1
|
|
|
# SPDX-FileCopyrightText: Copyright 2020-2023, Contributors to pocketutils |
2
|
|
|
# SPDX-PackageHomePage: https://github.com/dmyersturnbull/pocketutils |
3
|
|
|
# SPDX-License-Identifier: Apache-2.0 |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
import base64 |
9
|
|
|
import enum |
10
|
|
|
import inspect |
11
|
|
|
import json |
12
|
|
|
from collections.abc import ( |
13
|
|
|
Callable, |
14
|
|
|
ItemsView, |
15
|
|
|
KeysView, |
16
|
|
|
Mapping, |
17
|
|
|
Sequence, |
18
|
|
|
ValuesView, |
19
|
|
|
) |
20
|
|
|
from dataclasses import dataclass |
21
|
|
|
from datetime import date, datetime, tzinfo |
22
|
|
|
from datetime import time as _time |
23
|
|
|
from decimal import Decimal |
24
|
|
|
from typing import Any, Self |
25
|
|
|
from uuid import UUID |
26
|
|
|
|
27
|
|
|
try: |
28
|
|
|
import orjson |
29
|
|
|
except ImportError: |
30
|
|
|
orjson = None |
31
|
|
|
|
32
|
|
|
__all__ = ["NanInfHandling", "JsonEncoder", "JsonDecoder", "JsonUtils", "JsonTools"] |
33
|
|
|
|
34
|
|
|
INF = float("Inf") |
35
|
|
|
NEG_INF = float("-Inf") |
36
|
|
|
NAN = float("NaN") |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
class NanInfHandling(enum.StrEnum): |
40
|
|
|
convert_to_str = enum.auto() |
41
|
|
|
convert_to_null = enum.auto() |
42
|
|
|
raise_error = enum.auto() |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
class MiscTypesJsonDefault(Callable[[Any], Any]): |
46
|
|
|
def __call__(self: Self, obj: Any) -> Any: |
47
|
|
|
""" |
48
|
|
|
Tries to return a serializable result for `obj`. |
49
|
|
|
Meant to be passed as `default=` in `orjson.dumps`. |
50
|
|
|
Only encodes types that can always be represented exactly, |
51
|
|
|
without any loss of information. For that reason, it does not |
52
|
|
|
fall back to calling `str` or `repr` for unknown types. |
53
|
|
|
Handles, at least: |
54
|
|
|
|
55
|
|
|
- `decimal.Decimal` → str (scientific notation) |
56
|
|
|
- `complex` or `np.complexfloating` → str (e.g. "(3+1j)") |
57
|
|
|
- `typing.Mapping` → dict |
58
|
|
|
- `typing.ItemsView` → dict |
59
|
|
|
- `collections.abc.{Set,Sequence,...}` → list |
60
|
|
|
- `enum.Enum` → str (name) |
61
|
|
|
- `bytes | bytearray | memoryview` → str (base-64) |
62
|
|
|
- `datetime.tzinfo` → str (timezone name) |
63
|
|
|
- `typing.NamedTuple` → dict |
64
|
|
|
- type or module → str (name) |
65
|
|
|
|
66
|
|
|
Raise: |
67
|
|
|
TypeError: If none of those options worked |
68
|
|
|
""" |
69
|
|
|
if obj is None: |
70
|
|
|
return obj # we should never get here, but this seems safer |
71
|
|
|
elif isinstance(obj, str | int | float | datetime | date | _time | UUID): |
72
|
|
|
return obj # we should never get here, but let's be safe |
73
|
|
|
elif isinstance(obj, Decimal | complex): |
74
|
|
|
return str(obj) |
75
|
|
|
elif isinstance(obj, enum.Enum): |
76
|
|
|
return obj.name |
77
|
|
|
elif isinstance(obj, bytes): |
78
|
|
|
return base64.b64decode(obj) |
79
|
|
|
elif isinstance(obj, bytes | bytearray | memoryview): |
80
|
|
|
return base64.b64decode(bytes(obj)) |
81
|
|
|
elif isinstance(obj, tzinfo): |
82
|
|
|
return obj.tzname(datetime.now(tz=obj)) |
83
|
|
|
elif isinstance(obj, set | frozenset | Sequence | KeysView | ValuesView): |
84
|
|
|
return list(obj) |
85
|
|
|
elif isinstance(obj, Mapping | ItemsView): |
86
|
