|
1
|
|
|
import numpy as np |
|
2
|
|
|
import pytest |
|
3
|
|
|
from sklearn import datasets, svm |
|
4
|
|
|
from sklearn.exceptions import UndefinedMetricWarning |
|
5
|
|
|
from sklearn.utils._testing import ( |
|
6
|
|
|
assert_almost_equal, |
|
7
|
|
|
assert_array_almost_equal, |
|
8
|
|
|
assert_array_equal, |
|
9
|
|
|
assert_no_warnings, |
|
10
|
|
|
ignore_warnings, |
|
11
|
|
|
) |
|
12
|
|
|
from sklearn.utils.validation import check_random_state |
|
13
|
|
|
|
|
14
|
|
|
from precision_recall_gain import ( |
|
15
|
|
|
f1_gain_score, |
|
16
|
|
|
fbeta_gain_score, |
|
17
|
|
|
precision_gain_score, |
|
18
|
|
|
precision_recall_fgain_score_support, |
|
19
|
|
|
recall_gain_score, |
|
20
|
|
|
) |
|
21
|
|
|
|
|
22
|
|
|
############################################################################### |
|
23
|
|
|
# Utilities for testing |
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
def make_prediction(dataset=None, binary=False): |
|
27
|
|
|
"""Make some classification predictions on a toy dataset using a SVC |
|
28
|
|
|
|
|
29
|
|
|
If binary is True restrict to a binary classification problem instead of a |
|
30
|
|
|
multiclass classification problem |
|
31
|
|
|
""" |
|
32
|
|
|
|
|
33
|
|
|
if dataset is None: |
|
34
|
|
|
# import some data to play with |
|
35
|
|
|
dataset = datasets.load_iris() |
|
36
|
|
|
|
|
37
|
|
|
X = dataset.data |
|
38
|
|
|
y = dataset.target |
|
39
|
|
|
|
|
40
|
|
|
if binary: |
|
41
|
|
|
# restrict to a binary classification task |
|
42
|
|
|
X, y = X[y < 2], y[y < 2] |
|
43
|
|
|
|
|
44
|
|
|
n_samples, n_features = X.shape |
|
45
|
|
|
p = np.arange(n_samples) |
|
46
|
|
|
|
|
47
|
|
|
rng = check_random_state(37) |
|
48
|
|
|
rng.shuffle(p) |
|
49
|
|
|
X, y = X[p], y[p] |
|
50
|
|
|
half = int(n_samples / 2) |
|
51
|
|
|
|
|
52
|
|
|
# add noisy features to make the problem harder and avoid perfect results |
|
53
|
|
|
rng = np.random.RandomState(0) |
|
54
|
|
|
X = np.c_[X, rng.randn(n_samples, 200 * n_features)] |
|
55
|
|
|
|
|
56
|
|
|
# run classifier, get class probabilities and label predictions |
|
57
|
|
|
clf = svm.SVC(kernel="linear", probability=True, random_state=0) |
|
58
|
|
|
probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) |
|
59
|
|
|
|
|
60
|
|
|
if binary: |
|
61
|
|
|
# only interested in probabilities of the positive case |
|
62
|
|
|
# XXX: do we really want a special API for the binary case? |
|
63
|
|
|
probas_pred = probas_pred[:, 1] |
|
64
|
|
|
|
|
65
|
|
|
y_pred = clf.predict(X[half:]) |
|
66
|
|
|
y_true = y[half:] |
|
67
|
|
|
return y_true, y_pred, probas_pred |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
############################################################################### |
|
71
|
|
|
# Tests |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
def test_precision_recall_f1_gain_score_averages(): |
|
75
|
|
|
# Test Precision Recall and F1 Score for binary classification task |
|
76
|
|
|
y_true, y_pred, _ = make_prediction(binary=True) |
|
77
|
|
|
|
|
78
|
|
|
# binary average |
|
79
|
|
|
p, r, f, s = precision_recall_fgain_score_support(y_true, y_pred, average="binary") |
|
80
|
|
|
assert_array_almost_equal(p, 0.82, 2) |
|
81
|
|
|
