1
|
|
|
""" |
2
|
|
|
https://github.com/scikit-learn/scikit-learn/pull/24121 |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
# ruff: noqa: E501 |
6
|
|
|
import numpy as np |
7
|
|
|
from sklearn.metrics._classification import ( |
8
|
|
|
_check_set_wise_labels, |
9
|
|
|
_check_zero_division, |
10
|
|
|
_prf_divide, |
11
|
|
|
_warn_prf, |
12
|
|
|
multilabel_confusion_matrix, |
13
|
|
|
) |
14
|
|
|
from sklearn.utils.multiclass import unique_labels |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def _precision_recall_fscore_support( |
18
|
|
|
y_true, |
19
|
|
|
y_pred, |
20
|
|
|
*, |
21
|
|
|
beta=1.0, |
22
|
|
|
labels=None, |
23
|
|
|
pos_label=1, |
24
|
|
|
average=None, |
25
|
|
|
warn_for=("precision", "recall", "f-score"), |
26
|
|
|
sample_weight=None, |
27
|
|
|
zero_division="warn", |
28
|
|
|
return_in_gain_space=False, |
29
|
|
|
class_distribution=None, |
30
|
|
|
): |
31
|
|
|
"""Compute precision, recall, F-measure and support for each class. |
32
|
|
|
|
33
|
|
|
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of |
34
|
|
|
true positives and ``fp`` the number of false positives. The precision is |
35
|
|
|
intuitively the ability of the classifier not to label a negative sample as |
36
|
|
|
positive. |
37
|
|
|
|
38
|
|
|
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of |
39
|
|
|
true positives and ``fn`` the number of false negatives. The recall is |
40
|
|
|
intuitively the ability of the classifier to find all the positive samples. |
41
|
|
|
|
42
|
|
|
The F-beta score can be interpreted as a weighted harmonic mean of |
43
|
|
|
the precision and recall, where an F-beta score reaches its best |
44
|
|
|
value at 1 and worst score at 0. |
45
|
|
|
|
46
|
|
|
The F-beta score weights recall more than precision by a factor of |
47
|
|
|
``beta``. ``beta == 1.0`` means recall and precision are equally important. |
48
|
|
|
|
49
|
|
|
The support is the number of occurrences of each class in ``y_true``. |
50
|
|
|
|
51
|
|
|
If ``pos_label is None`` and in binary classification, this function |
52
|
|
|
returns the average precision, recall and F-measure if ``average`` |
53
|
|
|
is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. |
54
|
|
|
|
55
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
56
|
|
|
|
57
|
|
|
Parameters |
58
|
|
|
---------- |
59
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
60
|
|
|
Ground truth (correct) target values. |
61
|
|
|
|
62
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
63
|
|
|
Estimated targets as returned by a classifier. |
64
|
|
|
|
65
|
|
|
beta : float, default=1.0 |
66
|
|
|
The strength of recall versus precision in the F-score. |
67
|
|
|
|
68
|
|
|
labels : array-like, default=None |
69
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
70
|
|
|
order if ``average is None``. Labels present in the data can be |
71
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
72
|
|
|
majority negative class, while labels not present in the data will |
73
|
|
|
result in 0 components in a macro average. For multilabel targets, |
74
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
75
|
|
|
``y_pred`` are used in sorted order. |
76
|
|
|
|
77
|
|
|
pos_label : str or int, default=1 |
78
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
79
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
80
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
81
|
|
|
scores for that label only. |
82
|
|
|
|
83
|
|
|
average : {'binary', 'micro', 'macro', 'samples', 'weighted'}, \ |
84
|
|
|
default=None |
85
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
86
|
|
|
determines the type of averaging performed on the data: |
87
|
|
|
|
88
|
|
|
``'binary'``: |
89
|
|
|
Only report results for the class specified by ``pos_label``. |
90
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
91
|
|
|
``'micro'``: |
92
|
|
|
Calculate metrics globally by counting the total true positives, |
93
|
|
|
false negatives and false positives. |
94
|
|
|
``'macro'``: |
95
|
|
|
Calculate metrics for each label, and find their unweighted |
96
|
|
|
mean. This does not take label imbalance into account. |
97
|
|
|
``'weighted'``: |
98
|
|
|
Calculate metrics for each label, and find their average weighted |
99
|
|
|
by support (the number of true instances for each label). This |
100
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
101
|
|
|
F-score that is not between precision and recall. |
102
|
|
|
``'samples'``: |
103
|
|
|
Calculate metrics for each instance, and find their average (only |
104
|
|
|
meaningful for multilabel classification where this differs from |
105
|
|
|
:func:`accuracy_score`). |
106
|
|
|
|
107
|
|
|
warn_for : tuple or set, for internal use |
108
|
|
|
This determines which warnings will be made in the case that this |
109
|
|
|
function is being used to return only one of its metrics. |
110
|
|
|
|
111
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
112
|
|
|
Sample weights. |
113
|
|
|
|
114
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
115
|
|
|
Sets the value to return when there is a zero division: |
116
|
|
|
- recall: when there are no positive labels |
117
|
|
|
- precision: when there are no positive predictions |
118
|
|
|
- f-score: both |
119
|
|
|
|
120
|
|
|
If set to "warn", this acts as 0, but warnings are also raised. |
121
|
|
|
|
122
|
|
|
return_in_gain_space : bool, default=False |
123
|
|
|
If True, Precision Gain, Recall Gain and FScore Gain are returned. |
124
|
|
|
|
125
|
|
|
class_distribution : Optional list, default=None |
126
|
|
|
The proportion that each class makes up in the dataset. It's used only |
127
|
|
|
when return_in_gain_space=True. If not provided then it's estimated from |
128
|
|
|
y_true. |
129
|
|
|
|
130
|
|
|
Returns |
131
|
|
|
------- |
132
|
|
|
precision : float (if average is not None) or array of float, shape =\ |
133
|
|
|
[n_unique_labels] |
134
|
|
|
Precision score. |
135
|
|
|
|
136
|
|
|
recall : float (if average is not None) or array of float, shape =\ |
137
|
|
|
[n_unique_labels] |
138
|
|
|
Recall score. |
139
|
|
|
|
140
|
|
|
fbeta_score : float (if average is not None) or array of float, shape =\ |
141
|
|
|
[n_unique_labels] |
142
|
|
|
F-beta score. |
