1
|
|
|
import pandas as pd |
2
|
|
|
|
3
|
|
|
from BasicNeeds import BasicNeeds as _cls_bn |
4
|
|
|
from TypeDetermination import TypeDetermination as _cls_td |
5
|
|
|
|
6
|
|
|
from datetime import datetime,time |
7
|
|
|
from tableauhyperapi import HyperProcess, Telemetry, \ |
8
|
|
|
Connection, CreateMode, \ |
9
|
|
|
NOT_NULLABLE, NULLABLE, SqlType, TableDefinition, \ |
10
|
|
|
Inserter, \ |
11
|
|
|
escape_name, escape_string_literal, \ |
12
|
|
|
TableName, \ |
13
|
|
|
HyperException, \ |
14
|
|
|
Timestamp |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class TableauHyperApiExtraLogic: |
18
|
|
|
|
19
|
|
|
def fn_build_hyper_columns_for_csv(self, detected_csv_structure, verbose): |
20
|
|
|
list_hyper_table_columns_to_return = [] |
21
|
|
|
for current_field_structure in detected_csv_structure: |
22
|
|
|
list_hyper_table_columns_to_return.append(current_field_structure['order']) |
23
|
|
|
current_column_type = self.fn_convert_to_hyper_types(current_field_structure['type']) |
24
|
|
|
_cls_bn.fn_optional_print(_cls_bn, verbose, 'Column ' |
25
|
|
|
+ str(current_field_structure['order']) + ' having name "' |
26
|
|
|
+ current_field_structure['name'] + '" and type "' |
27
|
|
|
+ current_field_structure['type'] + '" will become "' |
28
|
|
|
+ str(current_column_type) + '"') |
29
|
|
|
if current_field_structure['nulls'] == 0: |
30
|
|
|
list_hyper_table_columns_to_return[current_field_structure['order']] = TableDefinition.Column( |
31
|
|
|
name = current_field_structure['name'], |
32
|
|
|
type = current_column_type, |
33
|
|
|
nullability = NOT_NULLABLE |
34
|
|
|
) |
35
|
|
|
else: |
36
|
|
|
list_hyper_table_columns_to_return[current_field_structure['order']] = TableDefinition.Column( |
37
|
|
|
name = current_field_structure['name'], |
38
|
|
|
type = current_column_type, |
39
|
|
|
nullability = NULLABLE |
40
|
|
|
) |
41
|
|
|
return list_hyper_table_columns_to_return |
42
|
|
|
|
43
|
|
|
''' |
44
|
|
|
def fn_convert_and_validate_content(crt_value, crt_type): |
45
|
|
|
if crt_value == '': |
46
|
|
|
return None |
47
|
|
|
else: |
48
|
|
|
if crt_type == 'int': |
49
|
|
|
return int(crt_value) |
50
|
|
|
elif crt_type == 'float-USA': |
51
|
|
|
return float(crt_value) |
52
|
|
|
elif crt_type == 'date-iso8601': |
53
|
|
|
tm = datetime.strptime(crt_value, '%Y-%m-%d') |
54
|
|
|
return datetime(tm.year, tm.month, tm.day) |
55
|
|
|
elif crt_type == 'date-USA': |
56
|
|
|
tm = datetime.strptime(crt_value, '%m/%d/%Y') |
57
|
|
|
return datetime(tm.year, tm.month, tm.day) |
58
|
|
|
elif crt_type == 'time-24': |
59
|
|
|
tm = datetime.strptime(crt_value, '%H:%M:%S') |
60
|
|
|
return time(tm.hour, tm.minute, tm.second) |
61
|
|
|
elif crt_type == 'time-24-us': |
62
|
|
|
tm = datetime.strptime(crt_value, '%H:%M:%S.%f') |
63
|
|
|
return time(tm.hour, tm.minute, tm.second, tm.microsecond) |
64
|
|
|
elif crt_type == 'time-USA': |
65
|
|
|
tm = datetime.strptime(crt_value, '%I:%M:%S') |
66
|
|
|
return time(tm.hour, tm.minute, tm.second) |
67
|
|
|
elif crt_type == 'datetime-iso8601': |
68
|
|
|
tm = datetime.fromisoformat(crt_value) |
69
|
|
|
return Timestamp(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second) |
70
|
|
|
elif crt_type == 'datetime-iso8601-us': |
71
|
|
|
tm = datetime.fromisoformat(crt_value) |
72
|
|
|
return Timestamp(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second, tm.microsecond) |
73
|
|
|
else: |
74
|
|
|
return crt_value.replace('"', '\\"') |
75
|
|
|
''' |
76
|
|
|
|
77
|
|
|
@staticmethod |
78
|
|
|
def fn_convert_to_hyper_types(given_type): |
79
|
|
|
switcher = { |
80
|
|
|
'empty': SqlType.text(), |
81
|
|
|
'int': SqlType.big_int(), |
82
|
|
|
'float-USA': SqlType.double(), |
83
|
|
|
'date-iso8601': SqlType.date(), |
84
|
|
|
'date-USA': SqlType.date(), |
85
|
|
|
'time-24': SqlType.time(), |
86
|
|
|
'time-24-us': SqlType.time(), |
87
|
|
|
'time-USA': SqlType.time(), |
88
|
|
|
'datetime-iso8601': SqlType.timestamp(), |
89
|
|
|
'str': SqlType.text() |
90
|
|
|
} |
91
|
|
|
identified_type = switcher.get(given_type) |
92
|
|
|
