1
|
|
|
#!/usr/bin/env python3 |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
""" |
4
|
|
|
Created on Fri Jul 5 16:31:45 2019 |
5
|
|
|
|
6
|
|
|
@author: Paolo Cozzi <[email protected]> |
7
|
|
|
""" |
8
|
|
|
|
9
|
|
|
import xlrd |
10
|
|
|
import logging |
11
|
|
|
import datetime |
12
|
|
|
|
13
|
|
|
from collections import defaultdict, namedtuple |
14
|
|
|
|
15
|
|
|
from common.constants import ACCURACIES |
16
|
|
|
from uid.helpers import FileDataSourceMixin |
17
|
|
|
from uid.models import DictSex, DictCountry |
18
|
|
|
|
19
|
|
|
from .exceptions import ExcelImportError |
20
|
|
|
|
21
|
|
|
# Get an instance of a logger |
22
|
|
|
logger = logging.getLogger(__name__) |
23
|
|
|
|
24
|
|
|
# defining the template columns in need for data import |
25
|
|
|
TEMPLATE_COLUMNS = { |
26
|
|
|
'breed': [ |
27
|
|
|
'Supplied breed', |
28
|
|
|
# 'Mapped breed', |
29
|
|
|
# 'Mapped breed ontology library', |
30
|
|
|
# 'Mapped breed ontology accession', |
31
|
|
|
'EFABIS Breed country', |
32
|
|
|
'Species', |
33
|
|
|
# 'Species ontology library', |
34
|
|
|
# 'Species ontology accession' |
35
|
|
|
], |
36
|
|
|
'animal': [ |
37
|
|
|
'Animal id in data source', |
38
|
|
|
'Animal description', |
39
|
|
|
'Alternative animal ID', |
40
|
|
|
'Father id in data source', |
41
|
|
|
'Mother id in data source', |
42
|
|
|
'Breed', |
43
|
|
|
'Species', |
44
|
|
|
'Sex', |
45
|
|
|
'Birth date', |
46
|
|
|
'Birth location', |
47
|
|
|
'Birth location longitude', |
48
|
|
|
'Birth location latitude', |
49
|
|
|
'Birth location accuracy' |
50
|
|
|
], |
51
|
|
|
'sample': [ |
52
|
|
|
'Sample id in data source', |
53
|
|
|
'Alternative sample ID', |
54
|
|
|
'Sample description', |
55
|
|
|
'Animal id in data source', |
56
|
|
|
'Specimen collection protocol', |
57
|
|
|
'availability', |
58
|
|
|
'Collection date', |
59
|
|
|
'Collection place latitude', |
60
|
|
|
'Collection place longitude', |
61
|
|
|
'Collection place', |
62
|
|
|
'Collection place accuracy', |
63
|
|
|
'Organism part', |
64
|
|
|
'Developmental stage', |
65
|
|
|
'Physiological stage', |
66
|
|
|
'Animal age at collection', |
67
|
|
|
'Sample storage', |
68
|
|
|
'Sample storage processing', |
69
|
|
|
'Sampling to preparation interval' |
70
|
|
|
] |
71
|
|
|
} |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
class ExcelTemplateReader(FileDataSourceMixin): |
75
|
|
|
"""A class to read template excel files""" |
76
|
|
|
|
77
|
|
|
def __init__(self): |
78
|
|
|
# read xls file and track it |
79
|
|
|
self.book = None |
80
|
|
|
self.sheet_names = [] |
81
|
|
|
|
82
|
|
|
def read_file(self, filename): |
83
|
|
|
# read xls file and track it |
84
|
|
|
self.book = xlrd.open_workbook(filename) |
85
|
|
|
self.sheet_names = self.book.sheet_names() |
86
|
|
|
|
87
|
|
|
def check_sheets(self): |
88
|
|
|
"""Test for the minimal sheets required to upload data""" |
89
|
|
|
|
90
|
|
|
not_found = [] |
91
|
|
|
|
92
|
|
|
for sheet_name in TEMPLATE_COLUMNS.keys(): |
93
|
|
|
if sheet_name not in self.sheet_names: |
94
|
|
|
not_found.append(sheet_name) |
95
|
|
|
logger.error( |
96
|
|
|
"required sheet {name} not found in template".format( |