|
|
return dict(obj) |
87
|
|
|
elif isinstance(obj, tuple) and hasattr(obj, "_asdict"): |
88
|
|
|
# namedtuple |
89
|
|
|
return obj._asdict() |
90
|
|
|
elif inspect.isclass(obj) or inspect.ismodule(obj): |
91
|
|
|
return obj.Self |
92
|
|
|
raise TypeError() |
93
|
|
|
|
94
|
|
|
|
95
|
|
|
_misc_types_default = MiscTypesJsonDefault() |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
@dataclass(frozen=True, slots=True, kw_only=True) |
99
|
|
|
class JsonEncoder: |
100
|
|
|
bytes_options: int |
101
|
|
|
str_options: int |
102
|
|
|
default: Callable[[Any], Any] |
103
|
|
|
prep: Callable[[Any], Any] |
104
|
|
|
|
105
|
|
|
def as_str(self: Self, data: Any) -> str: |
106
|
|
|
data = self.prep(data) |
107
|
|
|
x = orjson.dumps(data, default=self.default, option=self.str_options) |
108
|
|
|
return x.decode(encoding="utf-8") + "\n" |
109
|
|
|
|
110
|
|
|
def as_bytes(self: Self, data: Any) -> bytes | bytearray | memoryview: |
111
|
|
|
data = self.prep(data) |
112
|
|
|
return orjson.dumps(data, default=self.default, option=self.bytes_options) |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
@dataclass(frozen=True, slots=True) |
116
|
|
|
class JsonDecoder: |
117
|
|
|
def from_bytes(self: Self, data: bytes | bytearray | memoryview) -> Any: |
118
|
|
|
if not isinstance(data, bytes | bytearray | memoryview): |
119
|
|
|
raise TypeError(str(type(data))) |
120
|
|
|
if not isinstance(data, bytes): |
121
|
|
|
data = bytes(data) |
122
|
|
|
if orjson: |
123
|
|
|
return orjson.loads(data) |
124
|
|
|
return json.loads(data.decode(encoding="utf-8")) |
125
|
|
|
|
126
|
|
|
def from_str(self: Self, data: str) -> Any: |
127
|
|
|
if orjson: |
128
|
|
|
return orjson.loads(data) |
129
|
|
|
json.loads(data) |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
@dataclass(slots=True, frozen=True) |
133
|
|
|
class JsonUtils: |
134
|
|
|
def misc_types_default(self: Self) -> Callable[[Any], Any]: |
135
|
|
|
return _misc_types_default |
136
|
|
|
|
137
|
|
|
def new_default( |
138
|
|
|
self: Self, |
139
|
|
|
*fallbacks: Callable[[Any], Any] | None, |
140
|
|
|
first: Callable[[Any], Any] | None = _misc_types_default, |
141
|
|
|
last: Callable[[Any], Any] | None = str, |
142
|
|
|
) -> Callable[[Any], Any]: |
143
|
|
|
""" |
144
|
|
|
Creates a new method to be passed as `default=` to `orjson.dumps`. |
145
|
|
|
Tries, in order: :meth:`orjson_default`, `fallbacks`, then `str`. |
146
|
|
|
|
147
|
|
|
Args: |
148
|
|
|
first: Try this first |
149
|
|
|
fallbacks: Tries these, in order, after `first`, skipping any None |
150
|
|
|
last: Use this as the last resort; consider `str` or `repr` |
151
|
|
|
""" |
152
|
|
|
then = [f for f in [first, *fallbacks] if f is not None] |
153
|
|
|
|
154
|
|
|
def _default(obj): |
155
|
|
|
for t in then: |
156
|
|
|
try: |
157
|
|
|
return t(obj) |
158
|
|
|
except TypeError: # noqa: S110 |
159
|
|
|
pass |
160
|
|
|
if last is None: |
161
|
|
|
raise TypeError() |
162
|
|
|
return last(obj) |
163
|
|
|
|
164
|
|
|
_default.__name__ = f"default({', '.join([str(t) for t in then])})" |
165
|
|
|
return _default |
166
|
|
|
|
167
|
|
|
def decoder(self: Self) -> JsonDecoder: |
168
|
|
|
return JsonDecoder() |
169
|
|
|
|
170
|
|
|
def encoder( |
171
|
|
|
self: Self, |
172
|
|
|
*fallbacks: Callable[[Any], Any] | None, |