143
|
|
|
|
144
|
|
|
support : None (if average is not None) or array of int, shape =\ |
145
|
|
|
[n_unique_labels] |
146
|
|
|
The number of occurrences of each label in ``y_true``. |
147
|
|
|
|
148
|
|
|
Notes |
149
|
|
|
----- |
150
|
|
|
When ``true positive + false positive == 0``, precision is undefined. |
151
|
|
|
When ``true positive + false negative == 0``, recall is undefined. |
152
|
|
|
In such cases, by default the metric will be set to 0, as will f-score, |
153
|
|
|
and ``UndefinedMetricWarning`` will be raised. This behavior can be |
154
|
|
|
modified with ``zero_division``. |
155
|
|
|
|
156
|
|
|
References |
157
|
|
|
---------- |
158
|
|
|
.. [1] `Wikipedia entry for the Precision and recall |
159
|
|
|
<https://en.wikipedia.org/wiki/Precision_and_recall>`_. |
160
|
|
|
|
161
|
|
|
.. [2] `Wikipedia entry for the F1-score |
162
|
|
|
<https://en.wikipedia.org/wiki/F1_score>`_. |
163
|
|
|
|
164
|
|
|
.. [3] `Discriminative Methods for Multi-labeled Classification Advances |
165
|
|
|
in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu |
166
|
|
|
Godbole, Sunita Sarawagi |
167
|
|
|
<http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_. |
168
|
|
|
|
169
|
|
|
Examples |
170
|
|
|
-------- |
171
|
|
|
>>> import numpy as np |
172
|
|
|
>>> from sklearn.metrics import precision_recall_fscore_support |
173
|
|
|
>>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) |
174
|
|
|
>>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) |
175
|
|
|
>>> precision_recall_fscore_support(y_true, y_pred, average='macro') |
176
|
|
|
(0.22..., 0.33..., 0.26..., None) |
177
|
|
|
>>> precision_recall_fscore_support(y_true, y_pred, average='micro') |
178
|
|
|
(0.33..., 0.33..., 0.33..., None) |
179
|
|
|
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted') |
180
|
|
|
(0.22..., 0.33..., 0.26..., None) |
181
|
|
|
|
182
|
|
|
It is possible to compute per-label precisions, recalls, F1-scores and |
183
|
|
|
supports instead of averaging: |
184
|
|
|
|
185
|
|
|
>>> precision_recall_fscore_support(y_true, y_pred, average=None, |
186
|
|
|
... labels=['pig', 'dog', 'cat']) |
187
|
|
|
(array([0. , 0. , 0.66...]), |
188
|
|
|
array([0., 0., 1.]), array([0. , 0. , 0.8]), |
189
|
|
|
array([2, 2, 2])) |
190
|
|
|
""" |
191
|
|
|
_check_zero_division(zero_division) |
192
|
|
|
if beta < 0: |
193
|
|
|
raise ValueError("beta should be >=0 in the F-beta score") |
194
|
|
|
labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) |
195
|
|
|
class_distribution = _check_valid_class_distribution( |
196
|
|
|
class_distribution, y_true, y_pred, average, pos_label |
197
|
|
|
) |
198
|
|
|
|
199
|
|
|
# Calculate tp_sum, pred_sum, true_sum ### |
200
|
|
|
samplewise = average == "samples" |
201
|
|
|
MCM = multilabel_confusion_matrix( |
202
|
|
|
y_true, |
203
|
|
|
y_pred, |
204
|
|
|
sample_weight=sample_weight, |
205
|
|
|
labels=labels, |
206
|
|
|
samplewise=samplewise, |
207
|
|
|
) |
208
|
|
|
tp_sum = MCM[:, 1, 1] |
209
|
|
|
pred_sum = tp_sum + MCM[:, 0, 1] |
210
|
|
|
true_sum = tp_sum + MCM[:, 1, 0] |
211
|
|
|
|
212
|
|
|
if average == "micro": |
213
|
|
|
tp_sum = np.array([tp_sum.sum()]) |
214
|
|
|
pred_sum = np.array([pred_sum.sum()]) |
215
|
|
|
true_sum = np.array([true_sum.sum()]) |
216
|
|
|
|
217
|
|
|
# Finally, we have all our sufficient statistics. Divide! # |
218
|
|
|
beta2 = beta**2 |
219
|
|
|
|
220
|
|
|
# Divide, and on zero-division, set scores and/or warn according to |
221
|
|
|
# zero_division: |
222
|
|
|
precision = _prf_divide( |
223
|
|
|
tp_sum, pred_sum, "precision", "predicted", average, warn_for, zero_division |
224
|
|
|
) |
225
|
|
|
recall = _prf_divide( |
226
|
|
|
tp_sum, true_sum, "recall", "true", average, warn_for, zero_division |
227
|
|
|
) |
228
|
|
|
|
229
|
|
|
# warn for f-score only if zero_division is warn, it is in warn_for |
230
|
|
|
# and BOTH prec and rec are ill-defined |
231
|
|
|
if zero_division == "warn" and ("f-score",) == warn_for: |
232
|
|
|
if (pred_sum[true_sum == 0] == 0).any(): |
233
|
|
|
_warn_prf(average, "true nor predicted", "F-score is", len(true_sum)) |
234
|
|
|
|
235
|
|
|
# if tp == 0 F will be 1 only if all predictions are zero, all labels are |
236
|
|
|
# zero, and zero_division=1. In all other case, 0 |
237
|
|
|
if np.isposinf(beta): |
238
|
|
|
f_score = recall |
239
|
|
|
else: |
240
|
|
|
denom = beta2 * precision + recall |
241
|
|
|
|
242
|
|
|
denom[denom == 0.0] = 1 # avoid division by 0 |
243
|
|
|
f_score = (1 + beta2) * precision * recall / denom |
244
|
|
|
|
245
|
|
|
if return_in_gain_space: |
246
|
|
|
for class_index, ( |
247
|
|
|
precision_i, |
248
|
|
|
recall_i, |
249
|
|
|
f_score_i, |
250
|
|
|
true_sum_i, |
251
|
|
|
cm_i, |
252
|
|
|
) in enumerate(zip(precision, recall, f_score, true_sum, MCM)): |
253
|
|
|
class_proportion = ( |
254
|
|
|
(true_sum_i / cm_i.sum()) |
255
|
|
|
if class_distribution is None |
256
|
|
|
else class_distribution[class_index] |
257
|
|
|
) |
258
|
|
|
precision[class_index] = prg_gain_transform( |
259
|
|
|
precision_i, pi=class_proportion |
260
|
|
|
) |
261
|
|
|
recall[class_index] = prg_gain_transform(recall_i, pi=class_proportion) |
262
|
|
|
f_score[class_index] = prg_gain_transform(f_score_i, pi=class_proportion) |
263
|
|
|
|
264
|
|
|
# Average the results |
265
|
|
|
if average == "weighted": |
266
|
|
|
weights = true_sum |
267
|
|
|
if weights.sum() == 0: |
268
|
|
|
zero_division_value = np.float64(1.0) |
269
|
|
|
if zero_division in ["warn", 0]: |
270
|
|
|
zero_division_value = np.float64(0.0) |
271
|
|
|
# precision is zero_division if there are no positive predictions |
272
|
|
|
# recall is zero_division if there are no positive labels |
273
|
|
|
# fscore is zero_division if all labels AND predictions are |
274
|
|
|
# negative |
275
|
|
|
if pred_sum.sum() == 0: |
276
|
|
|
return ( |
277
|
|
|
zero_division_value, |
278
|
|
|
zero_division_value, |
279
|
|
|
zero_division_value, |
280
|
|
|
None, |
281
|
|
|
) |
282
|
|
|
else: |
283
|
|
|
return (np.float64(0.0), zero_division_value, np.float64(0.0), None) |
284
|
|
|
|
285
|
|
|
elif average == "samples": |
286
|
|
|
weights = sample_weight |
287
|
|
|
else: |
288
|
|
|
weights = None |
289
|
|
|
|
290
|
|
|
