|
1
|
|
|
""" |
|
2
|
|
|
TableauHyperApiExtraLogic - a Hyper client library. |
|
3
|
|
|
|
|
4
|
|
|
This library allows packaging CSV content into HYPER format with data type checks |
|
5
|
|
|
""" |
|
6
|
|
|
# package regular expression |
|
7
|
|
|
import re |
|
8
|
|
|
# package to handle numerical structures |
|
9
|
|
|
import numpy |
|
10
|
|
|
# package to handle Data Frames (in this file) |
|
11
|
|
|
import pandas as pd |
|
12
|
|
|
# Custom classes from Tableau Hyper package |
|
13
|
|
|
from tableauhyperapi import HyperProcess, Telemetry, \ |
|
14
|
|
|
Connection, CreateMode, \ |
|
15
|
|
|
NOT_NULLABLE, NULLABLE, SqlType, TableDefinition, \ |
|
16
|
|
|
Inserter, \ |
|
17
|
|
|
TableName, \ |
|
18
|
|
|
HyperException |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
class TableauHyperApiExtraLogic: |
|
22
|
|
|
|
|
23
|
|
|
def fn_build_hyper_columns_for_csv(self, logger, timmer, detected_csv_structure): |
|
24
|
|
|
timmer.start() |
|
25
|
|
|
list_to_return = [] |
|
26
|
|
|
for current_field_structure in detected_csv_structure: |
|
27
|
|
|
list_to_return.append(current_field_structure['order']) |
|
28
|
|
|
current_column_type = self.fn_convert_to_hyper_types(current_field_structure['type']) |
|
29
|
|
|
logger.debug('Column ' + str(current_field_structure['order']) + ' having name "' |
|
30
|
|
|
+ current_field_structure['name'] + '" and type "' |
|
31
|
|
|
+ current_field_structure['type'] + '" will become "' |
|
32
|
|
|
+ str(current_column_type) + '"') |
|
33
|
|
|
nullability_value = NULLABLE |
|
34
|
|
|
if current_field_structure['nulls'] == 0: |
|
35
|
|
|
nullability_value = NOT_NULLABLE |
|
36
|
|
|
list_to_return[current_field_structure['order']] = TableDefinition.Column( |
|
37
|
|
|
name=current_field_structure['name'], |
|
38
|
|
|
type=current_column_type, |
|
39
|
|
|
nullability=nullability_value |
|
40
|
|
|
) |
|
41
|
|
|
logger.info('Building Hyper columns completed') |
|
42
|
|
|
timmer.stop() |
|
43
|
|
|
return list_to_return |
|
44
|
|
|
|
|
45
|
|
|
@staticmethod |
|
46
|
|
|
def fn_convert_to_hyper_types(given_type): |
|
47
|
|
|
switcher = { |
|
48
|
|
|
'empty': SqlType.text(), |
|
49
|
|
|
'bool': SqlType.bool(), |
|
50
|
|
|
'int': SqlType.big_int(), |
|
51
|
|
|
'float-dot': SqlType.double(), |
|
52
|
|
|
'date-YMD': SqlType.date(), |
|
53
|
|
|
'date-MDY': SqlType.date(), |
|
54
|
|
|
'date-DMY': SqlType.date(), |
|
55
|
|
|
'time-24': SqlType.time(), |
|
56
|
|
|
'time-12': SqlType.time(), |
|
57
|
|
|
'datetime-24-YMD': SqlType.timestamp(), |
|
58
|
|
|
'datetime-12-MDY': SqlType.timestamp(), |
|
59
|
|
|
'datetime-24-DMY': SqlType.timestamp(), |
|
60
|
|
|
'str': SqlType.text() |
|
61
|
|
|
} |
|
62
|
|
|
identified_type = switcher.get(given_type) |
|
63
|
|
|
if identified_type is None: |
|
64
|
|
|
identified_type = SqlType.text() |
|
65
|
|
|
return identified_type |
|
66
|
|
|
|
|
67
|
|
|
def fn_create_hyper_file_from_csv(self, local_logger, timmer, input_csv_data_frame, |
|
68
|
|
|
in_data_type, given_parameters): |
|
69
|
|
|
hyper_cols = self.fn_build_hyper_columns_for_csv(local_logger, timmer, in_data_type) |
|
70
|
|
|
# The rows to insert into the <hyper_table> table. |
|
71
|
|
|
data_to_insert = self.fn_rebuild_csv_content_for_hyper(local_logger, timmer, |
|
72
|
|
|
input_csv_data_frame, |
|
73
|
|
|
in_data_type) |
|
74
|
|
|
# Starts the Hyper Process with telemetry enabled/disabled to send data to Tableau or not |
|
75
|
|
|
# To opt in, simply set telemetry=Telemetry.SEND_USAGE_DATA_TO_TABLEAU. |
|
76
|
|
|
# To opt out, simply set telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU. |
|
77
|
|
|
with HyperProcess(telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU) as hyper: |
|
78
|
|
|
# Creates new Hyper file <output_hyper_file> |
|
79
|
|
|
# Replaces file with CreateMode.CREATE_AND_REPLACE if it already exists. |
|
80
|
|
|
timmer.start() |
|
81
|
|
|
with Connection(endpoint=hyper.endpoint, |
|
82
|
|
|
database=given_parameters.output_file, |
|
83
|
|
|
create_mode=CreateMode.CREATE_AND_REPLACE) as hyper_connection: |
|
84
|
|
|
local_logger.info('Connection to the Hyper engine ' |