97
|
|
|
name=sheet_name) |
98
|
|
|
) |
99
|
|
|
|
100
|
|
|
if len(not_found) > 0: |
101
|
|
|
return False, not_found |
102
|
|
|
|
103
|
|
|
else: |
104
|
|
|
logger.debug("This seems to be a valid Template file") |
105
|
|
|
return True, not_found |
106
|
|
|
|
107
|
|
|
def check_columns(self): |
108
|
|
|
"""Test for minimal column required for template load""" |
109
|
|
|
|
110
|
|
|
not_found = defaultdict(list) |
111
|
|
|
|
112
|
|
|
for sheet_name in TEMPLATE_COLUMNS.keys(): |
113
|
|
|
# get a sheet from xls workbook |
114
|
|
|
sheet = self.book.sheet_by_name(sheet_name) |
115
|
|
|
|
116
|
|
|
# get header from sheet |
117
|
|
|
header = sheet.row_values(0) |
118
|
|
|
|
119
|
|
|
for column in TEMPLATE_COLUMNS[sheet_name]: |
120
|
|
|
if column not in header: |
121
|
|
|
not_found[sheet_name].append(column) |
122
|
|
|
logger.error( |
123
|
|
|
"required column {column} not found in sheet " |
124
|
|
|
"{sheet_name}".format( |
125
|
|
|
sheet_name=sheet_name, |
126
|
|
|
column=column) |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
if len(not_found) > 0: |
130
|
|
|
return False, not_found |
131
|
|
|
|
132
|
|
|
else: |
133
|
|
|
logger.debug("This seems to be a valid Template file") |
134
|
|
|
return True, not_found |
135
|
|
|
|
136
|
|
|
def get_sheet_records(self, sheet_name): |
137
|
|
|
"""Generic functions to iterate on excel records""" |
138
|
|
|
|
139
|
|
|
# this is the sheet I need |
140
|
|
|
sheet = self.book.sheet_by_name(sheet_name) |
141
|
|
|
|
142
|
|
|
# now get columns to create a collection objects |
143
|
|
|
header = sheet.row_values(0) |
144
|
|
|
|
145
|
|
|
column_idxs = {} |
146
|
|
|
|
147
|
|
|
# get the column index I need |
148
|
|
|
for column in TEMPLATE_COLUMNS[sheet_name]: |
149
|
|
|
try: |
150
|
|
|
idx = header.index(column) |
151
|
|
|
|
152
|
|
|
except ValueError as e: |
153
|
|
|
logger.error(e) |
154
|
|
|
raise ExcelImportError( |
155
|
|
|
"Column '%s' not found in '%s' sheet" % ( |
156
|
|
|
column, sheet_name)) |
157
|
|
|
|
158
|
|
|
column_idxs[column.lower().replace(" ", "_")] = idx |
159
|
|
|
|
160
|
|
|
# get new column names |
161
|
|
|
columns = column_idxs.keys() |
162
|
|
|
|
163
|
|
|
# create a namedtuple object |
164
|
|
|
Record = namedtuple(sheet_name.capitalize(), columns) |
165
|
|
|
|
166
|
|
|
# iterate over record, mind the header column |
167
|
|
|
for i in range(1, sheet.nrows): |
168
|
|
|
# get a row from excel file |
169
|
|
|
row = sheet.row_values(i) |
170
|
|
|
|
171
|
|
|
# get the data I need |
172
|
|
|
data = [row[column_idxs[column]] for column in columns] |
173
|
|
|
|
174
|
|
|
# replace all empty occurences in a list |
175
|
|
|
data = [None if col in [""] |
176
|
|
|
else col for col in data] |
177
|
|
|
|
178
|
|
|
# stripping columns |
179
|
|
|
data = [col.strip() if type(col) is str |
180
|
|
|
else col for col in data] |
181
|
|
|
|
182
|
|
|
# treat integers as integers |
183
|
|
|
data = [int(col) if type(col) is float and col.is_integer() |
184
|
|
|
else col for col in data] |
185
|
|
|
|
186
|
|
|
# fix date fields. Search for 'date' in column names |
187
|
|
|