if identified_type is None: |
93
|
|
|
identified_type = SqlType.text() |
94
|
|
|
return identified_type |
95
|
|
|
|
96
|
|
|
def fn_create_hyper_file_from_csv(self, input_csv_data_frame, output_hyper_file, verbose): |
97
|
|
|
detected_csv_structure = _cls_td.fn_detect_csv_structure(_cls_td, |
98
|
|
|
input_csv_data_frame, |
99
|
|
|
verbose) |
100
|
|
|
hyper_table_columns = self.fn_build_hyper_columns_for_csv(self, detected_csv_structure, verbose) |
101
|
|
|
# Starts the Hyper Process with telemetry enabled/disabled to send data to Tableau or not |
102
|
|
|
# To opt in, simply set telemetry=Telemetry.SEND_USAGE_DATA_TO_TABLEAU. |
103
|
|
|
# To opt out, simply set telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU. |
104
|
|
|
with HyperProcess(telemetry = Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU) as hyper: |
105
|
|
|
# Creates new Hyper file <output_hyper_file> |
106
|
|
|
# Replaces file with CreateMode.CREATE_AND_REPLACE if it already exists. |
107
|
|
|
with Connection(endpoint = hyper.endpoint, |
108
|
|
|
database = output_hyper_file, |
109
|
|
|
create_mode = CreateMode.CREATE_AND_REPLACE) as hyper_connection: |
110
|
|
|
print("The connection to the Hyper engine file has been created.") |
111
|
|
|
hyper_connection.catalog.create_schema("Extract") |
112
|
|
|
print("Hyper schema Extract has been created.") |
113
|
|
|
hyper_table = TableDefinition( |
114
|
|
|
TableName("Extract", "Extract"), |
115
|
|
|
columns = hyper_table_columns |
116
|
|
|
) |
117
|
|
|
hyper_connection.catalog.create_table(table_definition = hyper_table) |
118
|
|
|
print("Hyper table Extract has been created.") |
119
|
|
|
# The rows to insert into the <hyper_table> table. |
120
|
|
|
data_to_insert = self.fn_rebuild_csv_content_for_hyper(self, |
121
|
|
|
input_csv_data_frame, |
122
|
|
|
detected_csv_structure, |
123
|
|
|
verbose) |
124
|
|
|
# Execute the actual insert |
125
|
|
|
with Inserter(hyper_connection, hyper_table) as hyper_inserter: |
126
|
|
|
hyper_inserter.add_rows(rows = data_to_insert) |
127
|
|
|
hyper_inserter.execute() |
128
|
|
|
# Number of rows in the <hyper_table> table. |
129
|
|
|
# `execute_scalar_query` is for executing a query that returns exactly one row with one column. |
130
|
|
|
row_count = hyper_connection.\ |
131
|
|
|
execute_scalar_query(query = f'SELECT COUNT(*) FROM {hyper_table.table_name}') |
132
|
|
|
print(f'The number of rows in table {hyper_table.table_name} is {row_count}.') |
133
|
|
|
print('The connection to the Hyper file has been closed.') |
134
|
|
|
print('The Hyper process has been shut down.') |
135
|
|
|
|
136
|
|
|
def fn_rebuild_csv_content_for_hyper(self, input_csv_data_frame, detected_fields_type, verbose): |
137
|
|
|
input_csv_data_frame.replace(to_replace = [pd.np.nan], value = [None], inplace = True) |
138
|
|
|
# Cycle through all found columns |
139
|
|
|
for current_field in detected_fields_type: |
140
|
|
|
fld_nm = current_field['name'] |
141
|
|
|
if current_field['panda_type'] == 'float64' and current_field['type'] == 'int': |
142
|
|
|
#input_csv_data_frame[fld_nm] = input_csv_data_frame[fld_nm].apply(lambda x: None if x is None else round(x, 0)) |
143
|
|
|
input_csv_data_frame[fld_nm] = input_csv_data_frame[fld_nm].replace(to_replace = [pd.np.nan, '.0'], |
144
|
|
|
value = [None, ''], |
145
|
|
|
inplace = True) |
146
|
|
|
elif current_field['type'] == 'datetime-iso8601': |
147
|
|
|
input_csv_data_frame[fld_nm] = pd.to_datetime(input_csv_data_frame[fld_nm]) |
148
|
|
|
_cls_bn.fn_optional_print(_cls_bn, verbose, 'Column ' + fld_nm + ' ' |
|
|
|
|
149
|
|
|
+ 'has panda_type = ' + str(current_field['panda_type']) + ' ' |
|
|
|
|
150
|
|
|
+ 'and ' + str(current_field['type'])) |
151
|
|
|
return input_csv_data_frame.values |
152
|
|
|
|
153
|
|
|
def fn_run_hyper_creation(self, input_csv_data_frame, output_hyper_file, verbose): |
154
|
|
|
try: |
155
|
|
|
self.fn_create_hyper_file_from_csv(self, input_csv_data_frame, output_hyper_file, verbose) |
156
|
|
|
except HyperException as ex: |
157
|
|
|
print(ex) |
158
|
|
|
exit(1) |
159
|
|
|
|