Passed
Push — master ( 48e916...a64be8 )
by Doug
13:11
created

GeographicPoint::__construct()   B

Complexity

Conditions 7
Paths 6

Size

Total Lines 28
Code Lines 16

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 16
CRAP Score 7

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 7
eloc 16
nc 6
nop 5
dl 0
loc 28
ccs 16
cts 16
cp 1
crap 7
rs 8.8333
c 1
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use DateTime;
19
use DateTimeImmutable;
20
use DateTimeInterface;
21
use function hypot;
22
use function implode;
23
use function is_nan;
24
use function log;
25
use const M_E;
26
use const M_PI;
27
use function max;
28
use PHPCoord\CoordinateOperation\AutoConversion;
29
use PHPCoord\CoordinateOperation\ComplexNumber;
30
use PHPCoord\CoordinateOperation\ConvertiblePoint;
31
use PHPCoord\CoordinateOperation\GeocentricValue;
32
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
33
use PHPCoord\CoordinateOperation\GeographicGrid;
34
use PHPCoord\CoordinateOperation\GeographicValue;
35
use PHPCoord\CoordinateOperation\NADCON5Grid;
36
use PHPCoord\CoordinateOperation\NADCON5Grids;
37
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
38
use PHPCoord\CoordinateReferenceSystem\Compound;
39
use PHPCoord\CoordinateReferenceSystem\Geocentric;
40
use PHPCoord\CoordinateReferenceSystem\Geographic;
41
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
42
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
43
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
44
use PHPCoord\CoordinateReferenceSystem\Vertical;
45
use PHPCoord\CoordinateSystem\Axis;
46
use PHPCoord\CoordinateSystem\Cartesian;
47
use PHPCoord\Datum\Datum;
48
use PHPCoord\Datum\Ellipsoid;
49
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
50
use PHPCoord\Exception\UnknownAxisException;
51
use PHPCoord\Geometry\BoundingArea;
52
use PHPCoord\UnitOfMeasure\Angle\Angle;
53
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
54
use PHPCoord\UnitOfMeasure\Angle\Degree;
55
use PHPCoord\UnitOfMeasure\Angle\Radian;
56
use PHPCoord\UnitOfMeasure\Length\Length;
57
use PHPCoord\UnitOfMeasure\Length\Metre;
58
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
59
use PHPCoord\UnitOfMeasure\Scale\Scale;
60
use PHPCoord\UnitOfMeasure\Scale\Unity;
61
use function sin;
62
use function sinh;
63
use function sqrt;
64
use function tan;
65
66
/**
67
 * Coordinate representing a point on an ellipsoid.
68
 */
69
class GeographicPoint extends Point implements ConvertiblePoint
70
{
71
    use AutoConversion;
72
73
    /**
74
     * Latitude.
75
     */
76
    protected Angle $latitude;
77
78
    /**
79
     * Longitude.
80
     */
81
    protected Angle $longitude;
82
83
    /**
84
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
85
     */
86
    protected ?Length $height;
87
88
    /**
89
     * Coordinate reference system.
90
     */
91
    protected Geographic2D|Geographic3D $crs;
92
93
    /**
94
     * Coordinate epoch (date for which the specified coordinates represented this point).
95
     */
96
    protected ?DateTimeImmutable $epoch;
97
98 1499
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
99
    {
100 1499
        if ($crs instanceof Geographic2D && $height !== null) {
101 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
102
        }
103
104 1490
        if ($crs instanceof Geographic3D && $height === null) {
105 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
106
        }
107
108 1481
        $this->crs = $crs;
109
110 1481
        $latitude = $this->normaliseLatitude($latitude);
111 1481
        $longitude = $this->normaliseLongitude($longitude);
112
113 1481
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
114 1481
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
115
116 1481
        if ($height) {
117 191
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
118
        } else {
119 1369
            $this->height = null;
120
        }
121
122 1481
        if ($epoch instanceof DateTime) {
123 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
124
        }
125 1481
        $this->epoch = $epoch;
126 1481
    }
127
128
    /**
129
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
130
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
131
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
132
     */
133 1499
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
134
    {
135 1499
        return new static($crs, $latitude, $longitude, $height, $epoch);
136
    }
137
138 804
    public function getLatitude(): Angle
139
    {
140 804
        return $this->latitude;
141
    }
142
143 768
    public function getLongitude(): Angle
144
    {
145 768
        return $this->longitude;
146
    }
147
148 348
    public function getHeight(): ?Length
149
    {
150 348
        return $this->height;
151
    }
152
153 398
    public function getCRS(): Geographic
154
    {
155 398
        return $this->crs;
156
    }
157
158 45
    public function getCoordinateEpoch(): ?DateTimeImmutable
159
    {
160 45
        return $this->epoch;
161
    }
162
163 1481
    protected function normaliseLatitude(Angle $latitude): Angle
164
    {
165 1481
        if ($latitude->asDegrees()->getValue() > 90) {
166
            return new Degree(90);
167
        }
168 1481
        if ($latitude->asDegrees()->getValue() < -90) {
169
            return new Degree(-90);
170
        }
171
172 1481
        return $latitude;
173
    }
174
175 1481
    protected function normaliseLongitude(Angle $longitude): Angle
176
    {
177 1481
        while ($longitude->asDegrees()->getValue() > 180) {
178 9
            $longitude = $longitude->subtract(new Degree(360));
179
        }
180 1481
        while ($longitude->asDegrees()->getValue() <= -180) {
181
            $longitude = $longitude->add(new Degree(360));
182
        }
183
184 1481
        return $longitude;
185
    }
186
187
    /**
188
     * Calculate surface distance between two points.
189
     */
190 153
    public function calculateDistance(Point $to): Length
191
    {
192
        try {
193 153
            if ($to instanceof ConvertiblePoint) {
194 144
                $to = $to->convert($this->crs);
195
            }
196
        } finally {
197 153
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
198 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
199
            }
200
201
            /* @var GeographicPoint $to */
202 144
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
203
        }
204
    }
205
206 36
    public function __toString(): string
207
    {
208 36
        $values = [];
209 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
210 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
211 36
                $values[] = $this->latitude;
212 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
213 36
                $values[] = $this->longitude;
214 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
215 9
                $values[] = $this->height;
216
            } else {
217
                throw new UnknownAxisException(); // @codeCoverageIgnore
218
            }
219
        }
220
221 36
        return '(' . implode(', ', $values) . ')';
222
    }
223
224
    /**
225
     * Geographic/geocentric conversions
226
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
227
     * 9636 to form a geographic to geographic transformation.
228
     */
229 9
    public function geographicGeocentric(
230
        Geocentric $to
231
    ): GeocentricPoint {
232 9
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
233 9
        $asGeocentric = $geographicValue->asGeocentricValue();
234
235 9
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
236
    }
237
238
    /**
239
     * Coordinate Frame rotation (geog2D/geog3D domain)
240
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
241
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
242
     * between other CRS types.
243
     */
244 72
    public function coordinateFrameRotation(
245
        Geographic2D|Geographic3D $to,
246
        Length $xAxisTranslation,
247
        Length $yAxisTranslation,
248
        Length $zAxisTranslation,
249
        Angle $xAxisRotation,
250
        Angle $yAxisRotation,
251
        Angle $zAxisRotation,
252
        Scale $scaleDifference
253
    ): self {
254 72
        return $this->coordinateFrameMolodenskyBadekas(
255 72
            $to,
256
            $xAxisTranslation,
257
            $yAxisTranslation,
258
            $zAxisTranslation,
259
            $xAxisRotation,
260
            $yAxisRotation,
261
            $zAxisRotation,
262
            $scaleDifference,
263 72
            new Metre(0),
264 72
            new Metre(0),
265 72
            new Metre(0)
266
        );
267
    }
268
269
    /**
270
     * Molodensky-Badekas (CF geog2D/geog3D domain)
271
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
272
     * opposite rotation convention in geographic 2D domain.
