|
1
|
|
|
""" |
|
2
|
|
|
Data Manipulation class |
|
3
|
|
|
""" |
|
4
|
|
|
# package to handle date and times |
|
5
|
|
|
from datetime import timedelta |
|
6
|
|
|
# package facilitating Data Frames manipulation |
|
7
|
|
|
import pandas as pd |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class DataManipulator: |
|
11
|
|
|
|
|
12
|
|
|
@staticmethod |
|
13
|
|
|
def fn_add_days_within_column_to_data_frame(input_data_frame, dict_expression): |
|
14
|
|
|
input_data_frame['Days Within'] = input_data_frame[dict_expression['End Date']] - \ |
|
15
|
|
|
input_data_frame[dict_expression['Start Date']] + \ |
|
16
|
|
|
timedelta(days=1) |
|
17
|
|
|
input_data_frame['Days Within'] = input_data_frame['Days Within'] \ |
|
18
|
|
|
.apply(lambda x: int(str(x).replace(' days 00:00:00', ''))) |
|
19
|
|
|
return input_data_frame |
|
20
|
|
|
|
|
21
|
|
|
@staticmethod |
|
22
|
|
|
def fn_add_minimum_and_maximum_columns_to_data_frame(input_data_frame, dict_expression): |
|
23
|
|
|
grouped_df = input_data_frame.groupby(dict_expression['group_by']) \ |
|
24
|
|
|
.agg({dict_expression['calculation']: ['min', 'max']}) |
|
25
|
|
|
grouped_df.columns = ['_'.join(col).strip() for col in grouped_df.columns.values] |
|
26
|
|
|
grouped_df = grouped_df.reset_index() |
|
27
|
|
|
if 'map' in dict_expression: |
|
28
|
|
|
grouped_df.rename(columns=dict_expression['map'], inplace=True) |
|
29
|
|
|
return grouped_df |
|
30
|
|
|
|
|
31
|
|
|
def fn_add_timeline_evaluation_column_to_data_frame(self, in_df, dict_expression): |
|
32
|
|
|
# shorten last method parameter |
|
33
|
|
|
de = dict_expression |
|
34
|
|
|
# add helpful column to use on "Timeline Evaluation" column determination |
|
35
|
|
|
in_df['Reference Date'] = de['Reference Date'] |
|
36
|
|
|
# actual "Timeline Evaluation" column determination |
|
37
|
|
|
cols = ['Reference Date', de['Start Date'], de['End Date']] |
|
38
|
|
|
in_df['Timeline Evaluation'] = in_df[cols] \ |
|
39
|
|
|
.apply(lambda r: 'Current' if r[de['Start Date']] |
|
40
|
|
|
<= r['Reference Date'] |
|
41
|
|
|
<= r[de['End Date']] else\ |
|
42
|
|
|
'Past' if r[de['Start Date']] < r['Reference Date'] else 'Future', axis=1) |
|
43
|
|
|
# decide if the helpful column is to be retained or not |
|
44
|
|
|
removal_needed = self.fn_decide_by_omission_or_specific_false(de, 'Keep Reference Date') |
|
45
|
|
|
if removal_needed: |
|
46
|
|
|
in_df.drop(columns=['Reference Date'], inplace=True) |
|
47
|
|
|
return in_df |
|
48
|
|
|
|
|
49
|
|
|
def add_value_to_dictionary(self, in_list, adding_value, adding_type, reference_column): |
|
50
|
|
|
add_type = adding_type.lower() |
|
51
|
|
|
total_columns = len(in_list) |
|
52
|
|
|
if reference_column is None: |
|
53
|
|
|
reference_indexes = { |
|
54
|
|
|
'add': { |
|
55
|
|
|
'after': 0, |
|
56
|
|
|
'before': 0, |
|
57
|
|
|
}, |
|
58
|
|
|
'cycle_down_to': { |
|
59
|
|
|
'after': 0, |
|
60
|
|
|
'before': 0, |
|
61
|
|
|
}, |
|
62
|
|
|
} |
|
63
|
|
|
else: |
|
64
|
|
|
reference_indexes = { |
|
65
|
|
|
'add': { |
|
66
|
|
|
'after': in_list.copy().index(reference_column) + 1, |
|
67
|
|
|
'before': in_list.copy().index(reference_column), |
|
68
|
|
|
}, |
|
69
|
|
|
'cycle_down_to': { |
|
70
|
|
|
'after': in_list.copy().index(reference_column), |
|
71
|
|
|
'before': in_list.copy().index(reference_column), |
|
72
|
|
|
}, |
|
73
|
|
|
} |
|
74
|
|
|
positions = { |
|
75
|
|
|
'after': { |
|
76
|
|
|
'cycle_down_to': reference_indexes.get('cycle_down_to').get('after'), |
|
77
|
|
|
'add': reference_indexes.get('add').get('after'), |
|
78
|
|
|
}, |
|
79
|
|
|
'before': { |
|
80
|
|
|
'cycle_down_to': reference_indexes.get('cycle_down_to').get('before'), |
