|
1
|
|
|
""" |
|
2
|
|
|
Class for approximating the solution to two-point boundary value problems using |
|
3
|
|
|
either standard or orthogonal polynomials as basis functions. |
|
4
|
|
|
|
|
5
|
|
|
@author: davidrpugh |
|
6
|
|
|
|
|
7
|
|
|
""" |
|
8
|
|
|
import numpy as np |
|
9
|
|
|
|
|
10
|
|
|
from . import basis_functions |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class PolynomialBasis(basis_functions.BasisFunctionLike): |
|
14
|
|
|
|
|
15
|
|
|
_valid_kinds = ['Polynomial', 'Chebyshev', 'Legendre', 'Laguerre', 'Hermite'] |
|
16
|
|
|
|
|
17
|
|
|
@staticmethod |
|
18
|
|
|
def _basis_monomial_coefs(degree): |
|
19
|
|
|
"""Return coefficients for a monomial of a given degree.""" |
|
20
|
|
|
return np.append(np.zeros(degree), 1) |
|
21
|
|
|
|
|
22
|
|
|
@classmethod |
|
23
|
|
|
def _basis_polynomial_factory(cls, kind): |
|
24
|
|
|
"""Return a polynomial given some coefficients.""" |
|
25
|
|
|
valid_kind = cls._validate(kind) |
|
26
|
|
|
basis_polynomial = getattr(np.polynomial, valid_kind) |
|
27
|
|
|
return basis_polynomial |
|
28
|
|
|
|
|
29
|
|
|
@classmethod |
|
30
|
|
|
def _validate(cls, kind): |
|
31
|
|
|
"""Validate the kind argument.""" |
|
32
|
|
|
if kind not in cls._valid_kinds: |
|
33
|
|
|
mesg = "'kind' must be one of {}, {}, {}, or {}." |
|
34
|
|
|
raise ValueError(mesg.format(*cls._valid_kinds)) |
|
35
|
|
|
else: |
|
36
|
|
|
return kind |
|
37
|
|
|
|
|
38
|
|
|
@classmethod |
|
39
|
|
|
def derivatives_factory(cls, coef, domain, kind, **kwargs): |
|
40
|
|
|
""" |
|
41
|
|
|
Given some coefficients, return a the derivative of a certain kind of |
|
42
|
|
|
orthogonal polynomial defined over a specific domain. |
|
43
|
|
|
|
|
44
|
|
|
""" |
|
45
|
|
|
basis_polynomial = cls._basis_polynomial_factory(kind) |
|
46
|
|
|
return basis_polynomial(coef, domain).deriv() |
|
47
|
|
|
|
|
48
|
|
|
@classmethod |
|
49
|
|
|
def fit(cls, ts, xs, degree, domain, kind): |
|
50
|
|
|
basis_polynomial = cls._basis_polynomial_factory(kind) |
|
51
|
|
|
return basis_polynomial.fit(ts, xs, degree, domain) |
|
52
|
|
|
|
|
53
|
|
|
@classmethod |
|
54
|
|
|
def functions_factory(cls, coef, domain, kind, **kwargs): |
|
55
|
|
|
""" |
|
56
|
|
|
Given some coefficients, return a certain kind of orthogonal polynomial |
|
57
|
|
|
defined over a specific domain. |
|
58
|
|
|
|
|
59
|
|
|
""" |
|
60
|
|
|
basis_polynomial = cls._basis_polynomial_factory(kind) |
|
61
|
|
|
return basis_polynomial(coef, domain) |
|
62
|
|
|
|
|
63
|
|
|
@classmethod |
|
64
|
|
|
def roots(cls, degree, domain, kind): |
|
65
|
|
|
"""Return optimal collocation nodes for some orthogonal polynomial.""" |
|
66
|
|
|
basis_coefs = cls._basis_monomial_coefs(degree) |
|
67
|
|
|
basis_poly = cls.functions_factory(basis_coefs, domain, kind) |
|
68
|
|
|
return basis_poly.roots() |
|
69
|
|
|
|