273
     */
274 90
    public function coordinateFrameMolodenskyBadekas(
275
        Geographic2D|Geographic3D $to,
276
        Length $xAxisTranslation,
277
        Length $yAxisTranslation,
278
        Length $zAxisTranslation,
279
        Angle $xAxisRotation,
280
        Angle $yAxisRotation,
281
        Angle $zAxisRotation,
282
        Scale $scaleDifference,
283
        Length $ordinate1OfEvaluationPoint,
284
        Length $ordinate2OfEvaluationPoint,
285
        Length $ordinate3OfEvaluationPoint
286
    ): self {
287 90
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
288 90
        $asGeocentric = $geographicValue->asGeocentricValue();
289
290 90
        $xs = $asGeocentric->getX()->asMetres()->getValue();
291 90
        $ys = $asGeocentric->getY()->asMetres()->getValue();
292 90
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
293 90
        $tx = $xAxisTranslation->asMetres()->getValue();
294 90
        $ty = $yAxisTranslation->asMetres()->getValue();
295 90
        $tz = $zAxisTranslation->asMetres()->getValue();
296 90
        $rx = $xAxisRotation->asRadians()->getValue();
297 90
        $ry = $yAxisRotation->asRadians()->getValue();
298 90
        $rz = $zAxisRotation->asRadians()->getValue();
299 90
        $M = 1 + $scaleDifference->asUnity()->getValue();
300 90
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
301 90
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
302 90
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
303
304 90
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
305 90
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
306 90
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
307 90
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
308 90
        $newGeographic = $newGeocentric->asGeographicValue();
309
310 90
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
311
    }
312
313
    /**
314
     * Position Vector transformation (geog2D/geog3D domain)
315
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
316
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
317
     * operating between other CRS types.
318
     */
319 180
    public function positionVectorTransformation(
320
        Geographic2D|Geographic3D $to,
321
        Length $xAxisTranslation,
322
        Length $yAxisTranslation,
323
        Length $zAxisTranslation,
324
        Angle $xAxisRotation,
325
        Angle $yAxisRotation,
326
        Angle $zAxisRotation,
327
        Scale $scaleDifference
328
    ): self {
329 180
        return $this->positionVectorMolodenskyBadekas(
330 180
            $to,
331
            $xAxisTranslation,
332
            $yAxisTranslation,
333
            $zAxisTranslation,
334
            $xAxisRotation,
335
            $yAxisRotation,
336
            $zAxisRotation,
337
            $scaleDifference,
338 180
            new Metre(0),
339 180
            new Metre(0),
340 180
            new Metre(0)
341
        );
342
    }
343
344
    /**
345
     * Molodensky-Badekas (PV geog2D/geog3D domain)
346
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
347
     * rotation in geographic 2D/3D domain.
348
     */
349 198
    public function positionVectorMolodenskyBadekas(
350
        Geographic2D|Geographic3D $to,
351
        Length $xAxisTranslation,
352
        Length $yAxisTranslation,
353
        Length $zAxisTranslation,
354
        Angle $xAxisRotation,
355
        Angle $yAxisRotation,
356
        Angle $zAxisRotation,
357
        Scale $scaleDifference,
358
        Length $ordinate1OfEvaluationPoint,
359
        Length $ordinate2OfEvaluationPoint,
360
        Length $ordinate3OfEvaluationPoint
361
    ): self {
362 198
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
363 198
        $asGeocentric = $geographicValue->asGeocentricValue();
364
365 198
        $xs = $asGeocentric->getX()->asMetres()->getValue();
366 198
        $ys = $asGeocentric->getY()->asMetres()->getValue();
367 198
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
368 198
        $tx = $xAxisTranslation->asMetres()->getValue();
369 198
        $ty = $yAxisTranslation->asMetres()->getValue();
370 198
        $tz = $zAxisTranslation->asMetres()->getValue();
371 198
        $rx = $xAxisRotation->asRadians()->getValue();
372 198
        $ry = $yAxisRotation->asRadians()->getValue();
373 198
        $rz = $zAxisRotation->asRadians()->getValue();
374 198
        $M = 1 + $scaleDifference->asUnity()->getValue();
375 198
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
376 198
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
377 198
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
378
379 198
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
380 198
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
381 198
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
382 198
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
383 198
        $newGeographic = $newGeocentric->asGeographicValue();
384
385 198
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
386
    }
387
388
    /**
389
     * Geocentric translations
390
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
391
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
392
     * operating between other CRSs types.
393
     */
394 91
    public function geocentricTranslation(
395
        Geographic2D|Geographic3D $to,
396
        Length $xAxisTranslation,
397
        Length $yAxisTranslation,
398
        Length $zAxisTranslation
399
    ): self {
400 91
        return $this->positionVectorTransformation(
401 91
            $to,
402
            $xAxisTranslation,
403
            $yAxisTranslation,
404
            $zAxisTranslation,
405 91
            new Radian(0),
406 91
            new Radian(0),
407 91
            new Radian(0),
408 91
            new Unity(0)
409
        );
410
    }
411
412
    /**
413
     * Abridged Molodensky
414
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
415
     * systems, modelled as a set of geocentric translations.
416
     */
417 18
    public function abridgedMolodensky(
418
        Geographic2D|Geographic3D $to,
419
        Length $xAxisTranslation,
420
        Length $yAxisTranslation,
421
        Length $zAxisTranslation,
422
        Length $differenceInSemiMajorAxis,
423
        Scale $differenceInFlattening
424
    ): self {
425 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
426 18
        $latitude = $this->latitude->asRadians()->getValue();
427 18
        $longitude = $this->longitude->asRadians()->getValue();
428 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
429 18
        $tx = $xAxisTranslation->asMetres()->getValue();
430 18
        $ty = $yAxisTranslation->asMetres()->getValue();
431 18
        $tz = $zAxisTranslation->asMetres()->getValue();
432 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
433 18
        $df = $differenceInFlattening->asUnity()->getValue();
434
435 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
436 18
        $e2 = $ellipsoid->getEccentricitySquared();
437
438 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
439 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
440
441 18
        $f = $ellipsoid->getInverseFlattening();
442
443 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getInverseFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
444 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
445 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
446
447 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
448 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
449 18
        $toHeight = $fromHeight + $dHeight;
450
451 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
452
    }
453
454
    /**
455
     * Molodensky
456
     * See Abridged Molodensky.
457
     */
458 18
    public function molodensky(
459
        Geographic2D|Geographic3D $to,
460
        Length $xAxisTranslation,
461
        Length $yAxisTranslation,
462
        Length $zAxisTranslation,
463
        Length $differenceInSemiMajorAxis,
464
        Scale $differenceInFlattening
465
    ): self {
466 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
467 18
        $latitude = $this->latitude->asRadians()->getValue();
468 18
        $longitude = $this->longitude->asRadians()->getValue();
469 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
470 18
        $tx = $xAxisTranslation->asMetres()->getValue();
471 18
        $ty = $yAxisTranslation->asMetres()->getValue();
472 18
        $tz = $zAxisTranslation->asMetres()->getValue();
473 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
474 18
        $df = $differenceInFlattening->asUnity()->getValue();
475
476 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
477 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
478 18
        $e2 = $ellipsoid->getEccentricitySquared();
479
480 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
481 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
482
483 18
        $f = $ellipsoid->getInverseFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
484
485 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
486 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
487 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
488
489 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
490 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
491 18
        $toHeight = $fromHeight + $dHeight;
492
493 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
494
    }
495
496
    /**
497
     * Albers Equal Area.
498
     */
499 18
    public function albersEqualArea(
500
        Projected $to,
501
        Angle $latitudeOfFalseOrigin,
502
        Angle $longitudeOfFalseOrigin,
503
        Angle $latitudeOf1stStandardParallel,
504
        Angle $latitudeOf2ndStandardParallel,
505
        Length $eastingAtFalseOrigin,
506
        Length $northingAtFalseOrigin
507
    ): ProjectedPoint {
508 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
509 18
        $latitude = $this->latitude->asRadians()->getValue();
510 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
511 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
512 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
513 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
514 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
515 18
        $e = $ellipsoid->getEccentricity();
516 18
        $e2 = $ellipsoid->getEccentricitySquared();
517
518 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
519 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
520
521 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
522 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
523 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
524 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
525
526 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
527 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
528 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
529 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
530 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
531
532 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
533 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
534
535 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
536
    }
537
538
    /**
539
     * American Polyconic.