if average is not None: |
291
|
|
|
assert average != "binary" or len(precision) == 1 |
292
|
|
|
precision = np.average(precision, weights=weights) |
293
|
|
|
recall = np.average(recall, weights=weights) |
294
|
|
|
f_score = np.average(f_score, weights=weights) |
295
|
|
|
true_sum = None # return no support |
296
|
|
|
|
297
|
|
|
return precision, recall, f_score, true_sum |
298
|
|
|
|
299
|
|
|
|
300
|
|
|
def _check_valid_class_distribution( |
301
|
|
|
class_distribution, y_true, y_pred, average, pos_label |
302
|
|
|
): |
303
|
|
|
if class_distribution: |
304
|
|
|
classes = unique_labels(y_true, y_pred).tolist() |
305
|
|
|
num_classes = len(classes) |
306
|
|
|
if len(class_distribution) != num_classes: |
307
|
|
|
raise ValueError( |
308
|
|
|
"Class distribution must have the same length as the number of classes" |
309
|
|
|
f" - {num_classes}." |
310
|
|
|
) |
311
|
|
|
if sum(class_distribution) != 1: |
312
|
|
|
raise ValueError("Class distribution values do not sum to 1.") |
313
|
|
|
|
314
|
|
|
if average == "binary": |
315
|
|
|
class_distribution = [class_distribution[classes.index(pos_label)]] |
316
|
|
|
|
317
|
|
|
return class_distribution |
318
|
|
|
|
319
|
|
|
|
320
|
|
|
def f1_gain_score( |
321
|
|
|
y_true, |
322
|
|
|
y_pred, |
323
|
|
|
*, |
324
|
|
|
labels=None, |
325
|
|
|
pos_label=1, |
326
|
|
|
average="binary", |
327
|
|
|
sample_weight=None, |
328
|
|
|
zero_division="warn", |
329
|
|
|
class_distribution=None, |
330
|
|
|
): |
331
|
|
|
"""Compute the F1 Gain score, also known as balanced F-Gain score or |
332
|
|
|
F-Gain measure. |
333
|
|
|
|
334
|
|
|
The F1 Gain score can be interpreted as a arithmetic mean of the precision |
335
|
|
|
gain and recall gain, where an F1 Gain score reaches its best value at 1 and |
336
|
|
|
worst score at -Inf. The relative contribution of precision and recall to |
337
|
|
|
the F1 score are equal. The formula for the F1 score is:: |
338
|
|
|
|
339
|
|
|
F1_Gain = (precision_gain + recall_gain) / 2 |
340
|
|
|
|
341
|
|
|
In the multi-class and multi-label case, this is the average of the F1 Gain |
342
|
|
|
score of each class with weighting depending on the ``average`` parameter. |
343
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
344
|
|
|
|
345
|
|
|
Parameters |
346
|
|
|
---------- |
347
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
348
|
|
|
Ground truth (correct) target values. |
349
|
|
|
|
350
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
351
|
|
|
Estimated targets as returned by a classifier. |
352
|
|
|
|
353
|
|
|
labels : array-like, default=None |
354
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
355
|
|
|
order if ``average is None``. Labels present in the data can be |
356
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
357
|
|
|
majority negative class, while labels not present in the data will |
358
|
|
|
result in 0 components in a macro average. For multilabel targets, |
359
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
360
|
|
|
``y_pred`` are used in sorted order. |
361
|
|
|
|
362
|
|
|
.. versionchanged:: 0.17 |
363
|
|
|
Parameter `labels` improved for multiclass problem. |
364
|
|
|
|
365
|
|
|
pos_label : str or int, default=1 |
366
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
367
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
368
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
369
|
|
|
scores for that label only. |
370
|
|
|
|
371
|
|
|
average : {'macro', 'weighted', 'binary'} or None, \ |
372
|
|
|
default='binary' |
373
|
|
|
This parameter is required for multiclass/multilabel targets. |
374
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
375
|
|
|
determines the type of averaging performed on the data: |
376
|
|
|
|
377
|
|
|
``'binary'``: |
378
|
|
|
Only report results for the class specified by ``pos_label``. |
379
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
380
|
|
|
``'macro'``: |
381
|
|
|
Calculate metrics for each label, and find their unweighted |
382
|
|
|
mean. This does not take label imbalance into account. |
383
|
|
|
``'weighted'``: |
384
|
|
|
Calculate metrics for each label, and find their average weighted |
385
|
|
|
by support (the number of true instances for each label). This |
386
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
387
|
|
|
F-score that is not between precision and recall. |
388
|
|
|
|
389
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
390
|
|
|
Sample weights. |
391
|
|
|
|
392
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
393
|
|
|
Sets the value to return when there is a zero division, i.e. when all |
394
|
|
|
predictions and labels are negative. If set to "warn", this acts as 0, |
395
|
|
|
but warnings are also raised. |
396
|
|
|
|
397
|
|
|
class_distribution : Optional list, default=None |
398
|
|
|
The proportion that each class makes up in the dataset. If not |
399
|
|
|
provided then it's estimated from y_true. |
400
|
|
|
|
401
|
|
|
Returns |
402
|
|
|
------- |
403
|
|
|
f1_gain_score : float or array of float, shape = [n_unique_labels] |
404
|
|
|
F1 Gain score of the positive class in binary classification or weighted |
405
|
|
|
average of the F1 Gain scores of each class for the multiclass task. |
406
|
|
|
|
407
|
|
|
See Also |
408
|
|
|
-------- |
409
|
|
|
fbeta_gain_score : Compute the F-Gain beta score. |
410
|
|
|
precision_recall_fgain_score_support : Compute the precision gain, recall |
411
|
|
|
gain, F-Gain score, and support. |
412
|
|
|
jaccard_score : Compute the Jaccard similarity coefficient score. |
413
|
|
|
multilabel_confusion_matrix : Compute a confusion matrix for each class or |
414
|
|
|
sample. |
415
|
|
|
|
416
|
|
|
Notes |
417
|
|
|
----- |
418
|
|
|
When ``true positive + false positive == 0``, precision is undefined. |
419
|
|
|
When ``true positive + false negative == 0``, recall is undefined. |
420
|
|
|
In such cases, by default the metric will be set to 0, as will f-score, |
421
|
|
|
and ``UndefinedMetricWarning`` will be raised. This behavior can be |
422
|
|
|
modified with ``zero_division``. |
423
|
|
|
|
424
|
|
|
References |
425
|
|
|
---------- |
426
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by |
427
|
|
|
Peter A. Flach and Meelis Kull |