173
|
|
|
indent: bool = True, |
174
|
|
|
sort: bool = False, |
175
|
|
|
inf_handling: NanInfHandling = NanInfHandling.raise_error, |
176
|
|
|
nan_handling: NanInfHandling = NanInfHandling.raise_error, |
177
|
|
|
last: Callable[[Any], Any] | None = str, |
178
|
|
|
) -> JsonEncoder: |
179
|
|
|
""" |
180
|
|
|
Serializes to string with orjson, indenting and adding a trailing newline. |
181
|
|
|
Uses :meth:`orjson_default` to encode more types than orjson can. |
182
|
|
|
|
183
|
|
|
Args: |
184
|
|
|
indent: Indent by 2 spaces |
185
|
|
|
inf_handling: How to handle Inf and -Inf values in lists and Numpy arrays of floats |
186
|
|
|
nan_handling: How to handle NaN values in lists and Numpy arrays of floats |
187
|
|
|
sort: Sort keys with `orjson.OPT_SORT_KEYS`; |
188
|
|
|
only for :meth:`pocketutils.tools.json_tools.JsonEncoder.as_str` |
189
|
|
|
last: Last resort option to encode a value |
190
|
|
|
""" |
191
|
|
|
import orjson |
192
|
|
|
|
193
|
|
|
bytes_option = orjson.OPT_UTC_Z | orjson.OPT_NON_STR_KEYS |
194
|
|
|
str_option = orjson.OPT_UTC_Z |
195
|
|
|
if sort: |
196
|
|
|
bytes_option |= orjson.OPT_SORT_KEYS |
197
|
|
|
str_option |= orjson.OPT_SORT_KEYS |
198
|
|
|
if indent: |
199
|
|
|
str_option |= orjson.OPT_INDENT_2 |
200
|
|
|
default = self.new_default(*fallbacks, first=_misc_types_default, last=last) |
201
|
|
|
|
202
|
|
|
def prep_fn(d): |
203
|
|
|
return self.prepare(d, inf_handling=inf_handling, nan_handling=nan_handling) |
204
|
|
|
|
205
|
|
|
return JsonEncoder(default=default, bytes_options=bytes_option, str_options=str_option, prep=prep_fn) |
206
|
|
|
|
207
|
|
|
def prepare( |
208
|
|
|
self: Self, |
209
|
|
|
data: Any, |
210
|
|
|
*, |
211
|
|
|
inf_handling: NanInfHandling, |
212
|
|
|
nan_handling: NanInfHandling, |
213
|
|
|
): |
214
|
|
|
""" |
215
|
|
|
Recursively replaces infinite float and numpy values with strings. |
216
|
|
|
Orjson encodes NaN, inf, and +inf as JSON null. |
217
|
|
|
This function converts to string as needed to preserve infinite values. |
218
|
|
|
Any float scalar (`np.floating` and `float`) will be replaced with a string. |
219
|
|
|
Any `np.ndarray`, whether it contains an infinite value or not, will be converted |
220
|
|
|
to an ndarray of strings. |
221
|
|
|
The returned result may still not be serializable with orjson or :meth:`orjson_bytes`. |
222
|
|
|
Trying those methods is the best way to test for serializeablity. |
223
|
|
|
""" |
224
|
|
|
# we go to great lengths to avoid importing numpy |
225
|
|
|
# no np.isinf, np.isneginf, or np.isnan allowed |
226
|
|
|
# we can use the fact that Numpy float types compare to float, |
227
|
|
|
# including to -inf and +inf, where all comparisons between Inf/-Inf and NaN are False |
228
|
|
|
# So our logic is is_infinite := (data > NEG_INF) != (data < INF) |
229
|
|
|
# Meanwhile, we only need to deal with floats: |
230
|
|
|
# - int and bool stay as-is |
231
|
|
|
# - str stays as-is |
232
|
|
|
# - complex gets converted |
233
|
|
|
# figure out the type |
234
|
|
|
is_dict = hasattr(data, "items") and hasattr(data, "keys") and hasattr(data, "values") |
235
|
|
|
is_list = isinstance(data, list) |
236
|
|
|
is_list_with_inf = ( |
237
|
|
|
is_list and all(isinstance(e, float) for e in data) and not all((v > NEG_INF) == (v < INF) for v in data) |