540
     */
541 9
    public function americanPolyconic(
542
        Projected $to,
543
        Angle $latitudeOfNaturalOrigin,
544
        Angle $longitudeOfNaturalOrigin,
545
        Length $falseEasting,
546
        Length $falseNorthing
547
    ): ProjectedPoint {
548 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
549 9
        $latitude = $this->latitude->asRadians()->getValue();
550 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
551 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
552 9
        $e = $ellipsoid->getEccentricity();
553 9
        $e2 = $ellipsoid->getEccentricitySquared();
554 9
        $e4 = $e ** 4;
555 9
        $e6 = $e ** 6;
556
557 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
558 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
559
560 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
561
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
562
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
563
        } else {
564 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
565 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
566
567 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
568 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
569
        }
570
571 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
572
    }
573
574
    /**
575
     * Bonne.
576
     */
577 9
    public function bonne(
578
        Projected $to,
579
        Angle $latitudeOfNaturalOrigin,
580
        Angle $longitudeOfNaturalOrigin,
581
        Length $falseEasting,
582
        Length $falseNorthing
583
    ): ProjectedPoint {
584 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
585 9
        $latitude = $this->latitude->asRadians()->getValue();
586 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
587 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
588 9
        $e = $ellipsoid->getEccentricity();
589 9
        $e2 = $ellipsoid->getEccentricitySquared();
590 9
        $e4 = $e ** 4;
591 9
        $e6 = $e ** 6;
592
593 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
594 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
595
596 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
597 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
598
599 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
600 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
601
602 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
603 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
604
605 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
606
    }
607
608
    /**
609
     * Bonne South Orientated.
610
     */
611 9
    public function bonneSouthOrientated(
612
        Projected $to,
613
        Angle $latitudeOfNaturalOrigin,
614
        Angle $longitudeOfNaturalOrigin,
615
        Length $falseEasting,
616
        Length $falseNorthing
617
    ): ProjectedPoint {
618 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
619 9
        $latitude = $this->latitude->asRadians()->getValue();
620 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
621 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
622 9
        $e = $ellipsoid->getEccentricity();
623 9
        $e2 = $ellipsoid->getEccentricitySquared();
624 9
        $e4 = $e ** 4;
625 9
        $e6 = $e ** 6;
626
627 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
628 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
629
630 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
631 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
632
633 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
634 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
635
636 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
637 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
638
639 9
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
640
    }
641
642
    /**
643
     * Cassini-Soldner.
644
     */
645 9
    public function cassiniSoldner(
646
        Projected $to,
647
        Angle $latitudeOfNaturalOrigin,
648
        Angle $longitudeOfNaturalOrigin,
649
        Length $falseEasting,
650
        Length $falseNorthing
651
    ): ProjectedPoint {
652 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
653 9
        $latitude = $this->latitude->asRadians()->getValue();
654 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
655 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
656 9
        $e = $ellipsoid->getEccentricity();
657 9
        $e2 = $ellipsoid->getEccentricitySquared();
658 9
        $e4 = $e ** 4;
659 9
        $e6 = $e ** 6;
660
661 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
662 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
663
664 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
665 9
        $T = tan($latitude) ** 2;
666 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
667 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
668 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
669
670 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
671 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
672
673 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
674
    }
675
676
    /**
677
     * Hyperbolic Cassini-Soldner.
678
     */
679 18
    public function hyperbolicCassiniSoldner(
680
        Projected $to,
681
        Angle $latitudeOfNaturalOrigin,
682
        Angle $longitudeOfNaturalOrigin,
683
        Length $falseEasting,
684
        Length $falseNorthing
685
    ): ProjectedPoint {
686 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
687 18
        $latitude = $this->latitude->asRadians()->getValue();
688 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
689 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
690 18
        $e = $ellipsoid->getEccentricity();
691 18
        $e2 = $ellipsoid->getEccentricitySquared();
692 18
        $e4 = $e ** 4;
693 18
        $e6 = $e ** 6;
694
695 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
696 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
697
698 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
699 18
        $T = tan($latitude) ** 2;
700 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
701 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
702 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
703 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
704
705 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
706 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
707
708 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
709
    }
710
711
    /**
712
     * Colombia Urban.
713
     */
714 9
    public function columbiaUrban(
715
        Projected $to,
716
        Angle $latitudeOfNaturalOrigin,
717
        Angle $longitudeOfNaturalOrigin,
718
        Length $falseEasting,
719
        Length $falseNorthing,
720
        Length $projectionPlaneOriginHeight
721
    ): ProjectedPoint {
722 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
723 9
        $latitude = $this->latitude->asRadians()->getValue();
724 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
725 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
726 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
727 9
        $e2 = $ellipsoid->getEccentricitySquared();
728
729 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
730 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
731
732 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
733 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
734
735 9
        $A = 1 + $heightOrigin / $nuOrigin;
736 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
737 9
        $G = 1 + $heightOrigin / $rhoMid;
738
739 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
740 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
741
742 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
743
    }
744
745
    /**
746
     * Equal Earth.
747
     */
748 9
    public function equalEarth(
749
        Projected $to,
750
        Angle $longitudeOfNaturalOrigin,
751
        Length $falseEasting,
752
        Length $falseNorthing
753
    ): ProjectedPoint {
754 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
755 9
        $latitude = $this->latitude->asRadians()->getValue();
756 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
757 9
        $e = $ellipsoid->getEccentricity();
758 9
        $e2 = $ellipsoid->getEccentricitySquared();
759
760 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
761 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
762 9
        $beta = self::asin($q / $qP);
763 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
764 9
        $Rq = $a * sqrt($qP / 2);
765
766 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
767 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
768
769 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
770
    }
771
772
    /**
773
     * Equidistant Cylindrical
774
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
775
     */
776 9
    public function equidistantCylindrical(
777
        Projected $to,
778
        Angle $latitudeOf1stStandardParallel,
779
        Angle $longitudeOfNaturalOrigin,
780
        Length $falseEasting,
781
        Length $falseNorthing
782
    ): ProjectedPoint {
783 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
784 9
        $latitude = $this->latitude->asRadians()->getValue();
785 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
786 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
787 9
        $e = $ellipsoid->getEccentricity();
788 9
        $e2 = $ellipsoid->getEccentricitySquared();
789 9
        $e4 = $e ** 4;
790 9
        $e6 = $e ** 6;
791 9
        $e8 = $e ** 8;
792 9
        $e10 = $e ** 10;
793 9
        $e12 = $e ** 12;
794 9
        $e14 = $e ** 14;
795
796 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
797
798 9
        $M = $a * (
799 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
800 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
801 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
802 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
803 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
804 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
805 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
806 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
807
        );
808
809 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
810 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
811
812 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
813
    }
814
815
    /**
816
     * Guam Projection
817
     * Simplified form of Oblique Azimuthal Equidistant projection method.
818
     */
819 9
    public function guamProjection(
820
        Projected $to,
821
        Angle $latitudeOfNaturalOrigin,
822
        Angle $longitudeOfNaturalOrigin,
823
        Length $falseEasting,
824
        Length $falseNorthing
825
    ): ProjectedPoint {
826 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
827 9
        $latitude = $this->latitude->asRadians()->getValue();
828 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
829 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
830 9
        $e = $ellipsoid->getEccentricity();
831 9
        $e2 = $ellipsoid->getEccentricitySquared();
832 9
        $e4 = $e ** 4;
833 9
        $e6 = $e ** 6;
834
835 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
836 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
837 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
838
839 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
840 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
841
842 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
843
    }
844
845
    /**
846
     * Krovak.