428
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
429
|
|
|
.. [2] `Wikipedia entry for the F1-score |
430
|
|
|
<https://en.wikipedia.org/wiki/F1_score>`_. |
431
|
|
|
|
432
|
|
|
Examples |
433
|
|
|
-------- |
434
|
|
|
>>> from precision_recall_gain import f1_gain_score |
435
|
|
|
>>> y_true = [0, 1, 2, 0, 1, 2, 2] |
436
|
|
|
>>> y_pred = [0, 2, 1, 0, 1, 1, 2] |
437
|
|
|
>>> f1_gain_score(y_true, y_pred, average='macro') |
438
|
|
|
0.42... |
439
|
|
|
>>> f1_gain_score(y_true, y_pred, average='weighted') |
440
|
|
|
0.34... |
441
|
|
|
>>> f1_gain_score(y_true, y_pred, average=None) |
442
|
|
|
array([ 1. , 0.4 , -0.125]) |
443
|
|
|
>>> y_true = [0, 0, 0, 0, 0, 0] |
444
|
|
|
>>> y_pred = [0, 0, 0, 0, 0, 0] |
445
|
|
|
>>> f1_gain_score(y_true, y_pred, zero_division=1) |
446
|
|
|
1.0 |
447
|
|
|
>>> # multilabel classification |
448
|
|
|
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]] |
449
|
|
|
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]] |
450
|
|
|
>>> f1_gain_score(y_true, y_pred, average=None) |
451
|
|
|
array([0.75, 1. , 0. ]) |
452
|
|
|
""" |
453
|
|
|
return fbeta_gain_score( |
454
|
|
|
y_true, |
455
|
|
|
y_pred, |
456
|
|
|
beta=1, |
457
|
|
|
labels=labels, |
458
|
|
|
pos_label=pos_label, |
459
|
|
|
average=average, |
460
|
|
|
sample_weight=sample_weight, |
461
|
|
|
zero_division=zero_division, |
462
|
|
|
class_distribution=class_distribution, |
463
|
|
|
) |
464
|
|
|
|
465
|
|
|
|
466
|
|
|
def fbeta_gain_score( |
467
|
|
|
y_true, |
468
|
|
|
y_pred, |
469
|
|
|
*, |
470
|
|
|
beta, |
471
|
|
|
labels=None, |
472
|
|
|
pos_label=1, |
473
|
|
|
average="binary", |
474
|
|
|
sample_weight=None, |
475
|
|
|
zero_division="warn", |
476
|
|
|
class_distribution=None, |
477
|
|
|
): |
478
|
|
|
"""Compute the F-Gain beta score. |
479
|
|
|
|
480
|
|
|
The F-Gain beta score is the weighted arthimetic mean of precision gain |
481
|
|
|
and recall gain, reaching its optimal value at 1 and its worst value at |
482
|
|
|
-Inf. |
483
|
|
|
|
484
|
|
|
The `beta` parameter determines the weight of recall gain in the combined |
485
|
|
|
score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` |
486
|
|
|
favors recall (``beta -> 0`` considers only precision, ``beta -> +inf`` |
487
|
|
|
only recall). |
488
|
|
|
|
489
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
490
|
|
|
|
491
|
|
|
Parameters |
492
|
|
|
---------- |
493
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
494
|
|
|
Ground truth (correct) target values. |
495
|
|
|
|
496
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
497
|
|
|
Estimated targets as returned by a classifier. |
498
|
|
|
|
499
|
|
|
beta : float |
500
|
|
|
Determines the weight of recall in the combined score. |
501
|
|
|
|
502
|
|
|
labels : array-like, default=None |
503
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
504
|
|
|
order if ``average is None``. Labels present in the data can be |
505
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
506
|
|
|
majority negative class, while labels not present in the data will |
507
|
|
|
result in 0 components in a macro average. For multilabel targets, |
508
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
509
|
|
|
``y_pred`` are used in sorted order. |
510
|
|
|
|
511
|
|
|
.. versionchanged:: 0.17 |
512
|
|
|
Parameter `labels` improved for multiclass problem. |
513
|
|
|
|
514
|
|
|
pos_label : str or int, default=1 |
515
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
516
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
517
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
518
|
|
|
scores for that label only. |
519
|
|
|
|
520
|
|
|
average : {'macro', 'weighted', 'binary'} or None, \ |
521
|
|
|
default='binary' |
522
|
|
|
This parameter is required for multiclass/multilabel targets. |
523
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
524
|
|
|
determines the type of averaging performed on the data: |
525
|
|
|
|
526
|
|
|
``'binary'``: |
527
|
|
|
Only report results for the class specified by ``pos_label``. |
528
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
529
|
|
|
``'macro'``: |
530
|
|
|
Calculate metrics for each label, and find their unweighted |
531
|
|
|
mean. This does not take label imbalance into account. |
532
|
|
|
``'weighted'``: |
533
|
|
|
Calculate metrics for each label, and find their average weighted |
534
|
|
|
by support (the number of true instances for each label). This |
535
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
536
|
|
|
F-score that is not between precision and recall. |
537
|
|
|
|
538
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
539
|
|
|
Sample weights. |
540
|
|
|
|
541
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
542
|
|
|
Sets the value to return when there is a zero division, i.e. when all |
543
|
|
|
predictions and labels are negative. If set to "warn", this acts as 0, |
544
|
|
|
but warnings are also raised. |
545
|
|
|
|
546
|
|
|
class_distribution : Optional list, default=None |
547
|
|
|
The proportion that each class makes up in the dataset. If not |
548
|
|
|
provided then it's estimated from y_true. |
549
|
|
|
|
550
|
|
|
Returns |
551
|
|
|
------- |
552
|
|
|
fgain_beta_score : float (if average is not None) or array of float, shape =\ |
553
|
|
|
[n_unique_labels] |
554
|
|
|
F-Gain beta score of the positive class in binary classification or weighted |
555
|
|
|
average of the F-Gain beta score of each class for the multiclass task. |
556
|
|
|
|
557
|
|
|
See Also |
558
|
|
|
-------- |
559
|
|
|
precision_recall_fgain_score_support : Compute the precision gain, recall |
560
|
|
|
gain, F-Gain score, and support. |
561
|
|
|
multilabel_confusion_matrix : Compute a confusion matrix for each class or |
562
|
|
|
sample. |
563
|
|
|
|
564
|
|
|
Notes |
565
|
|
|
----- |
566
|
|
|
When ``true positive + false positive == 0`` or |
567
|
|
|
``true positive + false negative == 0``, f-score returns 0 and raises |
568
|
|
|
``UndefinedMetricWarning``. This behavior can be |
569
|
|
|
modified with ``zero_division``. |
570
|
|
|
|
571
|
|
|
References |
572
|
|
|
---------- |
573
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by |
574
|
|
|
Peter A. Flach and Meelis Kull |
