|
1
|
|
|
from functools import partial |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
|
|
5
|
|
|
from sklearn.metrics import precision_recall_curve |
|
6
|
|
|
from sklearn.metrics._ranking import _binary_clf_curve |
|
7
|
|
|
from sklearn.utils.multiclass import type_of_target |
|
8
|
|
|
from sklearn.metrics._base import _average_binary_score |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
def area_under_precision_recall_gain_score( |
|
12
|
|
|
y_true, y_score, *, average="macro", pos_label=1, sample_weight=None |
|
13
|
|
|
): |
|
14
|
|
|
"""Compute average precision (AP) from prediction scores. |
|
15
|
|
|
|
|
16
|
|
|
AP summarizes a precision-recall curve as the weighted mean of precisions |
|
17
|
|
|
achieved at each threshold, with the increase in recall from the previous |
|
18
|
|
|
threshold used as the weight: |
|
19
|
|
|
|
|
20
|
|
|
.. math:: |
|
21
|
|
|
\\text{AP} = \\sum_n (R_n - R_{n-1}) P_n |
|
22
|
|
|
|
|
23
|
|
|
where :math:`P_n` and :math:`R_n` are the precision and recall at the nth |
|
24
|
|
|
threshold [1]_. This implementation is not interpolated and is different |
|
25
|
|
|
from computing the area under the precision-recall curve with the |
|
26
|
|
|
trapezoidal rule, which uses linear interpolation and can be too |
|
27
|
|
|
optimistic. |
|
28
|
|
|
|
|
29
|
|
|
Note: this implementation is restricted to the binary classification task |
|
30
|
|
|
or multilabel classification task. |
|
31
|
|
|
|
|
32
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
|
33
|
|
|
|
|
34
|
|
|
Parameters |
|
35
|
|
|
---------- |
|
36
|
|
|
y_true : ndarray of shape (n_samples,) or (n_samples, n_classes) |
|
37
|
|
|
True binary labels or binary label indicators. |
|
38
|
|
|
|
|
39
|
|
|
y_score : ndarray of shape (n_samples,) or (n_samples, n_classes) |
|
40
|
|
|
Target scores, can either be probability estimates of the positive |
|
41
|
|
|
class, confidence values, or non-thresholded measure of decisions |
|
42
|
|
|
(as returned by :term:`decision_function` on some classifiers). |
|
43
|
|
|
|
|
44
|
|
|
average : {'micro', 'samples', 'weighted', 'macro'} or None, \ |
|
45
|
|
|
default='macro' |
|
46
|
|
|
If ``None``, the scores for each class are returned. Otherwise, |
|
47
|
|
|
this determines the type of averaging performed on the data: |
|
48
|
|
|
|
|
49
|
|
|
``'micro'``: |
|
50
|
|
|
Calculate metrics globally by considering each element of the label |
|
51
|
|
|
indicator matrix as a label. |
|
52
|
|
|
``'macro'``: |
|
53
|
|
|
Calculate metrics for each label, and find their unweighted |
|
54
|
|
|
mean. This does not take label imbalance into account. |
|
55
|
|
|
``'weighted'``: |
|
56
|
|
|
Calculate metrics for each label, and find their average, weighted |
|
57
|
|
|
by support (the number of true instances for each label). |
|
58
|
|
|
``'samples'``: |
|
59
|
|
|
Calculate metrics for each instance, and find their average. |
|
60
|
|
|
|
|
61
|
|
|
Will be ignored when ``y_true`` is binary. |
|
62
|
|
|
|
|
63
|
|
|
pos_label : int or str, default=1 |
|
64
|
|
|
The label of the positive class. Only applied to binary ``y_true``. |
|
65
|
|
|
For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1. |