|
81
|
|
|
'add': reference_indexes.get('add').get('before'), |
|
82
|
|
|
}, |
|
83
|
|
|
'first': { |
|
84
|
|
|
'cycle_down_to': 0, |
|
85
|
|
|
'add': 0, |
|
86
|
|
|
}, |
|
87
|
|
|
'last': { |
|
88
|
|
|
'cycle_down_to': total_columns, |
|
89
|
|
|
'add': total_columns, |
|
90
|
|
|
} |
|
91
|
|
|
} |
|
92
|
|
|
return self.add_value_to_dictionary_by_position({ |
|
93
|
|
|
'adding_value': adding_value, |
|
94
|
|
|
'list': in_list, |
|
95
|
|
|
'position_to_add': positions.get(add_type).get('add'), |
|
96
|
|
|
'position_to_cycle_down_to': positions.get(add_type).get('cycle_down_to'), |
|
97
|
|
|
'total_columns': total_columns, |
|
98
|
|
|
}) |
|
99
|
|
|
|
|
100
|
|
|
@staticmethod |
|
101
|
|
|
def add_value_to_dictionary_by_position(adding_dictionary): |
|
102
|
|
|
list_with_values = adding_dictionary['list'] |
|
103
|
|
|
list_with_values.append(adding_dictionary['total_columns']) |
|
104
|
|
|
for counter in range(adding_dictionary['total_columns'], |
|
105
|
|
|
adding_dictionary['position_to_cycle_down_to'], -1): |
|
106
|
|
|
list_with_values[counter] = list_with_values[(counter - 1)] |
|
107
|
|
|
list_with_values[adding_dictionary['position_to_add']] = adding_dictionary['adding_value'] |
|
108
|
|
|
return list_with_values |
|
109
|
|
|
|
|
110
|
|
|
@staticmethod |
|
111
|
|
|
def fn_add_weekday_columns_to_data_frame(input_data_frame, columns_list): |
|
112
|
|
|
for current_column in columns_list: |
|
113
|
|
|
input_data_frame['Weekday for ' + current_column] = input_data_frame[current_column] \ |
|
114
|
|
|
.apply(lambda x: x.strftime('%A')) |
|
115
|
|
|
return input_data_frame |
|
116
|
|
|
|
|
117
|
|
|
@staticmethod |
|
118
|
|
|
def fn_apply_query_to_data_frame(local_logger, timmer, input_data_frame, extract_params): |
|
119
|
|
|
timmer.start() |
|
120
|
|
|
query_expression = '' |
|
121
|
|
|
if extract_params['filter_to_apply'] == 'equal': |
|
122
|
|
|
local_logger.debug('Will retain only values equal with "' |
|
123
|
|
|
+ extract_params['filter_values'] + '" within the field "' |
|
124
|
|
|
+ extract_params['column_to_filter'] + '"') |
|
125
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` == "' \ |
|
126
|
|
|
+ extract_params['filter_values'] + '"' |
|
127
|
|
|
elif extract_params['filter_to_apply'] == 'different': |
|
128
|
|
|
local_logger.debug('Will retain only values different than "' |
|
129
|
|
|
+ extract_params['filter_values'] + '" within the field "' |
|
130
|
|
|
+ extract_params['column_to_filter'] + '"') |
|
131
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` != "' \ |
|
132
|
|
|
+ extract_params['filter_values'] + '"' |
|
133
|
|
|
elif extract_params['filter_to_apply'] == 'multiple_match': |
|
134
|
|
|
local_logger.debug('Will retain only values equal with "' |
|
135
|
|
|
+ extract_params['filter_values'] + '" within the field "' |
|
136
|
|
|
+ extract_params['column_to_filter'] + '"') |
|
137
|
|
|
query_expression = '`' + extract_params['column_to_filter'] + '` in ["' \ |
|
138
|
|
|
+ '", "'.join(extract_params['filter_values'].values()) \ |
|
139
|
|
|
+ '"]' |
|
140
|
|
|
local_logger.debug('Query expression to apply is: ' + query_expression) |
|
141
|
|
|
input_data_frame.query(query_expression, inplace=True) |
|
142
|
|
|
timmer.stop() |
|
143
|
|
|
return input_data_frame |
|
144
|
|
|
|
|
145
|
|
|
@staticmethod |
|
146
|
|
|
def fn_convert_datetime_columns_to_string(input_data_frame, columns_list, columns_format): |
|
147
|
|
|
for current_column in columns_list: |
|
148
|
|
|
input_data_frame[current_column] = \ |
|
149
|
|
|
input_data_frame[current_column].map(lambda x: x.strftime(columns_format)) |