847
     */
848 36
    public function krovak(
849
        Projected $to,
850
        Angle $latitudeOfProjectionCentre,
851
        Angle $longitudeOfOrigin,
852
        Angle $coLatitudeOfConeAxis,
853
        Angle $latitudeOfPseudoStandardParallel,
854
        Scale $scaleFactorOnPseudoStandardParallel,
855
        Length $falseEasting,
856
        Length $falseNorthing
857
    ): ProjectedPoint {
858 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
859 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
860 36
        $latitude = $this->latitude->asRadians()->getValue();
861 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
862 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
863 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
864 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
865 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
866 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
867 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
868 36
        $e = $ellipsoid->getEccentricity();
869 36
        $e2 = $ellipsoid->getEccentricitySquared();
870
871 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
872 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
873 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
874 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
875 36
        $n = sin($latitudeP);
876 36
        $rO = $kP * $A / tan($latitudeP);
877
878 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
879 36
        $V = $B * ($longitudeO - $longitude);
880 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
881 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
882 36
        $theta = $n * $D;
883 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
884 36
        $X = $r * cos($theta);
885 36
        $Y = $r * sin($theta);
886
887 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
888 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
889
890 36
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
891
    }
892
893
    /**
894
     * Krovak Modified
895
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
896
     * to be a map projection.
897
     */
898 18
    public function krovakModified(
899
        Projected $to,
900
        Angle $latitudeOfProjectionCentre,
901
        Angle $longitudeOfOrigin,
902
        Angle $coLatitudeOfConeAxis,
903
        Angle $latitudeOfPseudoStandardParallel,
904
        Scale $scaleFactorOnPseudoStandardParallel,
905
        Length $falseEasting,
906
        Length $falseNorthing,
907
        Length $ordinate1OfEvaluationPoint,
908
        Length $ordinate2OfEvaluationPoint,
909
        Coefficient $C1,
910
        Coefficient $C2,
911
        Coefficient $C3,
912
        Coefficient $C4,
913
        Coefficient $C5,
914
        Coefficient $C6,
915
        Coefficient $C7,
916
        Coefficient $C8,
917
        Coefficient $C9,
918
        Coefficient $C10
919
    ): ProjectedPoint {
920 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
921
922 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
923 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
924 18
        $c1 = $C1->asUnity()->getValue();
925 18
        $c2 = $C2->asUnity()->getValue();
926 18
        $c3 = $C3->asUnity()->getValue();
927 18
        $c4 = $C4->asUnity()->getValue();
928 18
        $c5 = $C5->asUnity()->getValue();
929 18
        $c6 = $C6->asUnity()->getValue();
930 18
        $c7 = $C7->asUnity()->getValue();
931 18
        $c8 = $C8->asUnity()->getValue();
932 18
        $c9 = $C9->asUnity()->getValue();
933 18
        $c10 = $C10->asUnity()->getValue();
934
935 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
936 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
937
938 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
939 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
940
941 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
942 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
943
944 18
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
945
    }
946
947
    /**
948
     * Lambert Azimuthal Equal Area
949
     * This is the ellipsoidal form of the projection.
950
     */
951 9
    public function lambertAzimuthalEqualArea(
952
        Projected $to,
953
        Angle $latitudeOfNaturalOrigin,
954
        Angle $longitudeOfNaturalOrigin,
955
        Length $falseEasting,
956
        Length $falseNorthing
957
    ): ProjectedPoint {
958 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
959 9
        $latitude = $this->latitude->asRadians()->getValue();
960 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
961 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
962 9
        $e = $ellipsoid->getEccentricity();
963 9
        $e2 = $ellipsoid->getEccentricitySquared();
964
965 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
966 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
967 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
968 9
        $beta = self::asin($q / $qP);
969 9
        $betaO = self::asin($qO / $qP);
970 9
        $Rq = $a * sqrt($qP / 2);
971 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
972 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
973
974 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
975 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
976
977 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
978
    }
979
980
    /**
981
     * Lambert Azimuthal Equal Area (Spherical)
982
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
983
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
984
     * methods.
985
     */
986 9
    public function lambertAzimuthalEqualAreaSpherical(
987
        Projected $to,
988
        Angle $latitudeOfNaturalOrigin,
989
        Angle $longitudeOfNaturalOrigin,
990
        Length $falseEasting,
991
        Length $falseNorthing
992
    ): ProjectedPoint {
993 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
994 9
        $latitude = $this->latitude->asRadians()->getValue();
995 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
996 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
997
998 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
999
1000 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1001 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1002
1003 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1004
    }
1005
1006
    /**
1007
     * Lambert Conic Conformal (1SP).
1008
     */
1009 9
    public function lambertConicConformal1SP(
1010
        Projected $to,
1011
        Angle $latitudeOfNaturalOrigin,
1012
        Angle $longitudeOfNaturalOrigin,
1013
        Scale $scaleFactorAtNaturalOrigin,
1014
        Length $falseEasting,
1015
        Length $falseNorthing
1016
    ): ProjectedPoint {
1017 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1018 9
        $latitude = $this->latitude->asRadians()->getValue();
1019 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1020 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1021 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1022 9
        $e = $ellipsoid->getEccentricity();
1023 9
        $e2 = $ellipsoid->getEccentricitySquared();
1024
1025 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1026 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1027 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1028 9
        $n = sin($latitudeOrigin);
1029 9
        $F = $mO / ($n * $tO ** $n);
1030 9
        $rO = $a * $F * $tO ** $n * $kO;
1031 9
        $r = $a * $F * $t ** $n * $kO;
1032 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1033
1034 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1035 9
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1036
1037 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1038
    }
1039
1040
    /**
1041
     * Lambert Conic Conformal (1SP) Variant B.
1042
     */
1043
    public function lambertConicConformal1SPVariantB(
1044
        Projected $to,
1045
        Angle $latitudeOfNaturalOrigin,
1046
        Scale $scaleFactorAtNaturalOrigin,
1047
        Angle $latitudeOfFalseOrigin,
1048
        Angle $longitudeOfFalseOrigin,
1049
        Length $eastingAtFalseOrigin,
1050
        Length $northingAtFalseOrigin
1051
    ): ProjectedPoint {
1052
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1053
        $latitude = $this->latitude->asRadians()->getValue();
1054
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1055
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1056
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1057
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1058
        $e = $ellipsoid->getEccentricity();
1059
        $e2 = $ellipsoid->getEccentricitySquared();
1060
1061
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1062
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1063
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1064
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1065
        $n = sin($latitudeNaturalOrigin);
1066
        $F = $mO / ($n * $tO ** $n);
1067
        $rF = $a * $F * $tF ** $n * $kO;
1068
        $r = $a * $F * $t ** $n * $kO;
1069
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1070
1071
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1072
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1073
1074
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1075
    }
1076
1077
    /**
1078
     * Lambert Conic Conformal (2SP Belgium)
1079
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1080
     * with appropriately modified parameter values.
1081
     */
1082 9
    public function lambertConicConformal2SPBelgium(
1083
        Projected $to,
1084
        Angle $latitudeOfFalseOrigin,
1085
        Angle $longitudeOfFalseOrigin,
1086
        Angle $latitudeOf1stStandardParallel,
1087
        Angle $latitudeOf2ndStandardParallel,
1088
        Length $eastingAtFalseOrigin,
1089
        Length $northingAtFalseOrigin
1090
    ): ProjectedPoint {
1091 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1092 9
        $latitude = $this->latitude->asRadians()->getValue();
1093 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1094 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1095 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1096 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1097 9
        $e = $ellipsoid->getEccentricity();
1098 9
        $e2 = $ellipsoid->getEccentricitySquared();
1099
1100 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1101 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1102 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1103 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1104 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1105 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1106 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1107 9
        $F = $m1 / ($n * $t1 ** $n);
1108 9
        $r = $a * $F * $t ** $n;
1109 9
        $rF = $a * $F * $tF ** $n;
1110 9
        if (is_nan($rF)) {
1111 9
            $rF = 0;
1112
        }
1113 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1114
1115 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1116 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1117
1118 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1119
    }
1120
1121
    /**
1122
     * Lambert Conic Conformal (2SP Michigan).
1123
     */
1124 9
    public function lambertConicConformal2SPMichigan(
1125
        Projected $to,
1126
        Angle $latitudeOfFalseOrigin,
1127
        Angle $longitudeOfFalseOrigin,
1128
        Angle $latitudeOf1stStandardParallel,
1129
        Angle $latitudeOf2ndStandardParallel,
1130
        Length $eastingAtFalseOrigin,
1131
        Length $northingAtFalseOrigin,
1132
        Scale $ellipsoidScalingFactor
1133
    ): ProjectedPoint {
1134 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1135 9
        $latitude = $this->latitude->asRadians()->getValue();
1136 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1137 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1138 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1139 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1140 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1141 9
        $e = $ellipsoid->getEccentricity();
1142 9
        $e2 = $ellipsoid->getEccentricitySquared();
1143
1144 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1145 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1146 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1147 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1148 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1149 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1150 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1151 9
        $F = $m1 / ($n * $t1 ** $n);
1152 9
        $r = $a * $K * $F * $t ** $n;
1153 9
        $rF = $a * $K * $F * $tF ** $n;
1154 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1155
1156 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1157 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1158
1159 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1160
    }
1161
1162
    /**
1163
     * Lambert Conic Conformal (2SP).