|
66
|
|
|
|
|
67
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
|
68
|
|
|
Sample weights. |
|
69
|
|
|
|
|
70
|
|
|
Returns |
|
71
|
|
|
------- |
|
72
|
|
|
average_precision : float |
|
73
|
|
|
|
|
74
|
|
|
See Also |
|
75
|
|
|
-------- |
|
76
|
|
|
roc_auc_score : Compute the area under the ROC curve. |
|
77
|
|
|
precision_recall_curve : Compute precision-recall pairs for different |
|
78
|
|
|
probability thresholds. |
|
79
|
|
|
|
|
80
|
|
|
Notes |
|
81
|
|
|
----- |
|
82
|
|
|
.. versionchanged:: 0.19 |
|
83
|
|
|
Instead of linearly interpolating between operating points, precisions |
|
84
|
|
|
are weighted by the change in recall since the last operating point. |
|
85
|
|
|
|
|
86
|
|
|
References |
|
87
|
|
|
---------- |
|
88
|
|
|
.. [1] `Wikipedia entry for the Average precision |
|
89
|
|
|
<https://en.wikipedia.org/w/index.php?title=Information_retrieval& |
|
90
|
|
|
oldid=793358396#Average_precision>`_ |
|
91
|
|
|
|
|
92
|
|
|
Examples |
|
93
|
|
|
-------- |
|
94
|
|
|
>>> import numpy as np |
|
95
|
|
|
>>> from sklearn.metrics import average_precision_score |
|
96
|
|
|
>>> y_true = np.array([0, 0, 1, 1]) |
|
97
|
|
|
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) |
|
98
|
|
|
>>> average_precision_score(y_true, y_scores) |
|
99
|
|
|
0.83... |
|
100
|
|
|
""" |
|
101
|
|
|
|
|
102
|
|
|
def _binary_uninterpolated_average_precision( |
|
103
|
|
|
y_true, y_score, pos_label=1, sample_weight=None |
|
104
|
|
|
): |
|
105
|
|
|
precision_gain, recall_gain = precision_recall_gain_curve( |
|
106
|
|
|
y_true, y_score, pos_label=pos_label, sample_weight=sample_weight |
|
107
|
|
|
) |
|
108
|
|
|
# Return the step function integral |
|
109
|
|
|
# The following works because the last entry of precision is |
|
110
|
|
|
# guaranteed to be 1, as returned by precision_recall_curve |
|
111
|
|
|
# TODO compute integral correct? |
|
112
|
|
|
return -np.sum(np.diff(recall_gain) * np.array(precision_gain)[:-1]) |
|
113
|
|
|
|
|
114
|
|
|
y_type = type_of_target(y_true) |
|
115
|
|
|
if y_type == "multilabel-indicator" and pos_label != 1: |
|
116
|
|
|
raise ValueError( |
|
117
|
|
|
"Parameter pos_label is fixed to 1 for " |
|
118
|
|
|
"multilabel-indicator y_true. Do not set " |
|
119
|
|
|
"pos_label or set pos_label to 1." |
|
120
|
|
|
) |
|
121
|
|
|
elif y_type == "binary": |
|
122
|
|
|
# Convert to Python primitive type to avoid NumPy type / Python str |
|
123
|
|
|
# comparison. See https://github.com/numpy/numpy/issues/6784 |
|
124
|
|
|
present_labels = np.unique(y_true).tolist() |
|
125
|
|
|
if len(present_labels) == 2 and pos_label not in present_labels: |
|
126
|
|
|
raise ValueError( |
|
127
|
|
|
f"pos_label={pos_label} is not a valid label. It should be " |
|
128
|
|
|
f"one of {present_labels}" |
|
129
|
|
|
) |
|
130
|
|
|
average_precision = partial( |
|
131
|
|
|
_binary_uninterpolated_average_precision, pos_label=pos_label |
|
132
|
|
|
) |
|
133
|
|
|
# Average a binary metric for multilabel classification. |
|
134
|
|
|
average_precision = _average_binary_score( |
|
135
|
|
|
average_precision, y_true, y_score, average, sample_weight=sample_weight |
|
136