575
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
576
|
|
|
.. [2] R. Baeza-Yates and B. Ribeiro-Neto (2011). |
577
|
|
|
Modern Information Retrieval. Addison Wesley, pp. 327-328. |
578
|
|
|
|
579
|
|
|
.. [3] `Wikipedia entry for the F1-score |
580
|
|
|
<https://en.wikipedia.org/wiki/F1_score>`_. |
581
|
|
|
|
582
|
|
|
Examples |
583
|
|
|
-------- |
584
|
|
|
>>> from precision_recall_gain import fbeta_gain_score |
585
|
|
|
>>> y_true = [0, 1, 2, 0, 1, 2, 2] |
586
|
|
|
>>> y_pred = [0, 2, 1, 0, 1, 1, 2] |
587
|
|
|
>>> fbeta_gain_score(y_true, y_pred, average='macro', beta=0.5) |
588
|
|
|
0.45... |
589
|
|
|
>>> fbeta_gain_score(y_true, y_pred, average='weighted', beta=0.5) |
590
|
|
|
0.40... |
591
|
|
|
>>> fbeta_gain_score(y_true, y_pred, average=None, beta=0.5) |
592
|
|
|
array([1. , 0.28, 0.1 ]) |
593
|
|
|
""" |
594
|
|
|
|
595
|
|
|
_, _, f, _ = precision_recall_fgain_score_support( |
596
|
|
|
y_true, |
597
|
|
|
y_pred, |
598
|
|
|
beta=beta, |
599
|
|
|
labels=labels, |
600
|
|
|
pos_label=pos_label, |
601
|
|
|
average=average, |
602
|
|
|
warn_for=("f-score",), |
603
|
|
|
sample_weight=sample_weight, |
604
|
|
|
zero_division=zero_division, |
605
|
|
|
class_distribution=class_distribution, |
606
|
|
|
) |
607
|
|
|
return f |
608
|
|
|
|
609
|
|
|
|
610
|
|
|
def precision_recall_fgain_score_support( |
611
|
|
|
y_true, |
612
|
|
|
y_pred, |
613
|
|
|
*, |
614
|
|
|
class_distribution=None, |
615
|
|
|
beta=1.0, |
616
|
|
|
labels=None, |
617
|
|
|
pos_label=1, |
618
|
|
|
average=None, |
619
|
|
|
warn_for=("precision", "recall", "f-score"), |
620
|
|
|
sample_weight=None, |
621
|
|
|
zero_division="warn", |
622
|
|
|
): |
623
|
|
|
"""Compute precision gain, recall gain, F-Gain measure and support for each |
624
|
|
|
class. |
625
|
|
|
|
626
|
|
|
All three measures are derrived by applying the following transform to their |
627
|
|
|
respective vanilla metric values. |
628
|
|
|
|
629
|
|
|
f(x) = (x - pi) / ((1 - pi) * x) |
630
|
|
|
|
631
|
|
|
pi = proportion of positives |
632
|
|
|
|
633
|
|
|
The vanilla metrics prior to transformation are defined as follows: |
634
|
|
|
|
635
|
|
|
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number |
636
|
|
|
of true positives and ``fp`` the number of false positives. The |
637
|
|
|
precision is intuitively the ability of the classifier not to label a |
638
|
|
|
negative sample as positive. |
639
|
|
|
|
640
|
|
|
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of |
641
|
|
|
true positives and ``fn`` the number of false negatives. The recall is |
642
|
|
|
intuitively the ability of the classifier to find all the positive |
643
|
|
|
samples. |
644
|
|
|
|
645
|
|
|
The F-beta score can be interpreted as a weighted harmonic mean of the |
646
|
|
|
precision and recall, where an F-beta score reaches its best value at 1 |
647
|
|
|
and worst score at 0. |
648
|
|
|
|
649
|
|
|
The F-beta score weights recall more than precision by a factor of |
650
|
|
|
``beta``. ``beta == 1.0`` means recall and precision are equally |
651
|
|
|
important. |
652
|
|
|
|
653
|
|
|
The support is the number of occurrences of each class in ``y_true``. |
654
|
|
|
|
655
|
|
|
If ``pos_label is None`` and in binary classification, this function returns |
656
|
|
|
the average precision gain, recall gain and F-gain measure if ``average`` is |
657
|
|
|
one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. |
658
|
|
|
|
659
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
660
|
|
|
|
661
|
|
|
Parameters |
662
|
|
|
---------- |
663
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
664
|
|
|
Ground truth (correct) target values. |
665
|
|
|
|
666
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
667
|
|
|
Estimated targets as returned by a classifier. |
668
|
|
|
|
669
|
|
|
beta : float, default=1.0 |
670
|
|
|
The strength of recall versus precision in the F-score. |
671
|
|
|
|
672
|
|
|
labels : array-like, default=None |
673
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
674
|
|
|
order if ``average is None``. Labels present in the data can be |
675
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
676
|
|
|
majority negative class, while labels not present in the data will |
677
|
|
|
result in 0 components in a macro average. For multilabel targets, |
678
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
679
|
|
|
``y_pred`` are used in sorted order. |
680
|
|
|
|
681
|
|
|
pos_label : str or int, default=1 |
682
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
683
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
684
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
685
|
|
|
scores for that label only. |
686
|
|
|
|
687
|
|
|
average : {'binary', 'macro', 'weighted'}, \ |
688
|
|
|
default=None |
689
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
690
|
|
|
determines the type of averaging performed on the data: |
691
|
|
|
|
692
|
|
|
``'binary'``: |
693
|
|
|
Only report results for the class specified by ``pos_label``. |
694
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
695
|
|
|
``'macro'``: |
696
|
|
|
Calculate metrics for each label, and find their unweighted |
697
|
|
|
mean. This does not take label imbalance into account. |
698
|
|
|
``'weighted'``: |
699
|
|
|
Calculate metrics for each label, and find their average weighted |
700
|
|
|
by support (the number of true instances for each label). This |
701
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
702
|
|
|
F-score that is not between precision and recall. |
703
|
|
|
|
704
|
|
|
warn_for : tuple or set, for internal use |
705
|
|
|
This determines which warnings will be made in the case that this |
706
|
|
|
function is being used to return only one of its metrics. |
707
|
|
|
|
708
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
709
|
|
|
Sample weights. |
710
|
|
|
|
711
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
712
|
|
|
Sets the value to return when there is a zero division: |
713
|
|
|
- recall: when there are no positive labels |
714
|
|
|
- precision: when there are no positive predictions |
715
|
|
|
- f-score: both |
716
|
|
|
|
717
|
|
|
If set to "warn", this acts as 0, but warnings are also raised. |
718
|
|
|
|
719
|