1164
     */
1165 9
    public function lambertConicConformal2SP(
1166
        Projected $to,
1167
        Angle $latitudeOfFalseOrigin,
1168
        Angle $longitudeOfFalseOrigin,
1169
        Angle $latitudeOf1stStandardParallel,
1170
        Angle $latitudeOf2ndStandardParallel,
1171
        Length $eastingAtFalseOrigin,
1172
        Length $northingAtFalseOrigin
1173
    ): ProjectedPoint {
1174 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1175 9
        $latitude = $this->latitude->asRadians()->getValue();
1176 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1177 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1178 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1179 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1180 9
        $e = $ellipsoid->getEccentricity();
1181 9
        $e2 = $ellipsoid->getEccentricitySquared();
1182
1183 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1184 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1185 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1186 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1187 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1188 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1189 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1190 9
        $F = $m1 / ($n * $t1 ** $n);
1191 9
        $r = $a * $F * $t ** $n;
1192 9
        $rF = $a * $F * $tF ** $n;
1193 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1194
1195 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1196 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1197
1198 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1199
    }
1200
1201
    /**
1202
     * Lambert Conic Conformal (West Orientated).
1203
     */
1204
    public function lambertConicConformalWestOrientated(
1205
        Projected $to,
1206
        Angle $latitudeOfNaturalOrigin,
1207
        Angle $longitudeOfNaturalOrigin,
1208
        Scale $scaleFactorAtNaturalOrigin,
1209
        Length $falseEasting,
1210
        Length $falseNorthing
1211
    ): ProjectedPoint {
1212
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1213
        $latitude = $this->latitude->asRadians()->getValue();
1214
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1215
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1216
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1217
        $e = $ellipsoid->getEccentricity();
1218
        $e2 = $ellipsoid->getEccentricitySquared();
1219
1220
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1221
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1222
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1223
        $n = sin($latitudeOrigin);
1224
        $F = $mO / ($n * $tO ** $n);
1225
        $rO = $a * $F * $tO ** $n ** $kO;
1226
        $r = $a * $F * $t ** $n ** $kO;
1227
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1228
1229
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1230
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1231
1232
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1233
    }
1234
1235
    /**
1236
     * Lambert Conic Near-Conformal
1237
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1238
     * series expansion of the projection formulae.
1239
     */
1240 9
    public function lambertConicNearConformal(
1241
        Projected $to,
1242
        Angle $latitudeOfNaturalOrigin,
1243
        Angle $longitudeOfNaturalOrigin,
1244
        Scale $scaleFactorAtNaturalOrigin,
1245
        Length $falseEasting,
1246
        Length $falseNorthing
1247
    ): ProjectedPoint {
1248 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1249 9
        $latitude = $this->latitude->asRadians()->getValue();
1250 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1251 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1252 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1253 9
        $e2 = $ellipsoid->getEccentricitySquared();
1254 9
        $f = $ellipsoid->getInverseFlattening();
1255
1256 9
        $n = $f / (2 - $f);
1257 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1258 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1259 9
        $A = 1 / (6 * $rhoO * $nuO);
1260 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1261 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1262 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1263 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1264 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1265 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1266 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1267 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1268 9
        $m = $s - $sO;
1269 9
        $M = $kO * ($m + $A * $m ** 3);
1270 9
        $r = $rO - $M;
1271 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1272
1273 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1274 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1275
1276 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1277
    }
1278
1279
    /**
1280
     * Lambert Cylindrical Equal Area
1281
     * This is the ellipsoidal form of the projection.
1282
     */
1283 9
    public function lambertCylindricalEqualArea(
1284
        Projected $to,
1285
        Angle $latitudeOf1stStandardParallel,
1286
        Angle $longitudeOfNaturalOrigin,
1287
        Length $falseEasting,
1288
        Length $falseNorthing
1289
    ): ProjectedPoint {
1290 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1291 9
        $latitude = $this->latitude->asRadians()->getValue();
1292 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1293 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1294 9
        $e = $ellipsoid->getEccentricity();
1295 9
        $e2 = $ellipsoid->getEccentricitySquared();
1296
1297 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1298 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1299
1300 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1301 9
        $y = $a * $q / (2 * $k);
1302
1303 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1304 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1305
1306 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1307
    }
1308
1309
    /**
1310
     * Modified Azimuthal Equidistant
1311
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1312
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1313
     */
1314 9
    public function modifiedAzimuthalEquidistant(
1315
        Projected $to,
1316
        Angle $latitudeOfNaturalOrigin,
1317
        Angle $longitudeOfNaturalOrigin,
1318
        Length $falseEasting,
1319
        Length $falseNorthing
1320
    ): ProjectedPoint {
1321 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1322 9
        $latitude = $this->latitude->asRadians()->getValue();
1323 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1324 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1325 9
        $e = $ellipsoid->getEccentricity();
1326 9
        $e2 = $ellipsoid->getEccentricitySquared();
1327
1328 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1329 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1330 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1331 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1332 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1333 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1334
1335 9
        if (sin($alpha) === 0.0) {
1336
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1337
        } else {
1338 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1339
        }
1340
1341 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1342
1343 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1344 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1345
1346 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1347
    }
1348
1349
    /**
1350
     * Oblique Stereographic
1351
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1352
     * Projections - A Working Manual" by John P. Snyder.
1353
     */
1354 9
    public function obliqueStereographic(
1355
        Projected $to,
1356
        Angle $latitudeOfNaturalOrigin,
1357
        Angle $longitudeOfNaturalOrigin,
1358
        Scale $scaleFactorAtNaturalOrigin,
1359
        Length $falseEasting,
1360
        Length $falseNorthing
1361
    ): ProjectedPoint {
1362 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1363 9
        $latitude = $this->latitude->asRadians()->getValue();
1364 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1365 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1366 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1367 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1368 9
        $e = $ellipsoid->getEccentricity();
1369 9
        $e2 = $ellipsoid->getEccentricitySquared();
1370
1371 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1372 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1373 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1374
1375 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1376 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1377 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1378 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1379 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1380 9
        $w2 = $c * $w1;
1381 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1382
1383 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1384
1385 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1386 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1387 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1388 9
        $chi = self::asin(($w - 1) / ($w + 1));
1389
1390 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1391
1392 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1393 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1394
1395 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1396
    }
1397
1398
    /**
1399
     * Polar Stereographic (variant A)
1400
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1401
     */
1402 9
    public function polarStereographicVariantA(
1403
        Projected $to,
1404
        Angle $latitudeOfNaturalOrigin,
1405
        Angle $longitudeOfNaturalOrigin,
1406
        Scale $scaleFactorAtNaturalOrigin,
1407
        Length $falseEasting,
1408
        Length $falseNorthing
1409
    ): ProjectedPoint {
1410 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1411 9
        $latitude = $this->latitude->asRadians()->getValue();
1412 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1413 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1414 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1415 9
        $e = $ellipsoid->getEccentricity();
1416
1417 9
        if ($latitudeOrigin < 0) {
1418
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1419
        } else {
1420 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1421
        }
1422 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1423
1424 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1425 9
        $dE = $rho * sin($theta);
1426 9
        $dN = $rho * cos($theta);
1427
1428 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1429 9
        if ($latitudeOrigin < 0) {
1430
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1431
        } else {
1432 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1433
        }
1434
1435 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1436
    }
1437
1438
    /**
1439
     * Polar Stereographic (variant B).