assert_array_almost_equal(r, 0.53, 2) |
|
82
|
|
|
assert_array_almost_equal(f, 0.68, 2) |
|
83
|
|
|
|
|
84
|
|
|
# macro average |
|
85
|
|
|
p, r, f, s = precision_recall_fgain_score_support(y_true, y_pred, average="macro") |
|
86
|
|
|
assert_array_almost_equal(p, 0.73, 2) |
|
87
|
|
|
assert_array_almost_equal(r, 0.70, 2) |
|
88
|
|
|
assert_array_almost_equal(f, 0.72, 2) |
|
89
|
|
|
|
|
90
|
|
|
# Test Precision Recall and F1 Score for multi classification task |
|
91
|
|
|
y_true, y_pred, _ = make_prediction(binary=False) |
|
92
|
|
|
|
|
93
|
|
|
# weighted average |
|
94
|
|
|
p, r, f, s = precision_recall_fgain_score_support( |
|
95
|
|
|
y_true, y_pred, average="weighted" |
|
96
|
|
|
) |
|
97
|
|
|
assert_array_almost_equal(p, 0.25, 2) |
|
98
|
|
|
assert_array_almost_equal(r, -1.77, 2) |
|
99
|
|
|
assert_array_almost_equal(f, -0.76, 2) |
|
100
|
|
|
|
|
101
|
|
|
|
|
102
|
|
|
def test_precision_recall_f1_gain_score_class_dist(): |
|
103
|
|
|
# Test Precision Recall and F1 Score for binary classification task |
|
104
|
|
|
y_true, y_pred, _ = make_prediction(binary=True) |
|
105
|
|
|
|
|
106
|
|
|
# binary average |
|
107
|
|
|
p, r, f, s = precision_recall_fgain_score_support( |
|
108
|
|
|
y_true, y_pred, average="binary", class_distribution=[0.4, 0.6] |
|
109
|
|
|
) |
|
110
|
|
|
assert_array_almost_equal(p, 0.74, 2) |
|
111
|
|
|
assert_array_almost_equal(r, 0.29, 2) |
|
112
|
|
|
assert_array_almost_equal(f, 0.51, 2) |
|
113
|
|
|
|
|
114
|
|
|
# macro average |
|
115
|
|
|
p, r, f, s = precision_recall_fgain_score_support( |
|
116
|
|
|
y_true, y_pred, average="macro", class_distribution=[0.4, 0.6] |
|
117
|
|
|
) |
|
118
|
|
|
assert_array_almost_equal(p, 0.75, 2) |
|
119
|
|
|
assert_array_almost_equal(r, 0.60, 2) |
|
120
|
|
|
assert_array_almost_equal(f, 0.67, 2) |
|
121
|
|
|
|
|
122
|
|
|
# Test Precision Recall and F1 Score for multi classification task |
|
123
|
|
|
y_true, y_pred, _ = make_prediction(binary=False) |
|
124
|
|
|
|
|
125
|
|
|
# weighted average |
|
126
|
|
|
p, r, f, s = precision_recall_fgain_score_support( |
|
127
|
|
|
y_true, y_pred, average="weighted", class_distribution=[0.4, 0.2, 0.4] |
|
128
|
|
|
) |
|
129
|
|
|
assert_array_almost_equal(p, 0.50, 2) |
|
130
|
|
|
assert_array_almost_equal(r, -0.04, 2) |
|
131
|
|
|
assert_array_almost_equal(f, 0.23, 2) |
|
132
|
|
|
|
|
133
|
|
|
|
|
134
|
|
|
def test_precision_recall_f1_gain_score_binary(): |
|
135
|
|
|
# Test Precision Recall and F1 Score for binary classification task |
|
136
|
|
|
y_true, y_pred, _ = make_prediction(binary=True) |
|
137
|
|
|
|
|
138
|
|
|
# detailed measures for each class |
|
139
|
|
|
p, r, f, s = precision_recall_fgain_score_support(y_true, y_pred, average=None) |
|
140
|
|
|
assert_array_almost_equal(p, [0.64, 0.82], 2) |
|
141
|
|
|
assert_array_almost_equal(r, [0.86, 0.53], 2) |
|
142
|
|
|
assert_array_almost_equal(f, [0.75, 0.68], 2) |
|
143
|
|
|
assert_array_equal(s, [25, 25]) |
|
144
|
|
|
|
|
145
|
|
|
# individual scoring function that can be used for grid search: in the |
|
146
|
|
|
# binary class case the score is the value of the measure for the positive |
|
147
|
|
|
# class (e.g. label == 1). This is deprecated for average != 'binary'. |
|
