Conditions | 9 |
Paths | 128 |
Total Lines | 81 |
Code Lines | 41 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | <?php |
||
45 | protected function fillPartitions(Partitions $partitions, array $dataset, int $chunks): void |
||
46 | { |
||
47 | // An array S of non-negative numbers {s1, ... ,sn} |
||
48 | $s = \array_merge([null], \array_values($dataset)); // adapt indices here: [0..n-1] => [1..n] |
||
49 | // Integer K - number of ranges to split items into |
||
50 | $k = $chunks; |
||
51 | $n = \count($dataset); |
||
52 | // Let M[n,k] be the minimum possible cost over all partitionings of N elements to K ranges |
||
53 | $m = []; |
||
54 | // Let D[n,k] be the position of K-th divider |
||
55 | // which produces the minimum possible cost partitioning of N elements to K ranges |
||
56 | $d = []; |
||
57 | // Note: For code simplicity we don't use zero indices for `m` and `d` |
||
58 | // to make code match math formulas |
||
59 | // Let pi be the sum of first i elements (cost calculation optimization) |
||
60 | $p = []; |
||
61 | // 1) Init prefix sums array |
||
62 | // pi = sum of {s1, ..., si} |
||
63 | $p[0] = $this->getPartitionItemFactory()::create(0); |
||
64 | for ($i = 1; $i <= $n; ++$i) { |
||
65 | $p[$i] = $this->getPartitionItemFactory()::create($p[$i - 1]->getWeight() + $s[$i]->getWeight()); |
||
66 | } |
||
67 | // 2) Init boundaries |
||
68 | for ($i = 1; $i <= $n; ++$i) { |
||
69 | // The only possible partitioning of i elements to 1 range is a single all-elements range |
||
70 | // The cost of that partitioning is the sum of those i elements |
||
71 | $m[$i][1] = $p[$i]; // sum of {s1, ..., si} -- optimized using pi |
||
72 | } |
||
73 | for ($j = 1; $j <= $k; ++$j) { |
||
74 | // The only possible partitioning of 1 element into j ranges is a single one-element range |
||
75 | // The cost of that partitioning is the value of first element |
||
76 | $m[1][$j] = $s[1]; |
||
77 | } |
||
78 | // 3) Main recurrence (fill the rest of values in table M) |
||
79 | for ($i = 2; $i <= $n; ++$i) { |
||
80 | for ($j = 2; $j <= $k; ++$j) { |
||
81 | $solutions = []; |
||
82 | for ($x = 1; ($i - 1) >= $x; ++$x) { |
||
83 | $solutions[] = [ |
||
84 | 0 => $this->getPartitionItemFactory()::create( |
||
85 | \max( |
||
86 | $m[$x][$j - 1]->getWeight(), |
||
87 | $p[$i]->getWeight() - $p[$x]->getWeight() |
||
88 | ) |
||
89 | ), |
||
90 | 1 => $x, |
||
91 | ]; |
||
92 | } |
||
93 | |||
94 | \usort( |
||
95 | $solutions, |
||
96 | static function (array $x, array $y) { |
||
97 | return $x[0] <=> $y[0]; |
||
98 | } |
||
99 | ); |
||
100 | |||
101 | $best_solution = $solutions[0]; |
||
102 | $m[$i][$j] = $best_solution[0]; |
||
103 | $d[$i][$j] = $best_solution[1]; |
||
104 | } |
||
105 | } |
||
106 | |||
107 | // 4) Reconstruct partitioning |
||
108 | $i = $n; |
||
109 | $j = $k; |
||
110 | $partition = []; |
||
111 | while (0 < $j) { |
||
112 | // delimiter position |
||
113 | $dp = $d[$i][$j] ?? 0; |
||
114 | // Add elements after delimiter {sdp, ..., si} to resulting $partition. |
||
115 | $partition[] = \array_slice($s, $dp + 1, $i - $dp); |
||
116 | // Step forward: look for delimiter position for partitioning M[$dp, $j-1] |
||
117 | $i = $dp; |
||
118 | --$j; |
||
119 | } |
||
120 | |||
121 | // Fix order as we reconstructed the partitioning from end to start |
||
122 | $partition = \array_reverse($partition); |
||
123 | |||
124 | foreach ($partition as $i => $p) { |
||
125 | $partitions->partition($i)->exchangeArray($p); |
||
126 | } |
||
129 |