|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types = 1); |
|
4
|
|
|
|
|
5
|
|
|
namespace drupol\phpartition; |
|
6
|
|
|
|
|
7
|
|
|
use drupol\phpartition\Partition\Partition; |
|
8
|
|
|
use drupol\phpartition\Partitions\Partitions; |
|
9
|
|
|
|
|
10
|
|
|
/** |
|
11
|
|
|
* Class Linear. |
|
12
|
|
|
*/ |
|
13
|
|
|
class Linear extends Partitioner |
|
14
|
|
|
{ |
|
15
|
|
|
/** |
|
16
|
|
|
* @param \drupol\phpartition\Partitions\Partitions $partitions |
|
17
|
|
|
* @param \drupol\phpartition\Partition\Partition $dataset |
|
18
|
|
|
* @param int $chunks |
|
19
|
|
|
*/ |
|
20
|
|
|
protected function fillPartitions(Partitions $partitions, Partition $dataset, int $chunks): void |
|
21
|
|
|
{ |
|
22
|
|
|
$dataset = $dataset->getArrayCopy(); |
|
23
|
|
|
|
|
24
|
|
|
// See https://github.com/technically-php/linear-partitioning for |
|
25
|
|
|
// original version of this algorithm. |
|
26
|
|
|
|
|
27
|
|
|
// An array S of non-negative numbers {s1, ... ,sn} |
|
28
|
|
|
$s = \array_merge([null], $dataset); // adapt indices here: [0..n-1] => [1..n] |
|
29
|
|
|
|
|
30
|
|
|
// Integer K - number of ranges to split items into |
|
31
|
|
|
$k = $chunks; |
|
32
|
|
|
$n = \count($dataset); |
|
33
|
|
|
|
|
34
|
|
|
// Let D[n,k] be the position of K-th divider |
|
35
|
|
|
// which produces the minimum possible cost partitioning of N elements to K ranges |
|
36
|
|
|
$d = []; |
|
37
|
|
|
|
|
38
|
|
|
// Let p be the sum of first i elements (cost calculation optimization) |
|
39
|
|
|
$p = []; |
|
40
|
|
|
|
|
41
|
|
|
// 1) Init prefix sums array |
|
42
|
|
|
// pi = sum of {s1, ..., si} |
|
43
|
|
|
$p[0] = $this->getPartitionItemFactory()::create(0); |
|
44
|
|
|
for ($i = 1; $i <= $n; ++$i) { |
|
45
|
|
|
$p[$i] = $this->getPartitionItemFactory()::create($p[$i - 1]->getWeight() + $s[$i]->getWeight()); |
|
46
|
|
|
} |
|
47
|
|
|
|
|
48
|
|
|
// Let M[n,k] be the minimum possible cost over all partitionings of N elements to K ranges |
|
49
|
|
|
$m = []; |
|
50
|
|
|
|
|
51
|
|
|
// 2) Init boundaries |
|
52
|
|
|
for ($i = 1; $i <= $n; ++$i) { |
|
53
|
|
|
// The only possible partitioning of i elements to 1 range is a single all-elements range |
|
54
|
|
|
// The cost of that partitioning is the sum of those i elements |
|
55
|
|
|
$m[$i][1] = $p[$i]; // sum of {s1, ..., si} -- optimized using pi |
|
56
|
|
|
} |
|
57
|
|
|
|
|
58
|
|
|
for ($j = 1; $j <= $k; ++$j) { |
|
59
|
|
|
// The only possible partitioning of 1 element into j ranges is a single one-element range |
|
60
|
|
|
// The cost of that partitioning is the value of first element |
|
61
|
|
|
$m[1][$j] = $s[1]; |
|
62
|
|
|
} |
|
63
|
|
|
// 3) Main recurrence (fill the rest of values in table M) |
|
64
|
|
|
for ($i = 2; $i <= $n; ++$i) { |
|
65
|
|
|
for ($j = 2; $j <= $k; ++$j) { |
|
66
|
|
|
$solutions = []; |
|
67
|
|
|
for ($x = 1; ($i - 1) >= $x; ++$x) { |
|
68
|
|
|
$solutions[] = [ |
|
69
|
|
|
0 => $this->getPartitionItemFactory()::create( |
|
70
|
|
|
\max( |
|
71
|
|
|
$m[$x][$j - 1]->getWeight(), |
|
72
|
|
|
$p[$i]->getWeight() - $p[$x]->getWeight() |
|
73
|
|
|
) |
|
74
|
|
|
), |
|
75
|
|
|
1 => $x, |
|
76
|
|
|
]; |
|
77
|
|
|
} |
|
78
|
|
|
|
|
79
|
|
|
\usort( |
|
80
|
|
|
$solutions, |
|
81
|
|
|
static function (array $x, array $y) { |
|
82
|
|
|
return $x[0] <=> $y[0]; |
|
83
|
|
|
} |
|
84
|
|
|
); |
|
85
|
|
|
|
|
86
|
|
|
$best_solution = $solutions[0]; |
|
87
|
|
|
$m[$i][$j] = $best_solution[0]; |
|
88
|
|
|
$d[$i][$j] = $best_solution[1]; |
|
89
|
|
|
} |
|
90
|
|
|
} |
|
91
|
|
|
|
|
92
|
|
|
// 4) Reconstruct partitioning |
|
93
|
|
|
$i = $n; |
|
94
|
|
|
$j = $k; |
|
95
|
|
|
$partition = []; |
|
96
|
|
|
while (0 < $j) { |
|
97
|
|
|
// delimiter position |
|
98
|
|
|
$dp = $d[$i][$j] ?? 0; |
|
99
|
|
|
// Add elements after delimiter {sdp, ..., si} to resulting $partition. |
|
100
|
|
|
$partition[] = \array_slice($s, $dp + 1, $i - $dp); |
|
101
|
|
|
// Step forward: look for delimiter position for partitioning M[$dp, $j-1] |
|
102
|
|
|
$i = $dp; |
|
103
|
|
|
--$j; |
|
104
|
|
|
} |
|
105
|
|
|
|
|
106
|
|
|
foreach ($partition as $i => $p) { |
|
107
|
|
|
$partitions->partition($i)->exchangeArray($p); |
|
108
|
|
|
} |
|
109
|
|
|
} |
|
110
|
|
|
} |
|
111
|
|
|
|