1440
     */
1441 9
    public function polarStereographicVariantB(
1442
        Projected $to,
1443
        Angle $latitudeOfStandardParallel,
1444
        Angle $longitudeOfOrigin,
1445
        Length $falseEasting,
1446
        Length $falseNorthing
1447
    ): ProjectedPoint {
1448 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1449 9
        $latitude = $this->latitude->asRadians()->getValue();
1450 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1451 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1452 9
        $e = $ellipsoid->getEccentricity();
1453 9
        $e2 = $ellipsoid->getEccentricitySquared();
1454
1455 9
        if ($firstStandardParallel < 0) {
1456 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1457 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1458
        } else {
1459
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1460
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1461
        }
1462 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1463 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1464
1465 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1466
1467 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1468 9
        $dE = $rho * sin($theta);
1469 9
        $dN = $rho * cos($theta);
1470
1471 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1472 9
        if ($firstStandardParallel < 0) {
1473 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1474
        } else {
1475
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1476
        }
1477
1478 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1479
    }
1480
1481
    /**
1482
     * Polar Stereographic (variant C).
1483
     */
1484 9
    public function polarStereographicVariantC(
1485
        Projected $to,
1486
        Angle $latitudeOfStandardParallel,
1487
        Angle $longitudeOfOrigin,
1488
        Length $eastingAtFalseOrigin,
1489
        Length $northingAtFalseOrigin
1490
    ): ProjectedPoint {
1491 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1492 9
        $latitude = $this->latitude->asRadians()->getValue();
1493 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1494 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1495 9
        $e = $ellipsoid->getEccentricity();
1496 9
        $e2 = $ellipsoid->getEccentricitySquared();
1497
1498 9
        if ($firstStandardParallel < 0) {
1499 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1500 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1501
        } else {
1502
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1503
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1504
        }
1505 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1506
1507 9
        $rhoF = $a * $mF;
1508 9
        $rho = $rhoF * $t / $tF;
1509
1510 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1511 9
        $dE = $rho * sin($theta);
1512 9
        $dN = $rho * cos($theta);
1513
1514 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1515 9
        if ($firstStandardParallel < 0) {
1516 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1517
        } else {
1518
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1519
        }
1520
1521 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1522
    }
1523
1524
    /**
1525
     * Popular Visualisation Pseudo Mercator
1526
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1527
     */
1528 9
    public function popularVisualisationPseudoMercator(
1529
        Projected $to,
1530
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1530
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1531
        Angle $longitudeOfNaturalOrigin,
1532
        Length $falseEasting,
1533
        Length $falseNorthing
1534
    ): ProjectedPoint {
1535 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1536 9
        $latitude = $this->latitude->asRadians()->getValue();
1537 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1538
1539 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1540 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1541
1542 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1543
    }
1544
1545
    /**
1546
     * Mercator (variant A)
1547
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1548
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1549
     * completeness in CRS labelling.
1550
     */
1551 18
    public function mercatorVariantA(
1552
        Projected $to,
1553
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1553
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1554
        Angle $longitudeOfNaturalOrigin,
1555
        Scale $scaleFactorAtNaturalOrigin,
1556
        Length $falseEasting,
1557
        Length $falseNorthing
1558
    ): ProjectedPoint {
1559 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1560 18
        $latitude = $this->latitude->asRadians()->getValue();
1561 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1562
1563 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1564 18
        $e = $ellipsoid->getEccentricity();
1565
1566 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1567 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1568
1569 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1570
    }
1571
1572
    /**
1573
     * Mercator (variant B)
1574
     * Used for most nautical charts.
1575
     */
1576 9
    public function mercatorVariantB(
1577
        Projected $to,
1578
        Angle $latitudeOf1stStandardParallel,
1579
        Angle $longitudeOfNaturalOrigin,
1580
        Length $falseEasting,
1581
        Length $falseNorthing
1582
    ): ProjectedPoint {
1583 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1584 9
        $latitude = $this->latitude->asRadians()->getValue();
1585 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1586 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1587 9
        $e = $ellipsoid->getEccentricity();
1588 9
        $e2 = $ellipsoid->getEccentricitySquared();
1589
1590 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1591
1592 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1593 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1594
1595 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1596
    }
1597
1598
    /**
1599
     * Longitude rotation
1600
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1601
     * value to the longitude value of the point in the source system.
1602
     */
1603 9
    public function longitudeRotation(
1604
        Geographic2D|Geographic3D $to,
1605
        Angle $longitudeOffset
1606
    ): self {
1607 9
        $newLongitude = $this->longitude->add($longitudeOffset);
1608
1609 9
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1610
    }
1611
1612
    /**
1613
     * Hotine Oblique Mercator (variant A).
1614
     */
1615 9
    public function obliqueMercatorHotineVariantA(
1616
        Projected $to,
1617
        Angle $latitudeOfProjectionCentre,
1618
        Angle $longitudeOfProjectionCentre,
1619
        Angle $azimuthOfInitialLine,
1620
        Angle $angleFromRectifiedToSkewGrid,
1621
        Scale $scaleFactorOnInitialLine,
1622
        Length $falseEasting,
1623
        Length $falseNorthing
1624
    ): ProjectedPoint {
1625 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1626 9
        $latitude = $this->latitude->asRadians()->getValue();
1627 9
        $longitude = $this->longitude->asRadians()->getValue();
1628 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1629 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1630 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1631 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1632 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1633 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1634 9
        $e = $ellipsoid->getEccentricity();
1635 9
        $e2 = $ellipsoid->getEccentricitySquared();
1636
1637 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1638 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1639 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1640 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1641 9
        $DD = max(1, $D ** 2);
1642 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1643 9
        $H = $F * ($tO) ** $B;
1644 9
        $G = ($F - 1 / $F) / 2;
1645 9
        $gammaO = self::asin(sin($alphaC) / $D);
1646 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1647
1648 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1649 9
        $Q = $H / $t ** $B;
1650 9
        $S = ($Q - 1 / $Q) / 2;
1651 9
        $T = ($Q + 1 / $Q) / 2;
1652 9
        $V = sin($B * ($longitude - $lonO));
1653 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1654 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1655 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1656
1657 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1658 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1659
1660 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1661
    }
1662
1663
    /**
1664
     * Hotine Oblique Mercator (variant B).
1665
     */
1666 9
    public function obliqueMercatorHotineVariantB(
1667
        Projected $to,
1668
        Angle $latitudeOfProjectionCentre,
1669
        Angle $longitudeOfProjectionCentre,
1670
        Angle $azimuthOfInitialLine,
1671
        Angle $angleFromRectifiedToSkewGrid,
1672
        Scale $scaleFactorOnInitialLine,
1673
        Length $eastingAtProjectionCentre,
1674
        Length $northingAtProjectionCentre
1675
    ): ProjectedPoint {
1676 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1677 9
        $latitude = $this->latitude->asRadians()->getValue();
1678 9
        $longitude = $this->longitude->asRadians()->getValue();
1679 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1680 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1681 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1682 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1683 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1684 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1685 9
        $e = $ellipsoid->getEccentricity();
1686 9
        $e2 = $ellipsoid->getEccentricitySquared();
1687
1688 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1689 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1690 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1691 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1692 9
        $DD = max(1, $D ** 2);
1693 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1694 9
        $H = $F * ($tO) ** $B;
1695 9
        $G = ($F - 1 / $F) / 2;
1696 9
        $gammaO = self::asin(sin($alphaC) / $D);
1697 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1698 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1699 9
        if ($alphaC === M_PI / 2) {
1700
            $uC = $A * ($lonC - $lonO);
1701
        } else {
1702 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1703
        }
1704
1705 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1706 9
        $Q = $H / $t ** $B;
1707 9
        $S = ($Q - 1 / $Q) / 2;
1708 9
        $T = ($Q + 1 / $Q) / 2;
1709 9
        $V = sin($B * ($longitude - $lonO));
1710 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1711 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1712
1713 9
        if ($alphaC === M_PI / 2) {
1714
            if ($longitude === $lonC) {
1715
                $u = 0;
1716
            } else {
1717
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1718
            }
1719
        } else {
1720 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1721
        }
1722
1723 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1724 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1725
1726 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1727
    }
1728
1729
    /**
1730
     * Laborde Oblique Mercator.