date_idxs = [column_idxs[column] for column in columns if |
188
|
|
|
'date' in column] |
189
|
|
|
|
190
|
|
|
# fix date objects using datetime, as described here: |
191
|
|
|
# https://stackoverflow.com/a/13962976/4385116 |
192
|
|
|
for idx in date_idxs: |
193
|
|
|
if not data[idx]: |
194
|
|
|
continue |
195
|
|
|
|
196
|
|
|
# forcing a date object |
197
|
|
|
data[idx] = datetime.datetime( |
198
|
|
|
*xlrd.xldate_as_tuple( |
199
|
|
|
data[idx], |
200
|
|
|
self.book.datemode |
201
|
|
|
) |
202
|
|
|
).date() |
203
|
|
|
|
204
|
|
|
# get a new object |
205
|
|
|
record = Record._make(data) |
206
|
|
|
|
207
|
|
|
yield record |
208
|
|
|
|
209
|
|
|
def get_breed_records(self): |
210
|
|
|
"""Iterate among breeds record""" |
211
|
|
|
|
212
|
|
|
# this is the sheet I need |
213
|
|
|
sheet_name = "breed" |
214
|
|
|
return self.get_sheet_records(sheet_name) |
215
|
|
|
|
216
|
|
|
def get_animal_records(self): |
217
|
|
|
"""Iterate among animal records""" |
218
|
|
|
|
219
|
|
|
# this is the sheet I need |
220
|
|
|
sheet_name = "animal" |
221
|
|
|
return self.get_sheet_records(sheet_name) |
222
|
|
|
|
223
|
|
|
def get_sample_records(self): |
224
|
|
|
"""Iterate among sample records""" |
225
|
|
|
|
226
|
|
|
# this is the sheet I need |
227
|
|
|
sheet_name = "sample" |
228
|
|
|
return self.get_sheet_records(sheet_name) |
229
|
|
|
|
230
|
|
|
def get_animal_from_sample(self, sample): |
231
|
|
|
"""get an animal record from a sample record""" |
232
|
|
|
|
233
|
|
|
animals = [ |
234
|
|
|
animal for animal in self.get_animal_records() if |
235
|
|
|
animal.animal_id_in_data_source == sample.animal_id_in_data_source |
236
|
|
|
] |
237
|
|
|
|
238
|
|
|
# animal is supposed to be unique |
239
|
|
|
if len(animals) != 1: |
240
|
|
|
raise ExcelImportError( |
241
|
|
|
"Can't determine a unique animal from '{sample}' " |
242
|
|
|
"record data. Animal objects found: {animals}".format( |
243
|
|
|
sample=sample, animals=animals)) |
244
|
|
|
|
245
|
|
|
return animals[0] |
246
|
|
|
|
247
|
|
|
def get_breed_from_animal(self, record): |
248
|
|
|
"""Get a breed record from an animal record""" |
249
|
|
|
|
250
|
|
|
breeds = [ |
251
|
|
|
breed for breed in self.get_breed_records() |
252
|
|
|
if breed.supplied_breed == record.breed and |
253
|
|
|
breed.species == record.species] |
254
|
|
|
|
255
|
|
|
# breed is supposed to be unique, from UID constraints. However |
256
|
|
|
# I could place the same breed name for two countries. In that case, |
257
|
|
|
# I cant derive a unique breed from users data |
258
|
|
|
if len(breeds) != 1: |
259
|
|
|
raise ExcelImportError( |
260
|
|
|
"Can't determine a unique breed for '%s:%s' from user data" % |
261
|
|
|
(record.breed, record.species)) |
262
|
|
|
|
263
|
|
|
return breeds[0] |
264
|
|
|
|
265
|
|
|
def check_species(self, country): |
266
|
|
|
"""Check if all species are defined in UID DictSpecies. If not, |
267
|
|
|
create dictionary term""" |
268
|
|
|
|
269
|
|
|
column = 'species' |
270
|
|
|
item_set = set([breed.species for breed in self.get_breed_records()]) |
271
|
|
|
|
272
|
|
|
# call FileDataSourceMixin.check_species |
273
|
|