|
|
class_distribution : Optional list, default=None |
720
|
|
|
The proportion that each class makes up in the dataset. If not |
721
|
|
|
provided then it's estimated from y_true. |
722
|
|
|
|
723
|
|
|
Returns |
724
|
|
|
------- |
725
|
|
|
precision_gain : float (if average is not None) or array of float, shape =\ |
726
|
|
|
[n_unique_labels] |
727
|
|
|
Precision Gain score. |
728
|
|
|
|
729
|
|
|
recall_gain : float (if average is not None) or array of float, shape =\ |
730
|
|
|
[n_unique_labels] |
731
|
|
|
Recall Gain score. |
732
|
|
|
|
733
|
|
|
f_gain_beta_score : float (if average is not None) or array of float, shape =\ |
734
|
|
|
[n_unique_labels] |
735
|
|
|
F-beta Gain score. |
736
|
|
|
|
737
|
|
|
support : None (if average is not None) or array of int, shape =\ |
738
|
|
|
[n_unique_labels] |
739
|
|
|
The number of occurrences of each label in ``y_true``. |
740
|
|
|
|
741
|
|
|
Notes |
742
|
|
|
----- |
743
|
|
|
When ``true positive + false positive == 0``, precision is undefined. |
744
|
|
|
When ``true positive + false negative == 0``, recall is undefined. |
745
|
|
|
In such cases, by default the metric will be set to 0, as will f-score, |
746
|
|
|
and ``UndefinedMetricWarning`` will be raised. This behavior can be |
747
|
|
|
modified with ``zero_division``. |
748
|
|
|
|
749
|
|
|
References |
750
|
|
|
---------- |
751
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter |
752
|
|
|
A. Flach and Meelis Kull |
753
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
754
|
|
|
.. [2] `Wikipedia entry for the Precision and recall |
755
|
|
|
<https://en.wikipedia.org/wiki/Precision_and_recall>`_. |
756
|
|
|
|
757
|
|
|
.. [3] `Wikipedia entry for the F1-score |
758
|
|
|
<https://en.wikipedia.org/wiki/F1_score>`_. |
759
|
|
|
|
760
|
|
|
.. [4] `Discriminative Methods for Multi-labeled Classification Advances in |
761
|
|
|
Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu |
762
|
|
|
Godbole, Sunita Sarawagi |
763
|
|
|
<http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_. |
764
|
|
|
|
765
|
|
|
Examples |
766
|
|
|
-------- |
767
|
|
|
>>> import numpy as np |
768
|
|
|
>>> from precision_recall_gain import precision_recall_fgain_score_support |
769
|
|
|
>>> y_true = np.array(['cat', 'dog', 'pig', 'dog', 'cat', 'pig', 'pig']) |
770
|
|
|
>>> y_pred = np.array(['cat', 'pig', 'dog', 'dog', 'cat', 'dog', 'pig']) |
771
|
|
|
|
772
|
|
|
It is possible to compute per-label precisions, recalls, F1-scores and |
773
|
|
|
supports instead of averaging: |
774
|
|
|
|
775
|
|
|
>>> precision_recall_fgain_score_support(y_true, y_pred, average=None, |
776
|
|
|
... labels=['pig', 'dog', 'cat']) |
777
|
|
|
(array([0.25, 0.2 , 1. ]), array([-0.5, 0.6, 1. ]), array([-0.125, 0.4 , 1. ]), array([3, 2, 2])) |
778
|
|
|
""" |
779
|
|
|
average_options = (None, "binary", "macro", "weighted") |
780
|
|
|
if average not in average_options: |
781
|
|
|
raise ValueError("average has to be one of " + str(average_options)) |
782
|
|
|
|
783
|
|
|
return _precision_recall_fscore_support( |
784
|
|
|
y_true=y_true, |
785
|
|
|
y_pred=y_pred, |
786
|
|
|
beta=beta, |
787
|
|
|
labels=labels, |
788
|
|
|
pos_label=pos_label, |
789
|
|
|
average=average, |
790
|
|
|
warn_for=warn_for, |
791
|
|
|
sample_weight=sample_weight, |
792
|
|
|
zero_division=zero_division, |
793
|
|
|
return_in_gain_space=True, |
794
|
|
|
class_distribution=class_distribution, |
795
|
|
|
) |
796
|
|
|
|
797
|
|
|
|
798
|
|
|
def precision_gain_score( |
799
|
|
|
y_true, |
800
|
|
|
y_pred, |
801
|
|
|
*, |
802
|
|
|
labels=None, |
803
|
|
|
pos_label=1, |
804
|
|
|
average="binary", |
805
|
|
|
sample_weight=None, |
806
|
|
|
zero_division="warn", |
807
|
|
|
class_distribution=None, |
808
|
|
|
): |
809
|
|
|
"""Compute the precision Gain. |
810
|
|
|
|
811
|
|
|
The metric is derrived by applying the following transform to precision: |
812
|
|
|
|
813
|
|
|
f(x) = (x - pi) / ((1 - pi) * x) |
814
|
|
|
|
815
|
|
|
pi = proportion of positives |
816
|
|
|
|
817
|
|
|
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of |
818
|
|
|
true positives and ``fp`` the number of false positives. The precision is |
819
|
|
|
intuitively the ability of the classifier not to label as positive a sample |
820
|
|
|
that is negative. |
821
|
|
|
|
822
|
|
|
The best value is 1 and the worst value is -Inf. |
823
|
|
|
|
824
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
825
|
|
|
|
826
|
|
|
Parameters |
827
|
|
|
---------- |
828
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
829
|
|
|
Ground truth (correct) target values. |
830
|
|
|
|
831
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
832
|
|
|
Estimated targets as returned by a classifier. |
833
|
|
|
|
834
|
|
|
labels : array-like, default=None |
835
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
836
|
|
|
order if ``average is None``. Labels present in the data can be |
837
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
838
|
|
|
majority negative class, while labels not present in the data will |
839
|
|
|
result in 0 components in a macro average. For multilabel targets, |
840
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
841
|
|
|
``y_pred`` are used in sorted order. |
842
|
|
|
|
843
|
|
|
.. versionchanged:: 0.17 |
844
|
|
|
Parameter `labels` improved for multiclass problem. |
845
|
|
|
|
846
|
|
|
pos_label : str or int, default=1 |
847
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
848
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
849
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
850
|
|
|
scores for that label only. |
851
|
|
|
|
852
|
|
|
average : {'macro', 'weighted', 'binary'} or None, \ |
853
|
|
|
default='binary' |
854
|
|
|
This parameter is required for multiclass/multilabel targets. |
855
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
856
|
|
|
determines the type of averaging performed on the data: |
857
|
|
|
|
858
|
|
|
``'binary'``: |
859
|
|
|
Only report results for the class specified by ``pos_label``. |
860
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
861
|
|
|
``'macro'``: |
862
|
|
|
Calculate metrics for each label, and find their unweighted |
863
|
|
|
mean. This does not take label imbalance into account. |
