|
1
|
|
|
import functools |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
|
|
5
|
|
|
from ... import problems |
|
6
|
|
|
|
|
7
|
|
|
|
|
8
|
|
|
class RamseyCassKoopmansModel(problems.TwoPointBVP): |
|
9
|
|
|
""" |
|
10
|
|
|
Class representing a generic Solow growth model. |
|
11
|
|
|
|
|
12
|
|
|
Attributes |
|
13
|
|
|
---------- |
|
14
|
|
|
equilibrium_capital : function |
|
15
|
|
|
Equilibrium value for capital (per unit effective labor). |
|
16
|
|
|
equilibrium_consumption : function |
|
17
|
|
|
Equilibrium value for consumption (per unit effective labor). |
|
18
|
|
|
intensive_output : function |
|
19
|
|
|
Output (per unit effective labor supply). |
|
20
|
|
|
marginal_product_capital : function |
|
21
|
|
|
Marginal product of capital (i.e., first derivative of intensive output). |
|
22
|
|
|
params : dict(str: float) |
|
23
|
|
|
Dictionary of model parameters. |
|
24
|
|
|
pratt_arrow_risk_aversion : function |
|
25
|
|
|
Pratt-Arrow relative risk aversion function. |
|
26
|
|
|
|
|
27
|
|
|
""" |
|
28
|
|
|
|
|
29
|
|
|
def __init__(self, ARA, f, k_star, mpk, params): |
|
30
|
|
|
""" |
|
31
|
|
|
Initialize an instance of the RamseyCassKoopmans class. |
|
32
|
|
|
|
|
33
|
|
|
Parameters |
|
34
|
|
|
---------- |
|
35
|
|
|
ARA : function |
|
36
|
|
|
Pratt-Arrow absolute risk aversion function. |
|
37
|
|
|
f : function |
|
38
|
|
|
Output (per unit effective labor supply). |
|
39
|
|
|
k_star : function |
|
40
|
|
|
Equilibrium (i.e., steady-state) value for capital stock (per unit |
|
41
|
|
|
effective labor supply). |
|
42
|
|
|
mpk : function |
|
43
|
|
|
Marginal product of capital (per unit effective labor supply). |
|
44
|
|
|
params : dict(str: float) |
|
45
|
|
|
Dictionary of model parameters |
|
46
|
|
|
|
|
47
|
|
|
""" |
|
48
|
|
|
self._equilibrium_capital = k_star |
|
49
|
|
|
self._intensive_output = f |
|
50
|
|
|
self._marginal_product_capital = mpk |
|
51
|
|
|
self._pratt_arrow_risk_aversion = ARA |
|
52
|
|
|
|
|
53
|
|
|
# construct the terminal condition |
|
54
|
|
|
c_star = self._c_star_factory(k_star) |
|
55
|
|
|
terminal_condition = self._terminal_condition_factory(c_star) |
|
56
|
|
|
self._equilibrium_consumption = c_star |
|
57
|
|
|
|
|
58
|
|
|
# construct the RHS of the system of ODEs |
|
59
|
|
|
rhs = self._rhs_factory(ARA, f, mpk) |
|
60
|
|
|
|
|
61
|
|
|
super(RamseyCassKoopmansModel, self).__init__(self._initial_condition, |
|
62
|
|
|
terminal_condition, 1, 2, |
|
63
|
|
|
params, rhs) |
|
64
|
|
|
|
|
65
|
|
|
@property |
|
66
|
|
|
def equilibrium_capital(self): |
|
67
|
|
|
return self._equilibrium_capital |
|
68
|
|
|
|
|
69
|
|
|
@property |
|
70
|
|
|
def equilibrium_consumption(self): |
|
71
|
|
|
return self._equilibrium_consumption |
|
72
|
|
|
|
|
73
|
|
|
@property |
|
74
|
|