|
return super().check_species(column, item_set, country, create=True) |
274
|
|
|
|
275
|
|
|
def check_species_in_animal_sheet(self): |
276
|
|
|
"""Check if all animal species are defined in breed sheet""" |
277
|
|
|
|
278
|
|
|
check = True |
279
|
|
|
not_found = [] |
280
|
|
|
|
281
|
|
|
reference_set = set( |
282
|
|
|
[breed.species for breed in self.get_breed_records()]) |
283
|
|
|
|
284
|
|
|
test_set = set( |
285
|
|
|
[animal.species for animal in self.get_animal_records()]) |
286
|
|
|
|
287
|
|
|
for specie in test_set: |
288
|
|
|
if specie not in reference_set: |
289
|
|
|
check = False |
290
|
|
|
not_found.append(specie) |
291
|
|
|
|
292
|
|
|
return check, not_found |
293
|
|
|
|
294
|
|
|
def check_sex(self): |
295
|
|
|
"""Check that all sex records are present in database""" |
296
|
|
|
|
297
|
|
|
column = 'sex' |
298
|
|
|
item_set = set([animal.sex for animal in self.get_animal_records()]) |
299
|
|
|
|
300
|
|
|
# call FileDataSourceMixin.check_items |
301
|
|
|
return self.check_items(item_set, DictSex, column) |
302
|
|
|
|
303
|
|
|
def check_countries(self): |
304
|
|
|
"""Check that all efabis countries are present in database""" |
305
|
|
|
|
306
|
|
|
column = "efabis_breed_country" |
307
|
|
|
item_set = set([breed.efabis_breed_country for |
308
|
|
|
breed in self.get_breed_records()]) |
309
|
|
|
|
310
|
|
|
# call FileDataSourceMixin.check_items |
311
|
|
|
return self.check_items(item_set, DictCountry, column) |
312
|
|
|
|
313
|
|
|
def __check_accuracy(self, item_set): |
314
|
|
|
"""A generic method to test for accuracies""" |
315
|
|
|
|
316
|
|
|
# a list of not found terms and a status to see if something is missing |
317
|
|
|
# or not |
318
|
|
|
not_found = [] |
319
|
|
|
result = True |
320
|
|
|
|
321
|
|
|
for item in item_set: |
322
|
|
|
try: |
323
|
|
|
ACCURACIES.get_value_by_desc(item) |
324
|
|
|
|
325
|
|
|
except KeyError: |
326
|
|
|
logger.warning("accuracy level '%s' not found" % (item)) |
327
|
|
|
not_found.append(item) |
328
|
|
|
|
329
|
|
|
if len(not_found) != 0: |
330
|
|
|
result = False |
331
|
|
|
|
332
|
|
|
return result, not_found |
333
|
|
|
|
334
|
|
|
def check_accuracies(self): |
335
|
|
|
"""Check accuracy specified in table""" |
336
|
|
|
|
337
|
|
|
item_set = set([animal.birth_location_accuracy |
338
|
|
|
for animal in self.get_animal_records()]) |
339
|
|
|
|
340
|
|
|
# test for accuracy in animal table |
341
|
|
|
result_animal, not_found_animal = self.__check_accuracy(item_set) |
342
|
|
|
|
343
|
|
|
item_set = set([sample.collection_place_accuracy |
344
|
|
|
for sample in self.get_sample_records()]) |
345
|
|
|
|
346
|
|
|
# test for accuracy in sample table |
347
|
|
|
result_sample, not_found_sample = self.__check_accuracy(item_set) |
348
|
|
|
|
349
|
|
|
# merge two results |
350
|
|
|
check = result_animal and result_sample |
351
|
|
|
not_found = set(not_found_animal + not_found_sample) |
352
|
|
|
|
353
|
|
|
if check is False: |
354
|
|
|
logger.error( |
355
|
|
|
"Couldnt' find those accuracies in constants:") |
356
|
|
|
logger.error(not_found) |
357
|
|
|
|
358
|
|
|
return check, not_found |
359
|
|
|
|