864
|
|
|
``'weighted'``: |
865
|
|
|
Calculate metrics for each label, and find their average weighted |
866
|
|
|
by support (the number of true instances for each label). This |
867
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
868
|
|
|
F-score that is not between precision and recall. |
869
|
|
|
|
870
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
871
|
|
|
Sample weights. |
872
|
|
|
|
873
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
874
|
|
|
Sets the value to return when there is a zero division. If set to |
875
|
|
|
"warn", this acts as 0, but warnings are also raised. |
876
|
|
|
|
877
|
|
|
class_distribution : Optional list, default=None |
878
|
|
|
The proportion that each class makes up in the dataset. If not |
879
|
|
|
provided then it's estimated from y_true. |
880
|
|
|
|
881
|
|
|
Returns |
882
|
|
|
------- |
883
|
|
|
precision_gain : float (if average is not None) or array of float of shape \ |
884
|
|
|
(n_unique_labels,) |
885
|
|
|
Precision of the positive class in binary classification or weighted |
886
|
|
|
average of the precision of each class for the multiclass task. |
887
|
|
|
|
888
|
|
|
See Also |
889
|
|
|
-------- |
890
|
|
|
precision_recall_fgain_score_support : Compute precision, recall, F-measure and |
891
|
|
|
support for each class. |
892
|
|
|
recall_gain_score : Compute the ratio ``tp / (tp + fn)`` where ``tp`` is the |
893
|
|
|
number of true positives and ``fn`` the number of false negatives. |
894
|
|
|
PrecisionRecallDisplay.from_estimator : Plot precision-recall curve given |
895
|
|
|
an estimator and some data. |
896
|
|
|
PrecisionRecallDisplay.from_predictions : Plot precision-recall curve given |
897
|
|
|
binary class predictions. |
898
|
|
|
multilabel_confusion_matrix : Compute a confusion matrix for each class or |
899
|
|
|
sample. |
900
|
|
|
|
901
|
|
|
Notes |
902
|
|
|
----- |
903
|
|
|
When ``true positive + false positive == 0``, precision returns 0 and |
904
|
|
|
raises ``UndefinedMetricWarning``. This behavior can be |
905
|
|
|
modified with ``zero_division``. |
906
|
|
|
|
907
|
|
|
References |
908
|
|
|
---------- |
909
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter |
910
|
|
|
A. Flach and Meelis Kull |
911
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
912
|
|
|
|
913
|
|
|
Examples |
914
|
|
|
-------- |
915
|
|
|
>>> from precision_recall_gain import precision_gain_score |
916
|
|
|
>>> y_true = [0, 1, 2, 0, 1, 2] |
917
|
|
|
>>> y_pred = [0, 2, 1, 0, 0, 1] |
918
|
|
|
>>> int(precision_gain_score(y_true, y_pred, average='macro')) |
919
|
|
|
-333333333333333 |
920
|
|
|
>>> int(precision_gain_score(y_true, y_pred, average='weighted')) |
921
|
|
|
-333333333333333 |
922
|
|
|
>>> precision_gain_score(y_true, y_pred, average=None) |
923
|
|
|
array([ 7.5e-01, -5.0e+14, -5.0e+14]) |
924
|
|
|
>>> y_pred = [0, 0, 0, 0, 0, 0] |
925
|
|
|
>>> precision_gain_score(y_true, y_pred, average=None) |
926
|
|
|
array([ 0.e+00, -5.e+14, -5.e+14]) |
927
|
|
|
>>> precision_gain_score(y_true, y_pred, average=None, zero_division=1) |
928
|
|
|
array([0., 1., 1.]) |
929
|
|
|
>>> # multilabel classification |
930
|
|
|
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]] |
931
|
|
|
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]] |
932
|
|
|
>>> precision_gain_score(y_true, y_pred, average=None) |
933
|
|
|
array([0.5, 1. , 1. ]) |
934
|
|
|
""" |
935
|
|
|
p, _, _, _ = precision_recall_fgain_score_support( |
936
|
|
|
y_true, |
937
|
|
|
y_pred, |
938
|
|
|
labels=labels, |
939
|
|
|
pos_label=pos_label, |
940
|
|
|
average=average, |
941
|
|
|
warn_for=("precision",), |
942
|
|
|
sample_weight=sample_weight, |
943
|
|
|
zero_division=zero_division, |
944
|
|
|
class_distribution=class_distribution, |
945
|
|
|
) |
946
|
|
|
return p |
947
|
|
|
|
948
|
|
|
|
949
|
|
|
def recall_gain_score( |
950
|
|
|
y_true, |
951
|
|
|
y_pred, |
952
|
|
|
*, |
953
|
|
|
labels=None, |
954
|
|
|
pos_label=1, |
955
|
|
|
average="binary", |
956
|
|
|
sample_weight=None, |
957
|
|
|
zero_division="warn", |
958
|
|
|
class_distribution=None, |
959
|
|
|
): |
960
|
|
|
"""Compute the recall Gain. |
961
|
|
|
|
962
|
|
|
The metric is derrived by applying the following transform to precision: |
963
|
|
|
|
964
|
|
|
f(x) = (x - pi) / ((1 - pi) * x) |
965
|
|
|
|
966
|
|
|
pi = proportion of positives |
967
|
|
|
|
968
|
|
|
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of |
969
|
|
|
true positives and ``fn`` the number of false negatives. The recall is |
970
|
|
|
intuitively the ability of the classifier to find all the positive samples. |
971
|
|
|
|
972
|
|
|
The best value is 1 and the worst value is -Inf. |
973
|
|
|
|
974
|
|
|
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. |
975
|
|
|
|
976
|
|
|
Parameters |
977
|
|
|
---------- |
978
|
|
|
y_true : 1d array-like, or label indicator array / sparse matrix |
979
|
|
|
Ground truth (correct) target values. |
980
|
|
|
|
981
|
|
|
y_pred : 1d array-like, or label indicator array / sparse matrix |
982
|
|
|
Estimated targets as returned by a classifier. |
983
|
|
|
|
984
|
|
|
labels : array-like, default=None |
985
|
|
|
The set of labels to include when ``average != 'binary'``, and their |
986
|
|
|
order if ``average is None``. Labels present in the data can be |
987
|
|
|
excluded, for example to calculate a multiclass average ignoring a |
988
|
|
|
majority negative class, while labels not present in the data will |
989
|
|
|
result in 0 components in a macro average. For multilabel targets, |
990
|
|
|
labels are column indices. By default, all labels in ``y_true`` and |
991
|
|
|
``y_pred`` are used in sorted order. |
992
|
|
|
|
993
|
|
|
.. versionchanged:: 0.17 |
994
|
|
|
Parameter `labels` improved for multiclass problem. |
995
|
|
|
|
996
|
|
|
pos_label : str or int, default=1 |
997
|
|
|
The class to report if ``average='binary'`` and the data is binary. |
998
|
|
|
If the data are multiclass or multilabel, this will be ignored; |
999
|
|
|
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report |
1000
|
|
|
scores for that label only. |
1001
|
|
|
|
1002
|
|
|
average : {'macro', 'weighted', 'binary'} or None, \ |
1003
|
|
|
default='binary' |
1004
|
|
|
