1
|
|
|
""" |
2
|
|
|
Data Manipulation class |
3
|
|
|
""" |
4
|
|
|
# package to handle date and times |
5
|
|
|
from datetime import timedelta |
6
|
|
|
# package to add support for multi-language (i18n) |
7
|
|
|
import gettext |
8
|
|
|
# package to handle files/folders and related metadata/operations |
9
|
|
|
import os |
10
|
|
|
# package facilitating Data Frames manipulation |
11
|
|
|
import pandas as pd |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class DataManipulator: |
15
|
|
|
lcl = None |
16
|
|
|
|
17
|
|
|
def __init__(self, default_language='en_US'): |
18
|
|
|
current_script = os.path.basename(__file__).replace('.py', '') |
19
|
|
|
lang_folder = os.path.join(os.path.dirname(__file__), current_script + '_Locale') |
20
|
|
|
self.lcl = gettext.translation(current_script, lang_folder, languages=[default_language]) |
21
|
|
|
|
22
|
|
|
def fn_add_and_shift_column(self, local_logger, timmer, input_data_frame, input_details): |
23
|
|
|
for in_dt in input_details: |
24
|
|
|
timmer.start() |
25
|
|
|
input_data_frame[in_dt['New Column']] = input_data_frame[in_dt['Original Column']] |
26
|
|
|
offset_sign = (lambda x: 1 if x == 'down' else -1) |
27
|
|
|
col_offset = offset_sign(in_dt['Direction']) * in_dt['Deviation'] |
28
|
|
|
input_data_frame[in_dt['New Column']] = input_data_frame[in_dt['New Column']]\ |
29
|
|
|
.shift(col_offset) |
30
|
|
|
input_data_frame[in_dt['New Column']] = input_data_frame[in_dt['New Column']]\ |
31
|
|
|
.apply(lambda x: str(x).replace('.0', ''))\ |
32
|
|
|
.apply(lambda x: str(x).replace('nan', str(in_dt['Empty Values Replacement']))) |
33
|
|
|
local_logger.info(self.lcl.gettext( |
34
|
|
|
'A new column named "{new_column_name}" as copy from "{original_column}" ' |
35
|
|
|
+ 'then shifted by {shifting_rows} to relevant data frame ' |
36
|
|
|
+ '(filling any empty value as {empty_values_replacement})') |
37
|
|
|
.replace('{new_column_name}', in_dt['New Column']) |
38
|
|
|
.replace('{original_column}', in_dt['Original Column']) |
39
|
|
|
.replace('{shifting_rows}', str(col_offset)) |
40
|
|
|
.replace('{empty_values_replacement}', |
41
|
|
|
str(in_dt['Empty Values Replacement']))) |
42
|
|
|
timmer.stop() |
43
|
|
|
return input_data_frame |
44
|
|
|
|
45
|
|
|
@staticmethod |
46
|
|
|
def fn_add_days_within_column_to_data_frame(input_data_frame, dict_expression): |
47
|
|
|
input_data_frame['Days Within'] = input_data_frame[dict_expression['End Date']] - \ |
48
|
|
|
input_data_frame[dict_expression['Start Date']] + \ |
49
|
|
|
timedelta(days=1) |
50
|
|
|
input_data_frame['Days Within'] = input_data_frame['Days Within'] \ |
51
|
|
|
.apply(lambda x: int(str(x).replace(' days 00:00:00', ''))) |
52
|
|
|
return input_data_frame |
53
|
|
|
|
54
|
|
|
@staticmethod |
55
|
|
|
def fn_add_minimum_and_maximum_columns_to_data_frame(input_data_frame, dict_expression): |
56
|
|
|
grouped_df = input_data_frame.groupby(dict_expression['group_by']) \ |
57
|
|
|
.agg({dict_expression['calculation']: ['min', 'max']}) |
58
|
|
|
grouped_df.columns = ['_'.join(col).strip() for col in grouped_df.columns.values] |
59
|
|
|
grouped_df = grouped_df.reset_index() |