|
85
|
|
|
+ f'file "{given_parameters.output_file}" has been created.') |
|
86
|
|
|
timmer.stop() |
|
87
|
|
|
timmer.start() |
|
88
|
|
|
hyper_connection.catalog.create_schema("Extract") |
|
89
|
|
|
local_logger.info('Hyper schema "Extract" has been created.') |
|
90
|
|
|
hyper_table = TableDefinition( |
|
91
|
|
|
TableName("Extract", "Extract"), |
|
92
|
|
|
columns=hyper_cols |
|
93
|
|
|
) |
|
94
|
|
|
hyper_connection.catalog.create_table(table_definition=hyper_table) |
|
95
|
|
|
local_logger.info('Hyper table "Extract" has been created.') |
|
96
|
|
|
timmer.stop() |
|
97
|
|
|
timmer.start() |
|
98
|
|
|
# Execute the actual insert |
|
99
|
|
|
with Inserter(hyper_connection, hyper_table) as hyper_insert: |
|
100
|
|
|
hyper_insert.add_rows(rows=data_to_insert) |
|
101
|
|
|
hyper_insert.execute() |
|
102
|
|
|
local_logger.info('Data has been inserted into Hyper table') |
|
103
|
|
|
timmer.stop() |
|
104
|
|
|
timmer.start() |
|
105
|
|
|
# Number of rows in the <hyper_table> table. |
|
106
|
|
|
# `execute_scalar_query` is for executing a query |
|
107
|
|
|
# that returns exactly one row with one column. |
|
108
|
|
|
query_to_run = f'SELECT COUNT(*) FROM {hyper_table.table_name}' |
|
109
|
|
|
row_count = hyper_connection.execute_scalar_query(query=query_to_run) |
|
110
|
|
|
local_logger.info(f'Table {hyper_table.table_name} has {row_count} rows') |
|
111
|
|
|
timmer.stop() |
|
112
|
|
|
local_logger.info('Connection to the Hyper engine file has been closed') |
|
113
|
|
|
local_logger.info('Hyper engine process has been shut down') |
|
114
|
|
|
|
|
115
|
|
|
def fn_rebuild_csv_content_for_hyper(self, logger, timmer, input_df, detected_fields_type): |
|
116
|
|
|
timmer.start() |
|
117
|
|
|
input_df.replace(to_replace=[numpy.nan], value=[None], inplace=True) |
|
118
|
|
|
# Cycle through all found columns |
|
119
|
|
|
for current_field in detected_fields_type: |
|
120
|
|
|
fld_nm = current_field['name'] |
|
121
|
|
|
logger.debug(f'Column {fld_nm} has panda_type = ' + str(current_field['panda_type']) |
|
122
|
|
|
+ ' and python type = ' + str(current_field['type'])) |
|
123
|
|
|
input_df[fld_nm] = self.reevaluate_single_column(input_df, fld_nm, current_field) |
|
124
|
|
|
logger.info('Re-building CSV content for maximum Hyper compatibility has been completed') |
|
125
|
|
|
timmer.stop() |
|
126
|
|
|
return input_df.values |
|
127
|
|
|
|
|
128
|
|
|
def reevaluate_single_column(self, given_df, given_field_name, current_field_details): |
|
129
|
|
|
if current_field_details['type'] == 'str': |
|
130
|
|
|
given_df[given_field_name] = given_df[given_field_name].astype(str) |
|
131
|
|
|
elif current_field_details['panda_type'] == 'float64' \ |
|
132
|
|
|
and current_field_details['type'] == 'int': |
|
133
|
|
|
given_df[given_field_name] = given_df[given_field_name].fillna(0).astype('int64') |
|
134
|
|
|
elif current_field_details['type'][0:5] in ('date-', 'datet', 'time-'): |
|
135
|
|
|
given_df[given_field_name] = self.fn_string_to_date(given_field_name, given_df) |
|
136
|
|
|
return given_df[given_field_name] |
|
137
|
|
|
|
|
138
|
|
|
def fn_run_hyper_creation(self, local_logger, timmer, input_data_frame, input_data_type, |
|
139
|
|
|
given_parameters): |
|
140
|
|
|
try: |
|
141
|
|
|
self.fn_create_hyper_file_from_csv(local_logger, timmer, input_data_frame, |
|
142
|
|
|
input_data_type, given_parameters) |
|
143
|
|
|
except HyperException as ex: |
|
144
|
|
|
local_logger.error(str(ex).replace(chr(10), ' ')) |
|
145
|
|
|
exit(1) |
|
146
|
|
|
|
|
147
|
|
|
@staticmethod |
|
148
|
|
|
def fn_string_to_date(in_col_name, in_data_frame): |
|
149
|
|
|
if re.match('-YMD', in_col_name): |
|
150
|
|
|
in_data_frame[in_col_name] = pd.to_datetime(in_data_frame[in_col_name], yearfirst=True) |
|
151
|
|
|
elif re.match('-DMY', in_col_name): |
|
152
|
|
|
in_data_frame[in_col_name] = pd.to_datetime(in_data_frame[in_col_name], dayfirst=True) |
|
153
|
|
|
else: |
|
154
|
|
|
in_data_frame[in_col_name] = pd.to_datetime(in_data_frame[in_col_name]) |
|
155
|
|
|
return in_data_frame[in_col_name] |
|
156
|
|
|
|