1
|
|
|
import logging |
|
|
|
|
2
|
|
|
import abc |
3
|
|
|
from dataclasses import dataclass |
4
|
|
|
from typing import Sequence, Set, Optional |
5
|
|
|
|
6
|
|
|
from pocketutils.core.dot_dict import NestedDotDict |
|
|
|
|
7
|
|
|
|
8
|
|
|
from mandos.model.chembl_api import ChemblApi |
9
|
|
|
from mandos.model.chembl_support import ChemblCompound, AssayType |
10
|
|
|
from mandos.model.chembl_support.chembl_target_graphs import ChemblTargetGraph |
11
|
|
|
from mandos.model.taxonomy import Taxonomy |
12
|
|
|
from mandos.search.chembl._protein_search import ProteinHit, ProteinSearch, H |
13
|
|
|
|
14
|
|
|
logger = logging.getLogger("mandos") |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
@dataclass(frozen=True, order=True, repr=True) |
18
|
|
|
class _ActivityHit(ProteinHit): |
19
|
|
|
taxon_id: int |
20
|
|
|
taxon_name: str |
21
|
|
|
src_id: str |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class _ActivitySearch(ProteinSearch[H], metaclass=abc.ABCMeta): |
25
|
|
|
""" |
26
|
|
|
Search for ``activity``. |
27
|
|
|
""" |
28
|
|
|
|
29
|
|
|
def __init__( |
|
|
|
|
30
|
|
|
self, |
|
|
|
|
31
|
|
|
key: str, |
|
|
|
|
32
|
|
|
api: ChemblApi, |
|
|
|
|
33
|
|
|
taxa: Sequence[Taxonomy], |
|
|
|
|
34
|
|
|
traversal_strategy: str, |
|
|
|
|
35
|
|
|
allowed_target_types: Set[str], |
|
|
|
|
36
|
|
|
min_confidence_score: Optional[int], |
|
|
|
|
37
|
|
|
allowed_relations: Set[str], |
|
|
|
|
38
|
|
|
min_pchembl: Optional[float], |
|
|
|
|
39
|
|
|
banned_flags: Set[str], |
|
|
|
|
40
|
|
|
): |
41
|
|
|
super().__init__(key, api, taxa, traversal_strategy, allowed_target_types) |
42
|
|
|
self.min_confidence_score = min_confidence_score |
43
|
|
|
self.allowed_relations = allowed_relations |
44
|
|
|
self.min_pchembl = min_pchembl |
45
|
|
|
self.banned_flags = banned_flags |
46
|
|
|
|
47
|
|
|
@classmethod |
48
|
|
|
def allowed_assay_types(cls) -> Set[str]: |
|
|
|
|
49
|
|
|
raise NotImplementedError() |
50
|
|
|
|
51
|
|
|
def query(self, parent_form: ChemblCompound) -> Sequence[NestedDotDict]: |
|
|
|
|
52
|
|
|
|
53
|
|
|
filters = dict( |
54
|
|
|
parent_molecule_chembl_id=parent_form.chid, |
55
|
|
|
assay_type__iregex=self._set_to_regex(self.allowed_assay_types()), |
56
|
|
|
standard_relation__iregex=self._set_to_regex(self.allowed_relations), |
57
|
|
|
pchembl_value__isnull=None if self.min_pchembl is None else False, |
58
|
|
|
target_organism__isnull=None if len(self.taxa) == 0 else False, |
59
|
|
|
) |
60
|
|
|
# I'd rather not figure out how the API interprets None, so remove them |
61
|
|
|
filters = {k: v for k, v in filters.items() if v is not None} |
62
|
|
|
return list(self.api.activity.filter(**filters)) |
63
|
|
|
|
64
|
|
|
def should_include( |
|
|
|
|
65
|
|
|
self, lookup: str, compound: ChemblCompound, data: NestedDotDict, target: ChemblTargetGraph |
|
|
|
|
66
|
|
|
) -> bool: |
67
|
|
|
if ( |
68
|
|
|
( |
|
|
|
|
69
|
|
|
data.get_as("data_validity_comment", lambda s: s.lower()) |
70
|
|
|
in {s.lower() for s in self.banned_flags} |
71
|
|
|
) |
72
|
|
|
or (data.req_as("standard_relation", str) not in self.allowed_relations) |
|
|
|
|
73
|
|
|
or (data.req_as("assay_type", str) not in self.allowed_assay_types()) |
|
|
|
|
74
|
|
|
or (len(self.taxa) > 0 and not self.is_in_taxa(data.get_as("target_tax_id", int))) |