|
def intensive_output(self): |
|
75
|
|
|
return self._intensive_output |
|
76
|
|
|
|
|
77
|
|
|
@property |
|
78
|
|
|
def marginal_product_capital(self): |
|
79
|
|
|
return self._marginal_product_capital |
|
80
|
|
|
|
|
81
|
|
|
@property |
|
82
|
|
|
def pratt_arrow_risk_aversion(self): |
|
83
|
|
|
return self._pratt_arrow_risk_aversion |
|
84
|
|
|
|
|
85
|
|
|
@staticmethod |
|
86
|
|
|
def _actual_investment(k_tilde, c_tilde, f, **params): |
|
87
|
|
|
return f(k_tilde, **params) - c_tilde |
|
88
|
|
|
|
|
89
|
|
|
@staticmethod |
|
90
|
|
|
def _breakeven_investment(k_tilde, delta, g, n, **params): |
|
91
|
|
|
return (g + n + delta) * k_tilde |
|
92
|
|
|
|
|
93
|
|
|
@classmethod |
|
94
|
|
|
def _c_tilde_dot(cls, t, k_tilde, c_tilde, ARA, mpk, A0, delta, g, rho, **params): |
|
95
|
|
|
A = cls._technology(t, A0, g) |
|
96
|
|
|
return ((mpk(k_tilde, **params) - delta - rho) / (A * ARA(t, A * c_tilde, **params))) - g * c_tilde |
|
97
|
|
|
|
|
98
|
|
|
@staticmethod |
|
99
|
|
|
def _initial_condition(t, k_tilde, c_tilde, A0, K0, N0, **params): |
|
100
|
|
|
return [k_tilde - (K0 / (A0 * N0))] |
|
101
|
|
|
|
|
102
|
|
|
@staticmethod |
|
103
|
|
|
def _technology(t, A0, g): |
|
104
|
|
|
return A0 * np.exp(g * t) |
|
105
|
|
|
|
|
106
|
|
|
@classmethod |
|
107
|
|
|
def _k_dot(cls, t, k_tilde, c_tilde, f, delta, g, n, **params): |
|
108
|
|
|
k_dot = (cls._actual_investment(k_tilde, c_tilde, f, **params) - |
|
109
|
|
|
cls._breakeven_investment(k_tilde, delta, g, n)) |
|
110
|
|
|
return k_dot |
|
111
|
|
|
|
|
112
|
|
|
@classmethod |
|
113
|
|
|
def _ramsey_model(cls, t, k_tilde, c_tilde, ARA, f, mpk, A0, delta, g, n, rho, **params): |
|
114
|
|
|
out = [cls._k_dot(t, k_tilde, c_tilde, f, delta, g, n, **params), |
|
115
|
|
|
cls._c_tilde_dot(t, k_tilde, c_tilde, ARA, mpk, A0, delta, g, rho, **params)] |
|
116
|
|
|
return out |
|
117
|
|
|
|
|
118
|
|
|
@classmethod |
|
119
|
|
|
def _rhs_factory(cls, ARA, f, mpk): |
|
120
|
|
|
return functools.partial(cls._ramsey_model, ARA=ARA, f=f, mpk=mpk) |
|
121
|
|
|
|
|
122
|
|
|
@staticmethod |
|
123
|
|
|
def _terminal_condition(t, k_tilde, c_tilde, c_star, **params): |
|
124
|
|
|
return [c_tilde - c_star(**params)] |
|
125
|
|
|
|
|
126
|
|
|
@classmethod |
|
127
|
|
|
def _terminal_condition_factory(cls, c_star): |
|
128
|
|
|
return functools.partial(cls._terminal_condition, c_star=c_star) |
|
129
|
|
|
|
|
130
|
|
|
def _c_star(self, k_star, **params): |
|
131
|
|
|
k_tilde = k_star(**params) |
|
132
|
|
|
c_star = (self.intensive_output(k_tilde, **params) - |
|
133
|
|
|
self._breakeven_investment(k_tilde, **params)) |
|
134
|
|
|
return c_star |
|
135
|
|
|
|
|
136
|
|
|
def _c_star_factory(self, k_star): |
|
137
|
|
|
return functools.partial(self._c_star, k_star=k_star) |
|
138
|
|
|
|