148
|
|
|
for kwargs, my_assert in [ |
|
149
|
|
|
({}, assert_no_warnings), |
|
150
|
|
|
({"average": "binary"}, assert_no_warnings), |
|
151
|
|
|
]: |
|
152
|
|
|
ps = my_assert(precision_gain_score, y_true, y_pred, **kwargs) |
|
153
|
|
|
assert_array_almost_equal(ps, 0.82, 2) |
|
154
|
|
|
|
|
155
|
|
|
rs = my_assert(recall_gain_score, y_true, y_pred, **kwargs) |
|
156
|
|
|
assert_array_almost_equal(rs, 0.53, 2) |
|
157
|
|
|
|
|
158
|
|
|
fs = my_assert(f1_gain_score, y_true, y_pred, **kwargs) |
|
159
|
|
|
assert_array_almost_equal(fs, 0.68, 2) |
|
160
|
|
|
|
|
161
|
|
|
beta = 2 |
|
162
|
|
|
assert_almost_equal( |
|
163
|
|
|
my_assert(fbeta_gain_score, y_true, y_pred, beta=beta, **kwargs), |
|
164
|
|
|
(ps + ((beta**2) * rs)) / (1 + (beta**2)), |
|
165
|
|
|
2, |
|
166
|
|
|
) |
|
167
|
|
|
|
|
168
|
|
|
|
|
169
|
|
|
@ignore_warnings |
|
170
|
|
|
def test_precision_recall_f_gain_binary_single_class(): |
|
171
|
|
|
# Test precision, recall and F-scores behave with a single positive or |
|
172
|
|
|
# negative class. Such a case may occur with non-stratified cross-validation |
|
173
|
|
|
assert 1.0 == precision_gain_score([1, 1], [1, 1]) |
|
174
|
|
|
assert 1.0 == recall_gain_score([1, 1], [1, 1]) |
|
175
|
|
|
assert 1.0 == f1_gain_score([1, 1], [1, 1]) |
|
176
|
|
|
assert 1.0 == fbeta_gain_score([1, 1], [1, 1], beta=0) |
|
177
|
|
|
assert 1.0 == f1_gain_score([2, 2], [2, 2], pos_label=2) |
|
178
|
|
|
|
|
179
|
|
|
# test case when no positive class present in true or predicted labels |
|
180
|
|
|
assert np.isnan(precision_gain_score([2, 2], [2, 2])) |
|
181
|
|
|
assert np.isnan(precision_gain_score([-1, -1], [-1, -1])) |
|
182
|
|
|
assert np.isnan(recall_gain_score([-1, -1], [-1, -1])) |
|
183
|
|
|
assert np.isnan(f1_gain_score([-1, -1], [-1, -1])) |
|
184
|
|
|
assert np.isnan(fbeta_gain_score([-1, -1], [-1, -1], beta=float("inf"))) |
|
185
|
|
|
assert np.isnan(fbeta_gain_score([-1, -1], [-1, -1], beta=1e5)) |
|
186
|
|
|
|
|
187
|
|
|
# test case when true labels all positive |
|
188
|
|
|
assert precision_gain_score([1, 1], [1, 0]) == 1 |
|
189
|
|
|
assert precision_gain_score([1, 1], [0, 1]) == 1 |
|
190
|
|
|
assert recall_gain_score([1, 1], [1, 0]) == -np.inf |
|
191
|
|
|
assert recall_gain_score([1, 1], [0, 1]) == -np.inf |
|
192
|
|
|
assert f1_gain_score([1, 1], [1, 0]) == -np.inf |
|
193
|
|
|
assert f1_gain_score([1, 1], [0, 1]) == -np.inf |
|
194
|
|
|
|
|
195
|
|
|
# test case when predicted labels all positive |
|
196
|
|
|
assert precision_gain_score([1, 0], [1, 1]) == 0 |
|
197
|
|
|
assert precision_gain_score([0, 1], [1, 1]) == 0 |
|
198
|
|
|
assert recall_gain_score([1, 0], [1, 1]) == 1 |
|
199
|
|
|
assert recall_gain_score([0, 1], [1, 1]) == 1 |
|
200
|
|
|
assert_array_almost_equal(f1_gain_score([1, 0], [1, 1]), 0.5) |
|
201
|
|
|
assert_array_almost_equal(f1_gain_score([0, 1], [1, 1]), 0.5) |
|
202
|
|
|
|
|
203
|
|
|
|
|
204
|
|
|
@ignore_warnings |
|
205
|
|
|
def test_precision_recall_fgain_score_support_errors(): |
|
206
|
|
|
y_true, y_pred, _ = make_prediction(binary=True) |
|
207
|
|
|
|
|
208
|
|
|
# Bad beta |
|
209
|
|
|
with pytest.raises(ValueError): |
|
210
|
|
|
precision_recall_fgain_score_support(y_true, y_pred, beta=-0.1) |