|
|
|
|
75
|
|
|
or (self.min_pchembl is not None and data.get("pchembl_value") is None) |
|
|
|
|
76
|
|
|
or self.min_pchembl is not None |
|
|
|
|
77
|
|
|
and data.req_as("pchembl_value", float) < self.min_pchembl |
|
|
|
|
78
|
|
|
): |
79
|
|
|
return False |
80
|
|
|
if data.get("data_validity_comment") is not None: |
81
|
|
|
logger.warning( |
|
|
|
|
82
|
|
|
f"Activity annotation for {lookup} has flag '{data.get('data_validity_comment')} (ok)" |
|
|
|
|
83
|
|
|
) |
84
|
|
|
# The `target_organism` doesn't always match the `assay_organism` |
85
|
|
|
# Ex: see assay CHEMBL823141 / document CHEMBL1135642 for homo sapiens in xenopus laevis |
86
|
|
|
# However, it's often something like yeast expressing a human / mouse / etc receptor |
87
|
|
|
# So there's no need to filter by it |
88
|
|
|
assay = self.api.assay.get(data.req_as("assay_chembl_id", str)) |
89
|
|
|
if target.type.name.lower() not in {s.lower() for s in self.allowed_target_types}: |
90
|
|
|
logger.warning(f"Excluding {target} with type {target.type}") |
|
|
|
|
91
|
|
|
return False |
92
|
|
|
confidence_score = assay.get("confidence_score") |
93
|
|
|
if self.min_confidence_score is not None: |
94
|
|
|
if confidence_score is None or confidence_score < self.min_confidence_score: |
95
|
|
|
return False |
96
|
|
|
# Some of these are non-protein types |
97
|
|
|
# And if it's unknown, we don't know what to do with it |
98
|
|
|
return True |
99
|
|
|
|
100
|
|
|
def _extract(self, lookup: str, compound: ChemblCompound, data: NestedDotDict) -> NestedDotDict: |
101
|
|
|
# we know these exist from the query |
102
|
|
|
organism = data.req_as("target_organism", str) |
103
|
|
|
tax_id = data.req_as("target_tax_id", int) |
104
|
|
|
if len(self.taxa) == 0: |
105
|
|
|
tax_id, tax_name = tax_id, organism |
|
|
|
|
106
|
|
|
else: |
107
|
|
|
taxes = {tax.req(tax_id) for tax in self.taxa if tax.contains(tax_id)} |
108
|
|
|
tax = next(iter(taxes)) |
109
|
|
|
if len(taxes) > 1: |
110
|
|
|
logger.warning(f"Multiple matches for taxon {tax_id}: {taxes}; using {tax}") |
|
|
|
|
111
|
|
|
if organism != tax.name: |
112
|
|
|
logger.warning(f"Target organism {organism} is not {tax.name}") |
|
|
|
|
113
|
|
|
tax_id = tax.id |
114
|
|
|
tax_name = tax.name |
115
|
|
|
return NestedDotDict( |
116
|
|
|
dict( |
117
|
|
|
record_id=data.req_as("activity_id", str), |
118
|
|
|
origin_inchikey=lookup, |
119
|
|
|
matched_inchikey=compound.inchikey, |
120
|
|
|
compound_id=compound.chid, |
121
|
|
|
compound_name=compound.name, |
122
|
|
|
taxon_id=tax_id, |
123
|
|
|
taxon_name=tax_name, |
124
|
|
|
pchembl=data.req_as("pchembl_value", float), |
125
|
|
|
std_type=data.req_as("standard_type", str), |
126
|
|
|
src_id=data.req_as("src_id", str), |
127
|
|
|
exact_target_id=data.req_as("target_chembl_id", str), |
128
|
|
|
tissue=data.get_as("tissue", str), |
129
|
|
|
cell_type=data.get_as("cell_type", str), |
130
|
|
|
subcellular_region=data.get("subcellular_region", str), |
131
|
|
|
) |
132
|
|
|
) |
133
|
|
|
|
134
|
|
|
assay_type: AssayType |
135
|
|
|
tissue: Optional[str] |
136
|
|
|
cell_type: Optional[str] |
137
|
|
|
subcellular_region: Optional[str] |
138
|
|
|
|
139
|
|
|
|
140
|
|
|
__all__ = ["_ActivitySearch", "_ActivityHit"] |
141
|
|
|
|