60
|
|
|
if 'map' in dict_expression: |
61
|
|
|
grouped_df.rename(columns=dict_expression['map'], inplace=True) |
62
|
|
|
return grouped_df |
63
|
|
|
|
64
|
|
|
def fn_add_timeline_evaluation_column_to_data_frame(self, in_df, dict_expression): |
65
|
|
|
# shorten last method parameter |
66
|
|
|
de = dict_expression |
67
|
|
|
# add helpful column to use on "Timeline Evaluation" column determination |
68
|
|
|
in_df['rd'] = de['Reference Date'] |
69
|
|
|
# rename some columns to cope with long expression |
70
|
|
|
in_df.rename(columns={'Start Date': 'sd', 'End Date': 'ed'}, inplace=True) |
71
|
|
|
# actual "Timeline Evaluation" column determination |
72
|
|
|
cols = ['rd', 'sd', 'ed'] |
73
|
|
|
in_df['Timeline Evaluation'] = in_df[cols].apply(lambda r: 'Current' |
74
|
|
|
if r['sd'] <= r['rd'] <= r['ed'] else |
75
|
|
|
'Past' if r['sd'] < r['rd'] else 'Future', |
76
|
|
|
axis=1) |
77
|
|
|
# rename back columns |
78
|
|
|
in_df.rename(columns={'sd': 'Start Date', 'ed': 'End Date', 'rd': 'Reference Date'}, |
79
|
|
|
inplace=True) |
80
|
|
|
# decide if the helpful column is to be retained or not |
81
|
|
|
removal_needed = self.fn_decide_by_omission_or_specific_false(de, 'Keep Reference Date') |
82
|
|
|
if removal_needed: |
83
|
|
|
in_df.drop(columns=['Reference Date'], inplace=True) |
84
|
|
|
return in_df |
85
|
|
|
|
86
|
|
|
def fn_add_value_to_dictionary(self, in_list, adding_value, adding_type, reference_column): |
87
|
|
|
add_type = adding_type.lower() |
88
|
|
|
total_columns = len(in_list) |
89
|
|
|
reference_indexes = { |
90
|
|
|
'add': {'after': 0, 'before': 0}, |
91
|
|
|
'cycle_down_to': {'after': 0, 'before': 0} |
92
|
|
|
} |
93
|
|
|
if type(reference_column) is int: |
94
|
|
|
reference_indexes = { |
95
|
|
|
'add': { |
96
|
|
|
'after': in_list.copy().index(reference_column) + 1, |
97
|
|
|
'before': in_list.copy().index(reference_column), |
98
|
|
|
}, |
99
|
|
|
'cycle_down_to': { |
100
|
|
|
'after': in_list.copy().index(reference_column), |
101
|
|
|
'before': in_list.copy().index(reference_column), |
102
|
|
|
} |
103
|
|
|
} |
104
|
|
|
positions = { |
105
|
|
|
'after': { |
106
|
|
|
'cycle_down_to': reference_indexes.get('cycle_down_to').get('after'), |
107
|
|
|
'add': reference_indexes.get('add').get('after'), |
108
|
|
|
}, |
109
|
|
|
'before': { |
110
|
|
|
'cycle_down_to': reference_indexes.get('cycle_down_to').get('before'), |
111
|
|
|
'add': reference_indexes.get('add').get('before'), |
112
|
|
|
}, |
113
|
|
|
'first': { |
114
|
|
|
'cycle_down_to': 0, |
115
|
|
|
'add': 0, |
116
|
|
|
}, |
117
|
|
|
'last': { |
118
|
|
|
'cycle_down_to': total_columns, |
119
|
|
|
'add': total_columns, |
120
|
|
|
} |
121
|
|
|
} |
122
|
|
|
return self.add_value_to_dictionary_by_position({ |
123
|
|
|
'adding_value': adding_value, |
124
|
|
|
'list': in_list, |
125
|
|
|
'position_to_add': positions.get(add_type).get('add'), |
126
|
|
|
'position_to_cycle_down_to': positions.get(add_type).get('cycle_down_to'), |
127
|
|
|
'total_columns': total_columns, |
128
|
|
|
}) |
129
|
|
|
|
130
|
|
|
@staticmethod |
131
|
|
|
def add_value_to_dictionary_by_position(adding_dictionary): |