This parameter is required for multiclass/multilabel targets. |
1005
|
|
|
If ``None``, the scores for each class are returned. Otherwise, this |
1006
|
|
|
determines the type of averaging performed on the data: |
1007
|
|
|
|
1008
|
|
|
``'binary'``: |
1009
|
|
|
Only report results for the class specified by ``pos_label``. |
1010
|
|
|
This is applicable only if targets (``y_{true,pred}``) are binary. |
1011
|
|
|
``'macro'``: |
1012
|
|
|
Calculate metrics for each label, and find their unweighted |
1013
|
|
|
mean. This does not take label imbalance into account. |
1014
|
|
|
``'weighted'``: |
1015
|
|
|
Calculate metrics for each label, and find their average weighted |
1016
|
|
|
by support (the number of true instances for each label). This |
1017
|
|
|
alters 'macro' to account for label imbalance; it can result in an |
1018
|
|
|
F-score that is not between precision and recall. Weighted recall |
1019
|
|
|
is equal to accuracy. |
1020
|
|
|
|
1021
|
|
|
sample_weight : array-like of shape (n_samples,), default=None |
1022
|
|
|
Sample weights. |
1023
|
|
|
|
1024
|
|
|
zero_division : "warn", 0 or 1, default="warn" |
1025
|
|
|
Sets the value to return when there is a zero division. If set to |
1026
|
|
|
"warn", this acts as 0, but warnings are also raised. |
1027
|
|
|
|
1028
|
|
|
class_distribution : Optional list, default=None |
1029
|
|
|
The proportion that each class makes up in the dataset. If not |
1030
|
|
|
provided then it's estimated from y_true. |
1031
|
|
|
|
1032
|
|
|
Returns |
1033
|
|
|
------- |
1034
|
|
|
recall : float (if average is not None) or array of float of shape \ |
1035
|
|
|
(n_unique_labels,) |
1036
|
|
|
Recall of the positive class in binary classification or weighted |
1037
|
|
|
average of the recall of each class for the multiclass task. |
1038
|
|
|
|
1039
|
|
|
See Also |
1040
|
|
|
-------- |
1041
|
|
|
precision_recall_fgain_score_support : Compute precision, recall, F-measure and |
1042
|
|
|
support for each class. |
1043
|
|
|
precision_gain_score : Compute the ratio ``tp / (tp + fp)`` where ``tp`` is the |
1044
|
|
|
number of true positives and ``fp`` the number of false positives. |
1045
|
|
|
balanced_accuracy_score : Compute balanced accuracy to deal with imbalanced |
1046
|
|
|
datasets. |
1047
|
|
|
multilabel_confusion_matrix : Compute a confusion matrix for each class or |
1048
|
|
|
sample. |
1049
|
|
|
PrecisionRecallDisplay.from_estimator : Plot precision-recall curve given |
1050
|
|
|
an estimator and some data. |
1051
|
|
|
PrecisionRecallDisplay.from_predictions : Plot precision-recall curve given |
1052
|
|
|
binary class predictions. |
1053
|
|
|
|
1054
|
|
|
Notes |
1055
|
|
|
----- |
1056
|
|
|
When ``true positive + false negative == 0``, recall returns 0 and raises |
1057
|
|
|
``UndefinedMetricWarning``. This behavior can be modified with |
1058
|
|
|
``zero_division``. |
1059
|
|
|
|
1060
|
|
|
References |
1061
|
|
|
---------- |
1062
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter |
1063
|
|
|
A. Flach and Meelis Kull |
1064
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
1065
|
|
|
|
1066
|
|
|
Examples |
1067
|
|
|
-------- |
1068
|
|
|
>>> from precision_recall_gain import recall_gain_score |
1069
|
|
|
>>> y_true = [0, 1, 2, 0, 1, 2] |
1070
|
|
|
>>> y_pred = [0, 2, 1, 0, 0, 1] |
1071
|
|
|
>>> int(recall_gain_score(y_true, y_pred, average='macro')) |
1072
|
|
|
-333333333333333 |
1073
|
|
|
>>> int(recall_gain_score(y_true, y_pred, average='weighted')) |
1074
|
|
|
-333333333333333 |
1075
|
|
|
>>> recall_gain_score(y_true, y_pred, average=None) |
1076
|
|
|
array([ 1.e+00, -5.e+14, -5.e+14]) |
1077
|
|
|
>>> y_true = [0, 0, 0, 0, 0, 0] |
1078
|
|
|
>>> recall_gain_score(y_true, y_pred, average=None) |
1079
|
|
|
array([-inf, nan, nan]) |
1080
|
|
|
>>> recall_gain_score(y_true, y_pred, average=None, zero_division=1) |
1081
|
|
|
array([-inf, 1., 1.]) |
1082
|
|
|
>>> # multilabel classification |
1083
|
|
|
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]] |
1084
|
|
|
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]] |
1085
|
|
|
>>> recall_gain_score(y_true, y_pred, average=None) |
1086
|
|
|
array([ 1., 1., -1.]) |
1087
|
|
|
""" |
1088
|
|
|
_, r, _, _ = precision_recall_fgain_score_support( |
1089
|
|
|
y_true, |
1090
|
|
|
y_pred, |
1091
|
|
|
labels=labels, |
1092
|
|
|
pos_label=pos_label, |
1093
|
|
|
average=average, |
1094
|
|
|
warn_for=("recall",), |
1095
|
|
|
sample_weight=sample_weight, |
1096
|
|
|
zero_division=zero_division, |
1097
|
|
|
class_distribution=class_distribution, |
1098
|
|
|
) |
1099
|
|
|
return r |
1100
|
|
|
|
1101
|
|
|
|
1102
|
|
|
def prg_gain_transform(x, *, pi): |
1103
|
|
|
"""Transfrom from Precision Recall space into Precision Recall Gain space. |
1104
|
|
|
|
1105
|
|
|
Parameters |
1106
|
|
|
---------- |
1107
|
|
|
x : scaler or 1d array-like |
1108
|
|
|
The metric, either precision, recall or F-score to be transformed into |
1109
|
|
|
PRG space. |
1110
|
|
|
pi : scaler |
1111
|
|
|
The proportion of datapoints belonging to the positive class in the |
1112
|
|
|
dataset. |
1113
|
|
|
|
1114
|
|
|
Returns |
1115
|
|
|
------- |
1116
|
|
|
x' : scaler or 1d array-like |
1117
|
|
|
The transformed metric in PRG space. |
1118
|
|
|
|
1119
|
|
|
References |
1120
|
|
|
---------- |
1121
|
|
|
.. [1] `Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter |
1122
|
|
|
A. Flach and Meelis Kull |
1123
|
|
|
<https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf>`_. |
1124
|
|
|
""" |
1125
|
|
|
if x == pi == 1: |
1126
|
|
|
return 1 |
1127
|
|
|
elif x == pi == 0: |
1128
|
|
|
# if no positive class in true or predicted labels, return NaN |
1129
|
|
|
return np.nan |
1130
|
|
|
# note: if x == 0, then the metric value is -Inf |
1131
|
|
|
# and if x<pi, then the metric value is negative |
1132
|
|
|
# for our purposes we will add a small value to x |
1133
|
|
|
# to avoid division by zero and so that the metric |
1134
|
|
|
# value is not nan if one of the classes have a precision |
1135
|
|
|
# or recall of 0 |
1136
|
|
|
x = min(1, x + 1e-15) |
1137
|
|
|
# we have to also adjust pi for cases when pi is 0 |
1138
|
|
|
pi = min(1, pi + 1e-15) |
1139
|
|
|
return (x - pi) / ((1 - pi) * x) |
1140
|
|
|
|