1731
     */
1732 9
    public function obliqueMercatorLaborde(
1733
        Projected $to,
1734
        Angle $latitudeOfProjectionCentre,
1735
        Angle $longitudeOfProjectionCentre,
1736
        Angle $azimuthOfInitialLine,
1737
        Scale $scaleFactorOnInitialLine,
1738
        Length $falseEasting,
1739
        Length $falseNorthing
1740
    ): ProjectedPoint {
1741 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1742 9
        $latitude = $this->latitude->asRadians()->getValue();
1743 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1744 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1745 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1746 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1747 9
        $e = $ellipsoid->getEccentricity();
1748 9
        $e2 = $ellipsoid->getEccentricitySquared();
1749
1750 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1751 9
        $latS = self::asin(sin($latC) / $B);
1752 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1753 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1754
1755 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1756 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1757 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1758 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1759 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1760 9
        $W = cos($P) * sin($L);
1761 9
        $d = hypot($U, $V);
1762 9
        if ($d === 0.0) {
1763
            $LPrime = 0;
1764
            $PPrime = static::sign($W) * M_PI / 2;
1765
        } else {
1766 9
            $LPrime = 2 * atan($V / ($U + $d));
1767 9
            $PPrime = atan($W / $d);
1768
        }
1769 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1770 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1771
1772 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1773 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1774
1775 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1776
    }
1777
1778
    /**
1779
     * Transverse Mercator.
1780
     */
1781 112
    public function transverseMercator(
1782
        Projected $to,
1783
        Angle $latitudeOfNaturalOrigin,
1784
        Angle $longitudeOfNaturalOrigin,
1785
        Scale $scaleFactorAtNaturalOrigin,
1786
        Length $falseEasting,
1787
        Length $falseNorthing
1788
    ): ProjectedPoint {
1789 112
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1790 112
        $latitude = $this->latitude->asRadians()->getValue();
1791 112
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1792 112
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1793 112
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1794 112
        $e = $ellipsoid->getEccentricity();
1795 112
        $f = $ellipsoid->getInverseFlattening();
1796
1797 112
        $n = $f / (2 - $f);
1798 112
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64);
1799
1800 112
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4;
1801 112
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4;
1802 112
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4;
1803 112
        $h4 = (49561 / 161280) * $n ** 4;
1804
1805 112
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1806 81
            $mO = 0;
1807 31
        } elseif ($latitudeOrigin === M_PI / 2) {
1808
            $mO = $B * M_PI / 2;
1809 31
        } elseif ($latitudeOrigin === -M_PI / 2) {
1810
            $mO = $B * -M_PI / 2;
1811
        } else {
1812 31
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1813 31
            $betaO = atan(sinh($qO));
1814 31
            $xiO0 = self::asin(sin($betaO));
1815 31
            $xiO1 = $h1 * sin(2 * $xiO0);
1816 31
            $xiO2 = $h2 * sin(4 * $xiO0);
1817 31
            $xiO3 = $h3 * sin(6 * $xiO0);
1818 31
            $xiO4 = $h4 * sin(8 * $xiO0);
1819 31
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4;
1820 31
            $mO = $B * $xiO;
1821
        }
1822
1823 112
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1824 112
        $beta = atan(sinh($Q));
1825 112
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1826 112
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1827 112
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1828 112
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1829 112
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1830 112
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1831 112
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1832 112
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1833 112
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1834 112
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1835 112
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4;
1836 112
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4;
1837
1838 112
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1839 112
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1840
1841 112
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1842
    }
1843
1844
    /**
1845
     * Transverse Mercator Zoned Grid System
1846
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1847
     * each zone.
1848
     */
1849 36
    public function transverseMercatorZonedGrid(
1850
        Projected $to,
1851
        Angle $latitudeOfNaturalOrigin,
1852
        Angle $initialLongitude,
1853
        Angle $zoneWidth,
1854
        Scale $scaleFactorAtNaturalOrigin,
1855
        Length $falseEasting,
1856
        Length $falseNorthing
1857
    ): ProjectedPoint {
1858 36
        $W = $zoneWidth->asDegrees()->getValue();
1859 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1860
1861 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1862 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1863
1864 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1865
    }
1866
1867
    /**
1868
     * New Zealand Map Grid.
1869
     */
1870 27
    public function newZealandMapGrid(
1871
        Projected $to,
1872
        Angle $latitudeOfNaturalOrigin,
1873
        Angle $longitudeOfNaturalOrigin,
1874
        Length $falseEasting,
1875
        Length $falseNorthing
1876
    ): ProjectedPoint {
1877 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1878 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1879
1880 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1881 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1882
1883 27
        $deltaPsi = 0;
1884 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1885 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1886 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1887 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1888 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1889 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1890 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1891 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1892 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1893 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1894
1895 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1896
1897 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1898 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1899 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1900 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1901 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1902 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1903 27
        $z = new ComplexNumber(0, 0);
1904 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1905 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1906 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1907 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1908 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1909 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1910
1911 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1912 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1913
1914 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1915
    }
1916
1917
    /**
1918
     * Madrid to ED50 polynomial.
1919
     */
1920 9
    public function madridToED50Polynomial(
1921
        Geographic2D $to,
1922
        Scale $A0,
1923
        Scale $A1,
1924
        Scale $A2,
1925
        Scale $A3,
1926
        Angle $B00,
1927
        Scale $B0,
1928
        Scale $B1,
1929
        Scale $B2,
1930
        Scale $B3
1931
    ): self {
1932 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1933 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1934
1935 9
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1936
    }
1937
1938
    /**
1939
     * Geographic3D to 2D conversion.
1940
     */
1941 46
    public function threeDToTwoD(
1942
        Geographic2D|Geographic3D $to
1943
    ): self {
1944 46
        if ($to instanceof Geographic2D) {
1945 46
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1946
        }
1947
1948
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1949
    }
1950
1951
    /**
1952
     * Geographic2D offsets.
1953
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1954
     * coordinate values of the point in the source system.
1955
     */
1956 9
    public function geographic2DOffsets(
1957
        Geographic2D|Geographic3D $to,
1958
        Angle $latitudeOffset,
1959
        Angle $longitudeOffset
1960
    ): self {
1961 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1962 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1963
1964 9
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
1965
    }
1966
1967
    /*
1968
     * Geographic2D with Height Offsets.
1969
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1970
     * coordinate values of the point in the source system.
1971
     */
1972
    public function geographic2DWithHeightOffsets(
1973
        Compound $to,
1974
        Angle $latitudeOffset,
1975
        Angle $longitudeOffset,
1976
        Length $geoidUndulation
1977
    ): CompoundPoint {
1978
        $toLatitude = $this->latitude->add($latitudeOffset);
1979
        $toLongitude = $this->longitude->add($longitudeOffset);
1980
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1980
        /** @scrutinizer ignore-call */ 
1981
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
1981
1982
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1982
        $horizontal = static::create(/** @scrutinizer ignore-type */ $to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
Loading history...
1983
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

1983
        $vertical = VerticalPoint::create($to->getVertical(), /** @scrutinizer ignore-type */ $toHeight, $this->epoch);
Loading history...
1984
1985
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
1986
    }
1987
1988
    /**
1989
     * General polynomial.
1990
     * @param Coefficient[] $powerCoefficients
1991
     */
1992 18
    public function generalPolynomial(
1993
        Geographic2D|Geographic3D $to,
1994
        Angle $ordinate1OfEvaluationPointInSourceCRS,
1995
        Angle $ordinate2OfEvaluationPointInSourceCRS,
1996
        Angle $ordinate1OfEvaluationPointInTargetCRS,
1997
        Angle $ordinate2OfEvaluationPointInTargetCRS,
1998
        Scale $scalingFactorForSourceCRSCoordDifferences,
1999
        Scale $scalingFactorForTargetCRSCoordDifferences,
2000
        Scale $A0,
2001
        Scale $B0,
2002
        array $powerCoefficients
2003
    ): self {
2004 18
        $xs = $this->latitude->getValue();
2005 18
        $ys = $this->longitude->getValue();
2006
2007 18
        $t = $this->generalPolynomialUnitless(
2008 18
            $xs,
2009
            $ys,
2010
            $ordinate1OfEvaluationPointInSourceCRS,
2011
            $ordinate2OfEvaluationPointInSourceCRS,
2012
            $ordinate1OfEvaluationPointInTargetCRS,
2013
            $ordinate2OfEvaluationPointInTargetCRS,
2014
            $scalingFactorForSourceCRSCoordDifferences,
2015
            $scalingFactorForTargetCRSCoordDifferences,
2016
            $A0,
2017
            $B0,
2018
            $powerCoefficients
2019
        );
2020
2021 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2022 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2023
2024 18
        return static::create(
2025 18
            $to,
2026 18
            Angle::makeUnit($t['xt'], $xtUnit),
2027 18
            Angle::makeUnit($t['yt'], $ytUnit),
2028 18
            $this->height,
2029 18
            $this->epoch
2030
        );
2031
    }
2032
2033
    /**
2034
     * Reversible polynomial.