132
|
|
|
list_with_values = adding_dictionary['list'] |
133
|
|
|
list_with_values.append(adding_dictionary['total_columns']) |
134
|
|
|
for counter in range(adding_dictionary['total_columns'], |
135
|
|
|
adding_dictionary['position_to_cycle_down_to'], -1): |
136
|
|
|
list_with_values[counter] = list_with_values[(counter - 1)] |
137
|
|
|
list_with_values[adding_dictionary['position_to_add']] = adding_dictionary['adding_value'] |
138
|
|
|
return list_with_values |
139
|
|
|
|
140
|
|
|
@staticmethod |
141
|
|
|
def fn_add_weekday_columns_to_data_frame(input_data_frame, columns_list): |
142
|
|
|
for current_column in columns_list: |
143
|
|
|
input_data_frame['Weekday for ' + current_column] = input_data_frame[current_column] \ |
144
|
|
|
.apply(lambda x: x.strftime('%A')) |
145
|
|
|
return input_data_frame |
146
|
|
|
|
147
|
|
|
def fn_apply_query_to_data_frame(self, local_logger, timmer, input_data_frame, extract_params): |
148
|
|
|
timmer.start() |
149
|
|
|
query_expression = '' |
150
|
|
|
generic_pre_feedback = self.lcl.gettext('Will retain only values {filter_type} ' |
151
|
|
|
+ '"{filter_values}" within the field ' |
152
|
|
|
+ '"{column_to_filter}"') \ |
153
|
|
|
.replace('{column_to_filter}', extract_params['column_to_filter']) |
154
|
|
|
if extract_params['filter_to_apply'] == 'equal': |
155
|
|
|
local_logger.debug(generic_pre_feedback |
156
|
|
|
.replace('{filter_type}', self.lcl.gettext('equal with')) |
157
|
|
|
.replace('{filter_values}', extract_params['filter_values'])) |
158
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` == "' \ |
159
|
|
|
+ extract_params['filter_values'] + '"' |
160
|
|
|
elif extract_params['filter_to_apply'] == 'different': |
161
|
|
|
local_logger.debug(generic_pre_feedback |
162
|
|
|
.replace('{filter_type}', self.lcl.gettext('different than')) |
163
|
|
|
.replace('{filter_values}', extract_params['filter_values'])) |
164
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` != "' \ |
165
|
|
|
+ extract_params['filter_values'] + '"' |
166
|
|
|
elif extract_params['filter_to_apply'] == 'multiple_match': |
167
|
|
|
multiple_values = '["' + '", "'.join(extract_params['filter_values'].values()) + '"]' |
168
|
|
|
local_logger.debug(generic_pre_feedback |
169
|
|
|
.replace('{filter_type}', |
170
|
|
|
self.lcl.gettext('matching any of these values')) |
171
|
|
|
.replace('{filter_values}', multiple_values)) |
172
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` in ' + multiple_values |
173
|
|
|
local_logger.debug(self.lcl.gettext('Query expression to apply is: {query_expression}') |
174
|
|
|
.replace('{query_expression}', query_expression)) |
175
|
|
|
input_data_frame.query(query_expression, inplace=True) |
176
|
|
|
timmer.stop() |
177
|
|
|
return input_data_frame |
178
|
|
|
|
179
|
|
|
@staticmethod |
180
|
|
|
def fn_convert_datetime_columns_to_string(input_data_frame, columns_list, columns_format): |
181
|
|
|
for current_column in columns_list: |
182
|
|
|
input_data_frame[current_column] = \ |
183
|
|
|
input_data_frame[current_column].map(lambda x: x.strftime(columns_format)) |
184
|
|
|
return input_data_frame |