|
150
|
|
|
return input_data_frame |
|
151
|
|
|
|
|
152
|
|
|
@staticmethod |
|
153
|
|
|
def fn_convert_string_columns_to_datetime(input_data_frame, columns_list, columns_format): |
|
154
|
|
|
for current_column in columns_list: |
|
155
|
|
|
input_data_frame[current_column] = pd.to_datetime(input_data_frame[current_column], |
|
156
|
|
|
format=columns_format) |
|
157
|
|
|
return input_data_frame |
|
158
|
|
|
|
|
159
|
|
|
@staticmethod |
|
160
|
|
|
def fn_decide_by_omission_or_specific_false(in_dictionary, key_decision_factor): |
|
161
|
|
|
removal_needed = False |
|
162
|
|
|
if key_decision_factor not in in_dictionary: |
|
163
|
|
|
removal_needed = True |
|
164
|
|
|
elif not in_dictionary[key_decision_factor]: |
|
165
|
|
|
removal_needed = True |
|
166
|
|
|
return removal_needed |
|
167
|
|
|
|
|
168
|
|
|
@staticmethod |
|
169
|
|
|
def fn_filter_data_frame_by_index(local_logger, in_data_frame, filter_rule): |
|
170
|
|
|
index_current = in_data_frame.query('`Timeline Evaluation` == "Current"', inplace=False) |
|
171
|
|
|
local_logger.info('Current index has been determined to be ' + str(index_current.index)) |
|
172
|
|
|
if 'Deviation' in filter_rule: |
|
173
|
|
|
for deviation_type in filter_rule['Deviation']: |
|
174
|
|
|
deviation_number = filter_rule['Deviation'][deviation_type] |
|
175
|
|
|
if deviation_type == 'Lower': |
|
176
|
|
|
index_to_apply = index_current.index - deviation_number |
|
177
|
|
|
in_data_frame = in_data_frame[in_data_frame.index >= index_to_apply[0]] |
|
178
|
|
|
elif deviation_type == 'Upper': |
|
179
|
|
|
index_to_apply = index_current.index + deviation_number |
|
180
|
|
|
in_data_frame = in_data_frame[in_data_frame.index <= index_to_apply[0]] |
|
181
|
|
|
local_logger.info(deviation_type + ' Deviation Number is ' + str(deviation_number) |
|
182
|
|
|
+ ' to be applied to Current index, became ' |
|
183
|
|
|
+ str(index_to_apply)) |
|
|
|
|
|
|
184
|
|
|
return in_data_frame |
|
185
|
|
|
|
|
186
|
|
|
@staticmethod |
|
187
|
|
|
def get_column_index_from_dataframe(data_frame_columns, column_name_to_identify): |
|
188
|
|
|
column_index_to_return = 0 |
|
189
|
|
|
for ndx, column_name in enumerate(data_frame_columns): |
|
190
|
|
|
if column_name == column_name_to_identify: |
|
191
|
|
|
column_index_to_return = ndx |
|
192
|
|
|
return column_index_to_return |
|
193
|
|
|
|
|
194
|
|
|
@staticmethod |
|
195
|
|
|
def fn_load_file_list_to_data_frame(local_logger, timmer, file_list, csv_delimiter): |
|
196
|
|
|
timmer.start() |
|
197
|
|
|
combined_csv = pd.concat([pd.read_csv(filepath_or_buffer=current_file, |
|
198
|
|
|
delimiter=csv_delimiter, |
|
199
|
|
|
cache_dates=True, |
|
200
|
|
|
index_col=None, |
|
201
|
|
|
memory_map=True, |
|
202
|
|
|
low_memory=False, |
|
203
|
|
|
encoding='utf-8', |
|
204
|
|
|
) for current_file in file_list]) |
|
205
|
|
|
local_logger.info('All relevant files were merged into a Pandas Data Frame') |
|
206
|
|
|
timmer.stop() |
|
207
|
|
|
return combined_csv |
|
208
|
|
|
|
|
209
|
|
|
@staticmethod |
|
210
|
|
|
def fn_store_data_frame_to_file(local_logger, timmer, input_data_frame, input_file_details): |
|
211
|
|
|
timmer.start() |
|
212
|
|
|
if input_file_details['format'] == 'csv': |
|
213
|
|
|
input_data_frame.to_csv(path_or_buf=input_file_details['name'], |
|
214
|
|
|
sep=input_file_details['field_delimiter'], |
|
215
|
|
|
header=True, |
|
216
|
|
|
index=False, |
|
217
|
|
|
encoding='utf-8') |
|
218
|
|
|
local_logger.info('Data frame has just been saved to file "' |
|
219
|
|
|
+ input_file_details['name'] + '"') |
|
220
|
|
|
timmer.stop() |
|
221
|
|
|
|