161 9
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2162 9
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2163
2164 9
        return static::createFromEastingNorthing(
2165
            $to,
2166 9
            Length::makeUnit($xt, $xtUnit),
2167 9
            Length::makeUnit($yt, $ytUnit),
2168 9
            $this->epoch
2169
        );
2170
    }
2171
2172
    /**
2173
     * Ordnance Survey National Transformation
2174
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2175
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2176
     */
2177 2
    public function OSTN15(
2178
        Geographic2D $to,
2179
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2180
    ): GeographicPoint {
2181 2
        $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this);
2182
2183 2
        return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2184
    }
2185
}
2186