185
|
|
|
|
186
|
|
|
@staticmethod |
187
|
|
|
def fn_convert_string_columns_to_datetime(input_data_frame, columns_list, columns_format): |
188
|
|
|
for current_column in columns_list: |
189
|
|
|
input_data_frame[current_column] = pd.to_datetime(input_data_frame[current_column], |
190
|
|
|
format=columns_format) |
191
|
|
|
return input_data_frame |
192
|
|
|
|
193
|
|
|
@staticmethod |
194
|
|
|
def fn_decide_by_omission_or_specific_false(in_dictionary, key_decision_factor): |
195
|
|
|
removal_needed = False |
196
|
|
|
if key_decision_factor not in in_dictionary: |
197
|
|
|
removal_needed = True |
198
|
|
|
elif not in_dictionary[key_decision_factor]: |
199
|
|
|
removal_needed = True |
200
|
|
|
return removal_needed |
201
|
|
|
|
202
|
|
|
def fn_filter_data_frame_by_index(self, local_logger, in_data_frame, filter_rule): |
203
|
|
|
reference_expression = filter_rule['Query Expression for Reference Index'] |
204
|
|
|
index_current = in_data_frame.query(reference_expression, inplace=False) |
205
|
|
|
local_logger.info(self.lcl.gettext( |
206
|
|
|
'Current index has been determined to be {index_current_value}') |
207
|
|
|
.replace('{index_current_value}', str(index_current.index))) |
208
|
|
|
if str(index_current.index) != "Int64Index([], dtype='int64')" \ |
209
|
|
|
and 'Deviation' in filter_rule: |
210
|
|
|
for deviation_type in filter_rule['Deviation']: |
211
|
|
|
deviation_number = filter_rule['Deviation'][deviation_type] |
212
|
|
|
index_to_apply = index_current.index |
213
|
|
|
if deviation_type == 'Lower': |
214
|
|
|
index_to_apply = index_current.index - deviation_number |
215
|
|
|
in_data_frame = in_data_frame[in_data_frame.index >= index_to_apply[0]] |
216
|
|
|
elif deviation_type == 'Upper': |
217
|
|
|
index_to_apply = index_current.index + deviation_number |
218
|
|
|
in_data_frame = in_data_frame[in_data_frame.index <= index_to_apply[0]] |
219
|
|
|
local_logger.info(self.lcl.gettext( |
220
|
|
|
'{deviation_type} Deviation Number is {deviation_number} ' |
221
|
|
|
+ 'to be applied to Current index, became {index_to_apply}') |
222
|
|
|
.replace('{deviation_type}', deviation_type) |
223
|
|
|
.replace('{deviation_number}', str(deviation_number)) |
224
|
|
|
.replace('{index_to_apply}', str(index_to_apply))) |
225
|
|
|
return in_data_frame |
226
|
|
|
|
227
|
|
|
@staticmethod |
228
|
|
|
def fn_get_column_index_from_dataframe(data_frame_columns, column_name_to_identify): |
229
|
|
|
column_index_to_return = 0 |
230
|
|
|
for ndx, column_name in enumerate(data_frame_columns): |
231
|
|
|
if column_name == column_name_to_identify: |
232
|
|
|
column_index_to_return = ndx |
233
|
|
|
return column_index_to_return |
234
|
|
|
|
235
|
|
|
@staticmethod |
236
|
|
|
def fn_get_first_current_and_last_column_value_from_data_frame(in_data_frame, in_column_name): |
237
|
|
|
return { |
238
|
|
|
'first': in_data_frame.iloc[0][in_column_name], |
239
|
|
|
'current': in_data_frame.query('`Timeline Evaluation` == "Current"', |
240
|
|
|
inplace=False)[in_column_name].max(), |
241
|
|
|
'last': in_data_frame.iloc[(len(in_data_frame) - 1)][in_column_name], |
242
|
|
|
} |
243
|
|
|
|