|
211
|
|
|
|
|
212
|
|
|
# Bad pos_label |
|
213
|
|
|
with pytest.raises(ValueError): |
|
214
|
|
|
precision_recall_fgain_score_support( |
|
215
|
|
|
y_true, y_pred, pos_label=2, average="binary" |
|
216
|
|
|
) |
|
217
|
|
|
|
|
218
|
|
|
# Bad average option 1 |
|
219
|
|
|
with pytest.raises(ValueError): |
|
220
|
|
|
precision_recall_fgain_score_support([0, 1, 2], [1, 2, 0], average="mega") |
|
221
|
|
|
|
|
222
|
|
|
# Bad average option 2 |
|
223
|
|
|
with pytest.raises(ValueError): |
|
224
|
|
|
precision_recall_fgain_score_support([0, 1, 2], [1, 2, 0], average="micro") |
|
225
|
|
|
|
|
226
|
|
|
# Bad class_distribution dimension |
|
227
|
|
|
with pytest.raises(ValueError): |
|
228
|
|
|
precision_recall_fgain_score_support( |
|
229
|
|
|
[0, 1, 2], [1, 2, 0], class_distribution=[3] |
|
230
|
|
|
) |
|
231
|
|
|
|
|
232
|
|
|
# Bad class_distribution values |
|
233
|
|
|
with pytest.raises(ValueError): |
|
234
|
|
|
precision_recall_fgain_score_support( |
|
235
|
|
|
[0, 1, 2], [1, 2, 0], class_distribution=[0.4, 0.6, 0.1] |
|
236
|
|
|
) |
|
237
|
|
|
|
|
238
|
|
|
|
|
239
|
|
|
def test_precision_recall_f1_gain_score_multiclass(): |
|
240
|
|
|
# Test Precision Recall and F1 Score for multiclass classification task |
|
241
|
|
|
y_true, y_pred, _ = make_prediction(binary=False) |
|
242
|
|
|
|
|
243
|
|
|
# compute scores with default labels introspection |
|
244
|
|
|
p, r, f, s = precision_recall_fgain_score_support(y_true, y_pred, average=None) |
|
245
|
|
|
assert_array_almost_equal(p, [0.9, -0.41, 0.49], 2) |
|
246
|
|
|
assert_array_almost_equal(r, [0.88, -5.58, 0.96], 2) |
|
247
|
|
|
assert_array_almost_equal(f, [0.89, -2.99, 0.73], 2) |
|
248
|
|
|
assert_array_equal(s, [24, 31, 20]) |
|
249
|
|
|
|
|
250
|
|
|
# averaging tests |
|
251
|
|
|
ps = precision_gain_score(y_true, y_pred, average="macro") |
|
252
|
|
|
assert_array_almost_equal(ps, 0.33, 2) |
|
253
|
|
|
|
|
254
|
|
|
rs = recall_gain_score(y_true, y_pred, average="macro") |
|
255
|
|
|
assert_array_almost_equal(rs, -1.25, 2) |
|
256
|
|
|
|
|
257
|
|
|
fs = f1_gain_score(y_true, y_pred, average="macro") |
|
258
|
|
|
assert_array_almost_equal(fs, -0.46, 2) |
|
259
|
|
|
|
|
260
|
|
|
ps = precision_gain_score(y_true, y_pred, average="weighted") |
|
261
|
|
|
assert_array_almost_equal(ps, 0.25, 2) |
|
262
|
|
|
|
|
263
|
|
|
rs = recall_gain_score(y_true, y_pred, average="weighted") |
|
264
|
|
|
assert_array_almost_equal(rs, -1.77, 2) |
|
265
|
|
|
|
|
266
|
|
|
fs = f1_gain_score(y_true, y_pred, average="weighted") |
|
267
|
|
|
assert_array_almost_equal(fs, -0.76, 2) |
|
268
|
|
|
|
|
269
|
|
|
with pytest.raises(ValueError): |
|
270
|
|
|
precision_gain_score(y_true, y_pred, average="samples") |
|
271
|
|
|
with pytest.raises(ValueError): |
|
272
|
|
|
recall_gain_score(y_true, y_pred, average="samples") |
|
273
|
|
|
with pytest.raises(ValueError): |
|
274
|
|
|
f1_gain_score(y_true, y_pred, average="samples") |
|
275
|
|
|
with pytest.raises(ValueError): |
|
276
|
|
|
fbeta_gain_score(y_true, y_pred, average="samples", beta=0.5) |
|
277
|
|
|
|
|
278
|
|
|
# same prediction but with and explicit label ordering |
|
279
|
|
|
p, r, f, s = precision_recall_fgain_score_support( |