|
|
|
) |
|
137
|
|
|
return average_precision |
|
138
|
|
|
|
|
139
|
|
|
|
|
140
|
|
|
def precision_recall_gain(precisions, recalls, proportion_of_positives): |
|
141
|
|
|
""" |
|
142
|
|
|
Converts precision and recall into precision-gain and recall-gain. |
|
143
|
|
|
|
|
144
|
|
|
|
|
145
|
|
|
Parameters |
|
146
|
|
|
---------- |
|
147
|
|
|
proportion_of_positives: float. Proportion of positives. Termed π in the paper. |
|
148
|
|
|
precisions : ndarray |
|
149
|
|
|
recalls: ndarray |
|
150
|
|
|
""" |
|
151
|
|
|
|
|
152
|
|
|
with np.errstate(divide="ignore", invalid="ignore"): |
|
153
|
|
|
prec_gain = (precisions - proportion_of_positives) / ( |
|
154
|
|
|
(1 - proportion_of_positives) * precisions |
|
155
|
|
|
) |
|
156
|
|
|
rec_gain = (recalls - proportion_of_positives) / ( |
|
157
|
|
|
(1 - proportion_of_positives) * recalls |
|
158
|
|
|
) |
|
159
|
|
|
|
|
160
|
|
|
return prec_gain, rec_gain |
|
161
|
|
|
|
|
162
|
|
|
|
|
163
|
|
|
def precision_recall_gain_curve(y_true, probas_pred, pos_label=1, sample_weight=None): |
|
164
|
|
|
"""Compute precision-recall pairs for different probability thresholds. |
|
165
|
|
|
|
|
166
|
|
|
Note: this implementation is restricted to the binary classification task. |
|
167
|
|
|
|
|
168
|
|
|
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of |
|
169
|
|
|
true positives and ``fp`` the number of false positives. The precision is |
|
170
|
|
|
intuitively the ability of the classifier not to label as positive a sample |
|
171
|
|
|
that is negative. |
|
172
|
|
|
|
|
173
|
|
|
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of |
|
174
|
|
|
true positives and ``fn`` the number of false negatives. The recall is |
|
175
|
|
|
intuitively the ability of the classifier to find all the positive samples. |
|
176
|
|
|
|
|
177
|
|
|
The last precision and recall values are 1. and 0. respectively and do not |
|
178
|
|
|
have a corresponding threshold. This ensures that the graph starts on the |
|
179
|
|
|
y axis. |
|
180
|
|
|
|
|
181
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
|
182
|
|
|
|
|
183
|
|
|
Parameters |
|
184
|
|
|
---------- |
|
185
|
|
|
y_true : ndarray of shape (n_samples,) |
|
186
|
|
|
True binary labels. If labels are not either {-1, 1} or {0, 1}, then |
|
187
|
|
|
pos_label should be explicitly given. |
|
188
|
|
|
|
|
189
|
|
|
probas_pred : ndarray of shape (n_samples,) |
|
190
|
|
|
Estimated probabilities or output of a decision function. |
|
191
|
|
|
|
|
192
|
|
|
pos_label : int or str, default=None |
|
193
|
|
|
The label of the positive class. |
|
194
|
|
|
When ``pos_label=None``, if y_true is in {-1, 1} or {0, 1}, |
|
195
|
|
|
``pos_label`` is set to 1, otherwise an error will be raised. |
|
196
|
|
|
|
|
197
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
|
198
|
|
|
Sample weights. |
|
199
|
|
|
|
|
200
|
|
|
Returns |
|
201
|
|
|
------- |
|
202
|
|
|
precision : ndarray of shape (n_thresholds + 1,) |
|
203
|
|
|
Precision values such that element i is the precision of |
|
204
|
|
|
predictions with score >= thresholds[i] and the last element is 1. |
|
205
|
|
|
|
|
206
|
|
|
recall : ndarray of shape (n_thresholds + 1,) |