2035
     * @param Coefficient[] $powerCoefficients
2036
     */
2037 36
    public function reversiblePolynomial(
2038
        Geographic2D|Geographic3D $to,
2039
        Angle $ordinate1OfEvaluationPoint,
2040
        Angle $ordinate2OfEvaluationPoint,
2041
        Scale $scalingFactorForCoordDifferences,
2042
        Scale $A0,
2043
        Scale $B0,
2044
        $powerCoefficients
2045
    ): self {
2046 36
        $xs = $this->latitude->getValue();
2047 36
        $ys = $this->longitude->getValue();
2048
2049 36
        $t = $this->reversiblePolynomialUnitless(
2050 36
            $xs,
2051
            $ys,
2052
            $ordinate1OfEvaluationPoint,
2053
            $ordinate2OfEvaluationPoint,
2054
            $scalingFactorForCoordDifferences,
2055
            $A0,
2056
            $B0,
2057
            $powerCoefficients
2058
        );
2059
2060 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2061 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2062
2063 36
        return static::create(
2064 36
            $to,
2065 36
            Angle::makeUnit($t['xt'], $xtUnit),
2066 36
            Angle::makeUnit($t['yt'], $ytUnit),
2067 36
            $this->height,
2068 36
            $this->epoch
2069
        );
2070
    }
2071
2072
    /**
2073
     * Axis Order Reversal.
2074
     */
2075
    public function axisReversal(
2076
        Geographic2D|Geographic3D $to
2077
    ): self {
2078
        // axes are read in from the CRS, this is a book-keeping adjustment only
2079
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2080
    }
2081
2082
    /**
2083
     * Ordnance Survey National Transformation
2084
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2085
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2086
     */
2087 2
    public function OSTN15(
2088
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2088
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2089
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2090
    ): ProjectedPoint {
2091 2
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2092 2
        $etrs89NationalGrid = new Projected(
2093 2
            'ETRS89 / National Grid',
2094 2
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2095 2
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2096 2
            $osgb36NationalGrid->getBoundingArea()
2097
        );
2098
2099 2
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2100
2101 2
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2102
    }
2103
2104
    /**
2105
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2106
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2107
     * coordinate differences.
2108
     */
2109 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2110
        Compound $to,
2111
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2112
    ): CompoundPoint {
2113 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2114 1
        $etrs89NationalGrid = new Projected(
2115 1
            'ETRS89 / National Grid',
2116 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2117 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2118 1
            $osgb36NationalGrid->getBoundingArea()
2119
        );
2120
2121 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2122
2123 1
        $horizontalPoint = self::create(
2124 1
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2124
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2125 1
            $this->latitude,
2126 1
            $this->longitude,
2127 1
            null,
2128 1
            $this->getCoordinateEpoch()
2129
        );
2130
2131 1
        $verticalPoint = VerticalPoint::create(
2132 1
            $to->getVertical(),
2133 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2133
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2134 1
            $this->getCoordinateEpoch()
2135
        );
2136
2137 1
        return CompoundPoint::create(
2138 1
            $to,
2139 1
            $horizontalPoint,
2140 1
            $verticalPoint,
2141 1
            $this->getCoordinateEpoch()
2142
        );
2143
    }
2144
2145
    /**
2146
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2147
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2148
     * coordinate differences.
2149
     */
2150 1
    public function geographic3DToGravityHeightOSGM15(
2151
        Vertical $to,
2152
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2153
    ): VerticalPoint {
2154 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2155 1
        $etrs89NationalGrid = new Projected(
2156 1
            'ETRS89 / National Grid',
2157 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2158 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2159 1
            $osgb36NationalGrid->getBoundingArea()
2160
        );
2161
2162 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2163
2164 1
        return VerticalPoint::create(
2165 1
            $to,
2166 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2166
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2167 1
            $this->getCoordinateEpoch()
2168
        );
2169
    }
2170
2171
    /**
2172
     * Geog3D to Geog2D+GravityRelatedHeight.
2173
     */
2174 2
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2175
        Compound $to,
2176
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2177
    ): CompoundPoint {
2178 2
        $horizontalPoint = self::create(
2179 2
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2179
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2180 2
            $this->latitude,
2181 2
            $this->longitude,
2182 2
            null,
2183 2
            $this->getCoordinateEpoch()
2184
        );
2185
2186 2
        $verticalPoint = VerticalPoint::create(
2187 2
            $to->getVertical(),
2188 2
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2188
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2189 2
            $this->getCoordinateEpoch()
2190
        );
2191
2192 2
        return CompoundPoint::create(
2193 2
            $to,
2194 2
            $horizontalPoint,
2195 2
            $verticalPoint,
2196 2
            $this->getCoordinateEpoch()
2197
        );
2198
    }
2199
2200
    /**
2201
     * Geographic3D to GravityRelatedHeight.
2202
     */
2203 2
    public function geographic3DToGravityHeightFromGrid(
2204
        Vertical $to,
2205
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2206
    ): VerticalPoint {
2207 2
        return VerticalPoint::create(
2208 2
            $to,
2209 2
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2209
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2210 2
            $this->getCoordinateEpoch()
2211
        );
2212
    }
2213
2214
    /**
2215
     * NADCON5.
2216
     * @internal just a wrapper
2217
     */
2218 7
    public function offsetsFromGridNADCON5(
2219
        Geographic2D|Geographic3D $to,
2220
        NADCON5Grid $latitudeDifferenceFile,
2221
        NADCON5Grid $longitudeDifferenceFile,
2222
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2223
        bool $inReverse
2224
    ): self {
2225 7
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2226
2227 7
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2228
    }
2229
2230
    /**
2231
     * Geographic offsets from grid.
2232
     */
2233 12
    public function offsetsFromGrid(
2234
        Geographic2D|Geographic3D $to,
2235
        GeographicGrid $offsetsFile,
2236
        bool $inReverse
2237
    ): self {
2238 12
        if (!$inReverse) {
2239 7
            return $offsetsFile->applyForwardAdjustment($this, $to);
2240
        }
2241
2242 5
        return $offsetsFile->applyReverseAdjustment($this, $to);
2243
    }
2244
2245 353
    public function asGeographicValue(): GeographicValue
2246
    {
2247 353
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2248
    }
2249
2250 18
    public function asUTMPoint(): UTMPoint
2251
    {
2252 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2253 18
        $latitudeOfNaturalOrigin = new Degree(0);
2254 18
        $initialLongitude = new Degree(-180);
2255 18
        $scaleFactorAtNaturalOrigin = new Unity(0.9996);
2256 18
        $falseEasting = new Metre(500000);
2257 18
        $falseNorthing = $hemisphere === UTMPoint::HEMISPHERE_NORTH ? new Metre(0) : new Metre(10000000);
2258 18
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2259 18
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * 6 - 3));
2260
2261 18
        $projectedCRS = new Projected(
2262 18
            'UTM/' . $this->crs->getSRID(),
2263 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2264 18
            $this->crs->getDatum(),
2265 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter
2266
        );
2267
2268 18
        $asProjected = $this->transverseMercator($projectedCRS, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2269
2270 18
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $this->crs can also be of type PHPCoord\CoordinateReferenceSystem\Geographic3D; however, parameter $crs of PHPCoord\UTMPoint::__construct() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic2D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2270
        return new UTMPoint(/** @scrutinizer ignore-type */ $this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $Z, $hemisphere, $this->epoch);
Loading history...
2271
    }
2272
}
2273