238
|
|
|
) |
239
|
|
|
is_list_with_nan = ( |
240
|
|
|
is_list and all(isinstance(e, float) for e in data) and all(v == NEG_INF or v == INF for v in data) |
241
|
|
|
) |
242
|
|
|
is_np_array = type(data).__name__ == "ndarray" and hasattr(data, "dtype") |
243
|
|
|
is_np_array_with_inf = bool( |
244
|
|
|
is_np_array and str(data.dtype).startswith("float") and not all((v > NEG_INF) == (v < INF) for v in data), |
245
|
|
|
) |
246
|
|
|
is_np_array_with_nan = bool( |
247
|
|
|
is_np_array and str(data.dtype).startswith("float") and all(v == NEG_INF or v == INF for v in data), |
248
|
|
|
) |
249
|
|
|
is_inf_scalar = bool( |
250
|
|
|
(isinstance(data, float) or str(type(data)).startswith("<class 'numpy.float")) |
251
|
|
|
and (data > NEG_INF) != (data < INF), |
252
|
|
|
) |
253
|
|
|
is_nan_scalar = bool( |
254
|
|
|
(isinstance(data, float) or str(type(data)).startswith("<class 'numpy.float")) |
255
|
|
|
and (data == NEG_INF or data == INF), |
256
|
|
|
) |
257
|
|
|
# fix it |
258
|
|
|
if is_dict: |
259
|
|
|
return { |
260
|
|
|
str(k): self.prepare(v, inf_handling=inf_handling, nan_handling=nan_handling) for k, v in data.items() |
261
|
|
|
} |
262
|
|
|
if (is_list_with_inf or is_np_array_with_inf) and inf_handling is NanInfHandling.raise_error: |
263
|
|
|
raise ValueError(f"Array '{data}' contains Inf or -Inf") |
264
|
|
|
if (is_list_with_nan or is_np_array_with_nan) and nan_handling is NanInfHandling.raise_error: |
265
|
|
|
raise ValueError(f"Array '{data}' contains NaN") |
266
|
|
|
if is_inf_scalar and inf_handling is NanInfHandling.raise_error: |
267
|
|
|
raise ValueError(f"Value '{data}' is Inf or -Inf") |
268
|
|
|
if is_nan_scalar and nan_handling is NanInfHandling.raise_error: |
269
|
|
|
raise ValueError(f"Value '{data}' is NaN") |
270
|
|
|
if ( |
271
|
|
|
(is_list_with_inf or is_np_array_with_inf or is_list_with_nan or is_list_with_nan) |
272
|
|
|
and inf_handling is NanInfHandling.convert_to_str |
273
|
|
|
and nan_handling is NanInfHandling.convert_to_str |
274
|
|
|
): |
275
|
|
|
return [str(v) for v in data] |
276
|
|
|
if ( |
277
|
|
|
(is_list_with_inf or is_np_array_with_inf) |
278
|
|
|
and (is_list_with_nan or is_list_with_nan) |
279
|
|
|
and inf_handling is NanInfHandling.convert_to_str |
280
|
|
|
and nan_handling is NanInfHandling.convert_to_null |
281
|
|
|
): |
282
|
|
|
return [None if float(v) == NAN else str(v) for v in data] |
283
|
|
|
if ( |
284
|
|
|
(is_list_with_inf or is_np_array_with_inf) |
285
|
|
|
and (is_list_with_nan or is_list_with_nan) |
286
|
|
|
and inf_handling is NanInfHandling.convert_to_null |
287
|
|
|
and nan_handling is NanInfHandling.convert_to_str |
288
|
|
|
): |
289
|
|
|
return [None if float(v) == INF or float(v) == NEG_INF else str(v) for v in data] |
290
|
|
|
if is_np_array: |
291
|
|
|
return data.tolist() |
292
|
|
|
if is_list: |
293
|
|
|
return [self.prepare(e, inf_handling=inf_handling, nan_handling=nan_handling) for e in data] |
294
|
|
|
if ( |
295
|
|
|
is_inf_scalar |
296
|
|
|
and inf_handling is NanInfHandling.convert_to_str |
297
|
|
|
or is_nan_scalar |
298
|
|
|
and nan_handling is NanInfHandling.convert_to_str |
299
|
|
|
): |
300
|
|
|
return str(data) |
301
|
|
|
return data |
302
|
|
|
|
303
|
|
|
|
304
|
|
|
JsonTools = JsonUtils() |
305
|
|
|
|