|
280
|
|
|
y_true, y_pred, labels=[0, 2, 1], average=None |
|
281
|
|
|
) |
|
282
|
|
|
assert_array_almost_equal(p, [0.9, 0.49, -0.41], 2) |
|
283
|
|
|
assert_array_almost_equal(r, [0.88, 0.96, -5.58], 2) |
|
284
|
|
|
assert_array_almost_equal(f, [0.89, 0.73, -2.99], 2) |
|
285
|
|
|
assert_array_equal(s, [24, 20, 31]) |
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
|
def test_precision_gain_score_docs(): |
|
289
|
|
|
y_true = [0, 1, 2, 0, 1, 2] |
|
290
|
|
|
y_pred = [0, 2, 1, 0, 0, 1] |
|
291
|
|
|
assert precision_gain_score(y_true, y_pred, average="macro") < -1e14 |
|
292
|
|
|
assert precision_gain_score(y_true, y_pred, average="weighted") < -1e14 |
|
293
|
|
|
|
|
294
|
|
|
result = precision_gain_score(y_true, y_pred, average=None) |
|
295
|
|
|
assert np.isclose(result[0], 0.75) |
|
296
|
|
|
assert np.all(result[1:] < -1e14) |
|
297
|
|
|
|
|
298
|
|
|
y_pred = [0, 0, 0, 0, 0, 0] |
|
299
|
|
|
with pytest.warns(UndefinedMetricWarning): |
|
300
|
|
|
result = precision_gain_score(y_true, y_pred, average=None) |
|
301
|
|
|
assert np.isclose(result[0], 0) |
|
302
|
|
|
assert np.all(result[1:] < -1e14) |
|
303
|
|
|
|
|
304
|
|
|
assert_array_almost_equal( |
|
305
|
|
|
precision_gain_score(y_true, y_pred, average=None, zero_division=1), |
|
306
|
|
|
[0.0, 1.0, 1.0], |
|
307
|
|
|
2, |
|
308
|
|
|
) |
|
309
|
|
|
|
|
310
|
|
|
# multilabel classification |
|
311
|
|
|
y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]] |
|
312
|
|
|
y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]] |
|
313
|
|
|
# this one is correct |
|
314
|
|
|
assert_array_almost_equal( |
|
315
|
|
|
precision_gain_score(y_true, y_pred, average=None), [0.5, 1.0, 1.0], 2 |
|
316
|
|
|
) |
|
317
|
|
|
assert_array_almost_equal( |
|
318
|
|
|
recall_gain_score(y_true, y_pred, average=None), [1.0, 1.0, -1.0], 2 |
|
319
|
|
|
) |
|
320
|
|
|
|
|
321
|
|
|
# binary classification |
|
322
|
|
|
y_pred = [0, 0, 1, 0] |
|
323
|
|
|
y_true = [0, 1, 1, 0] |
|
324
|
|
|
result = precision_recall_fgain_score_support(y_true, y_pred, average="binary") |
|
325
|
|
|
assert_almost_equal(result[:3], [1, 0, 0.5]) |
|
326
|
|
|
assert result[3] is None |
|
327
|
|
|
|
|
328
|
|
|
|
|
329
|
|
|
def test_recall_gain_docs(): |
|
330
|
|
|
y_true = [0, 1, 2, 0, 1, 2] |
|
331
|
|
|
y_pred = [0, 2, 1, 0, 0, 1] |
|
332
|
|
|
|
|
333
|
|
|
assert recall_gain_score(y_true, y_pred, average="macro") < -1e14 |
|
334
|
|
|
assert recall_gain_score(y_true, y_pred, average="weighted") < -1e14 |
|
335
|
|
|
result = recall_gain_score(y_true, y_pred, average=None) |
|
336
|
|
|
assert np.isclose(result[0], 1) |
|
337
|
|
|
assert np.all(result[1:] < -1e14) |
|
338
|
|
|
|
|
339
|
|
|
y_true = [0, 0, 0, 0, 0, 0] |
|
340
|
|
|
|
|
341
|
|
|
with pytest.warns((UndefinedMetricWarning, RuntimeWarning)): |
|
342
|
|
|
result = recall_gain_score(y_true, y_pred, average=None) |
|
343
|
|
|
assert_array_almost_equal(result, [-np.inf, np.nan, np.nan], 2) |
|
344
|
|
|
|
|
345
|
|
|
with pytest.warns(RuntimeWarning): |
|
346
|
|
|
assert_array_almost_equal( |
|
347
|
|
|
recall_gain_score(y_true, y_pred, average=None, zero_division=1), |
|
348
|
|
|
[-np.inf, 1.0, 1.0], |
|
349
|
|
|
2, |
|
350
|
|
|
) |
|
351
|
|
|
|