|
207
|
|
|
Decreasing recall values such that element i is the recall of |
|
208
|
|
|
predictions with score >= thresholds[i] and the last element is 0. |
|
209
|
|
|
|
|
210
|
|
|
thresholds : ndarray of shape (n_thresholds,) |
|
211
|
|
|
Increasing thresholds on the decision function used to compute |
|
212
|
|
|
precision and recall. n_thresholds <= len(np.unique(probas_pred)). |
|
213
|
|
|
|
|
214
|
|
|
See Also |
|
215
|
|
|
-------- |
|
216
|
|
|
plot_precision_recall_curve : Plot Precision Recall Curve for binary |
|
217
|
|
|
classifiers. |
|
218
|
|
|
PrecisionRecallDisplay : Precision Recall visualization. |
|
219
|
|
|
average_precision_score : Compute average precision from prediction scores. |
|
220
|
|
|
det_curve: Compute error rates for different probability thresholds. |
|
221
|
|
|
roc_curve : Compute Receiver operating characteristic (ROC) curve. |
|
222
|
|
|
|
|
223
|
|
|
Examples |
|
224
|
|
|
-------- |
|
225
|
|
|
>>> import numpy as np |
|
226
|
|
|
>>> from sklearn.metrics import precision_recall_curve |
|
227
|
|
|
>>> y_true = np.array([0, 0, 1, 1]) |
|
228
|
|
|
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) |
|
229
|
|
|
>>> precision, recall, thresholds = precision_recall_curve( |
|
230
|
|
|
... y_true, y_scores) |
|
231
|
|
|
>>> precision |
|
232
|
|
|
array([0.66666667, 0.5 , 1. , 1. ]) |
|
233
|
|
|
>>> recall |
|
234
|
|
|
array([1. , 0.5, 0.5, 0. ]) |
|
235
|
|
|
>>> thresholds |
|
236
|
|
|
array([0.35, 0.4 , 0.8 ]) |
|
237
|
|
|
|
|
238
|
|
|
""" |
|
239
|
|
|
if pos_label != 1: |
|
240
|
|
|
raise NotImplementedError("Have not implemented non-binary targets") |
|
241
|
|
|
if sample_weight is not None: |
|
242
|
|
|
raise NotImplementedError |
|
243
|
|
|
|
|
244
|
|
|
# calc true and false poitives per binary classification thresh |
|
245
|
|
|
fps, tps, thresholds = _binary_clf_curve( |
|
246
|
|
|
y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight |
|
247
|
|
|
) |
|
248
|
|
|
|
|
249
|
|
|
precision = tps / (tps + fps) |
|
250
|
|
|
precision[np.isnan(precision)] = 0 |
|
251
|
|
|
recall = tps / tps[-1] |
|
252
|
|
|
|
|
253
|
|
|
# stop when full recall attained |
|
254
|
|
|
# and reverse the outputs so recall is decreasing |
|
255
|
|
|
last_ind = tps.searchsorted(tps[-1]) |
|
256
|
|
|
sl = slice(last_ind, None, -1) # equivalent to slice [last_ind:None:-1] |
|
257
|
|
|
precision, recall, thresholds = ( |
|
258
|
|
|
np.r_[precision[sl], 1], |
|
259
|
|
|
np.r_[recall[sl], 0], |
|
260
|
|
|
thresholds[sl], |
|
261
|
|
|
) |
|
262
|
|
|
|
|
263
|
|
|
# everything above is taken from sklearn.metrics._ranking.precision_recall_curve |
|
264
|
|
|
|
|
265
|
|
|
# logic taken from sklearn.metrics._ranking.det_curve |
|
266
|
|
|
# fns = tps[-1] - tps |
|
267
|
|
|
p_count = tps[-1] |
|
268
|
|
|
n_count = fps[-1] |
|
269
|
|
|
proportion_of_positives = p_count / n_count |
|
270
|
|
|
|
|
271
|
|
|
precision_gains, recall_gains = precision_recall_gain( |
|
272
|
|
|
precisions=precision, |
|
273
|
|
|
recalls=recall, |
|
274
|
|
|
proportion_of_positives=proportion_of_positives, |
|
275
|
|
|
) |
|
276
|
|
|
|
|
277
|
|
|
return precision_gains, recall_gains |
|
278
|
|
|
|